THE HOMOTOPY GROUPS OF A SPECTRUM WHOSE BP** ${ }_{*}$ HOMOLOGY IS $v_{2}^{-1} B P_{*} /\left(2, v_{1}{ }^{\infty}\right)\left[t_{1}\right] \otimes \Lambda\left(t_{2}\right)$

Keiko MASAMOTO, Tsuyoshi MATSUHISA and Katsumi SHIMOMURA

(Received May 12, 1994)

1. Introduction

In[5], Mahowald gave some examples of ring spectra obtained as Thom spectra. One of them is X_{2} in [5], which is a Thom spectrum associated to ω : $\Omega S^{2} \rightarrow B O$, where ω is a mapping corresponding to the generator of $\pi_{1}(B O)$. Let $B P$ denote the Brown-Peterson spectrum at the prime 2. Then the spectrum X_{2} is also characterized by the $B P_{*}$-homology $B P_{*}\left(X_{2}\right)=B P_{*} /(2)\left[t_{1}\right]$ as a subcomodule algera of $B P_{*}(B P) /(2)=B P_{*} /(2)\left[t_{1}, t_{2}, \cdots\right]$, where $B P_{*}=\boldsymbol{Z}_{(2)}\left[v_{1}, v_{2}\right.$, \cdots] over Hazewinkel's generators $v_{i}(c f$. [14]).

Relating to X_{2}, consider a spectrum X constructed as follows: Let C be a cofiber of the Bousfield localization map $X_{2} \rightarrow L_{1} X_{2}$ with respect to the JohnsonWilson spectrum $E(1)$ with $\pi_{*}(E(1))=\boldsymbol{Z}_{(2)}\left[v_{1}, v_{1}^{-1}\right]$. Then C is an X_{2}-module spectrum since X_{2} is a ring spectrum. Consider the element $h_{20} \in \pi_{5}\left(X_{2}\right)$. Now the spectrum X is a cofiber of a map $h_{20}: \Sigma^{5} C \rightarrow C$. By this definition, the $B P_{*}$-homology of X is $B P_{*}(X)=B P /\left(2, v_{1}^{\infty}\right)\left[t_{1}\right] \otimes \Lambda\left(t_{2}\right)$. Once we determined the homotopy groups $\pi_{*}\left(L_{2} X_{2}\right)$ in [17], the homotopy groups $\pi_{*}\left(L_{2} X\right)$ can be obtained from it. Here L_{2} denotes the Bousfield localization functor with respect to the Johnson-Wilson spectrum $E(2)$ with $\pi_{*}(E(2))=\boldsymbol{Z}_{(2)}\left[v_{1}, v_{2}, v_{2}^{-1}\right]$ as a subalgebra of $v_{2}^{-1} B P_{*}$. But, in this paper, we compute, independently of [17], the homotopy groups $\pi_{*}\left(L_{2} X\right)$ of the $E(2)_{*}$-localized spectrum of X by using the Adams-Novikov spectral sequence. The computation of the E_{2}-term is done in the same manner as that of [17], using the v_{1}-Bockstein spectral sequence. Different from the odd prime case, there may involve non-trivial differentials of the AdamsNovikov spectral sequence. On the other hand, different from the case for X_{2}, this case may support at most one family of non-trivial differentials. In this sense, it is a little easier to determine the homotopy groups of $L_{2} X$ than those of $L_{2} X_{2}$. By using the results of [7], we show here that the differentials are all trivial, in a different fashion from that of [17], and have the E_{∞}-term of the spectral sequence. In order to state the result, consider the integers A_{n} defined by

$$
A_{0}=1, A_{2 n+1}=1+2 A_{2 n} \text { and } A_{2 n+2}=2 A_{2 n+1}
$$

for $n \geq 0$, and use the notations :

$$
\begin{gathered}
C_{\infty}\langle x\rangle \text { is a } \boldsymbol{Z} / 2\left[v_{1}, v_{2}, v_{2}^{-1}\right] \text {-module isomorphic to } \\
\boldsymbol{Z} / 2\left[v_{1}, v_{1}^{-1}, v_{2}, v_{2}^{-1}\right] / \boldsymbol{Z} / 2\left[v_{1}, v_{2}, v_{2}^{-1}\right] \\
\text { generated by elements }\left\{x / v_{1}^{j}\right\}_{j>0} \text { such that } v_{1}\left(x / v_{1}^{j}\right)=x / v_{1}^{j-1} . \\
C_{j}\langle x\rangle \text { is a cyclic } \boldsymbol{Z} / 2\left[v_{1}, v_{2}, v_{2}^{-1}\right] \text {-module isomorphic to } \\
\boldsymbol{Z} / 2\left[v_{1}, v_{2}, v_{2}^{-1}\right] /\left(v_{1}^{j}\right) \\
\text { generated by an element } x / v_{1}^{j} .
\end{gathered}
$$

Theorem. The E_{∞}-term of the Adams-Novikov spectral sequence for computing $\pi_{*}\left(L_{2} X\right)$ is a $\boldsymbol{Z} / 2\left[v_{1}, v_{2}, v_{2}^{-1}\right]$-module

$$
M_{*} \otimes \Lambda(\rho)
$$

Here, the graded $\boldsymbol{Z} / 2\left[v_{1}, v_{2}, v_{2}^{-1}\right]$-module M_{*} is given by :

$$
\begin{aligned}
& M_{0}=C_{\infty}\langle 1\rangle \oplus \oplus_{n, t z 0} C_{A_{n}}\left\langle v_{3}^{2^{n}(2 t+1)}\right\rangle, \\
& M_{1}=\oplus_{t \geq 0}\left(C_{1}\left\langle v_{3}^{2 t+1} h_{30}\right\rangle \oplus C_{1}\left\langle v_{3}^{2 t+1} h_{31}\right\rangle \oplus C_{3}\left\langle v_{3}^{4 t+2} h_{30}\right\rangle\right) \\
& \oplus \oplus_{n>0, t \geq 0} C_{A_{n}}\left\langle v_{3}^{2^{2(2 t+1)+1}} h_{21}\right\rangle \\
& \oplus \oplus_{t, k \geq 0}\left(C_{A_{2 k+1}}\left\langle\psi_{3}^{4 k(4 t+2)+b_{k+1}} h_{30}\right\rangle \oplus C_{A_{2 k}}\left\langle x_{3}^{4 k(2 t+1)+b_{k+1} / 2} h_{31}\right\rangle\right), \\
& M_{2}=\oplus_{t \geq 0} C_{1}\left\langle v_{3}^{2 t+1} h_{30} h_{31}\right\rangle \\
& \oplus \oplus_{t, k \geq 0}\left(C_{A_{2 k+1}}\left\langle v_{3}^{4 k(4 t+2)+b_{k+1}+1} h_{21} h_{30}\right\rangle\right. \\
& \left.\oplus C_{A_{2 k}}\left\langle v_{3}^{4 k(2 t+1)+\left(b_{k+1} / 2\right)+1} h_{21} h_{31}\right\rangle\right) \text { and } \\
& M_{n}=0 \text { for } n>2 \text {. }
\end{aligned}
$$

Furthermore, the generators have the following degrees:

$$
\left|v_{3}\right|=14,\left|h_{20}\right|=5,\left|h_{21}\right|=11,\left|h_{30}\right|=13, \text { and }\left|h_{31}\right|=27
$$

In the theorem, an element x has a degree r if $x \in \pi_{r}\left(L_{2} X\right)$.
This paper is organized as follows: In the next section, we recall some facts known about the v_{1}-Bockstein spectral sequence. In $\S 3$, we define elements x_{n}, which will play the main role in the computation of the Bockstein spectral sequence. We compute E_{2}-terms of the Adams-Novikov spectral sequence computing the homotopy groups $\pi_{*}\left(L_{2} X\right)$ in $\S 4$, by using the tools given in the previous sections. In section 5, we prepare some lemmas to compute the Adams-Novikov differentials in the last section using the results of [7].

2. The Bockstein spectral sequence

Let (A, Γ) denote a Hopf algebroid with ΓA-flat. Then it is known (cf. [14, Ch. A1]) that the category of Γ-comodules has enough injectives and so we can define the Ext groups as a cohomology of an injective resolution. Furthermore it
is given by a cohomology of the cobar resolution. So we can define $\operatorname{Ext}_{\Gamma}^{n}(A, M)$ $=H^{n}\left(\Omega_{\Gamma}^{*} M\right)$ for a Γ-comodule M, where $\Omega_{\Gamma}^{*} M$ is a cobar complex ($c f$. [14]). The cobar complex $\Omega_{\Gamma}^{*} M$ is a defferential graded module with

$$
\Omega_{\Gamma}^{s} M=M \otimes_{A} \Gamma \otimes_{A} \cdots \otimes_{A} \Gamma \quad(s \text { copies of } \Gamma)
$$

and the differentials $d_{r}: \Omega_{\Gamma}^{r} M \rightarrow \Omega_{\Gamma}^{r+1} M$ defined inductively by

$$
d_{0}(m)=\psi(m)-m \otimes 1 \text { and } d_{r}(x \otimes y)=d_{s}(x) \otimes y+(-1)^{s} x \otimes d_{t}(y)
$$

for $x \in \Omega_{\Gamma}^{s} M$ and $y \in \Omega_{\Gamma}^{t} A$. Here $\psi: M \rightarrow M \otimes_{A} \Gamma$ denotes the comodule structure map of M. In the following, every comodule is induced from A and so we use η_{R} for ψ.

Suppose that $A=\boldsymbol{Z}_{(2)}\left[v_{1}, v_{2}, \cdots\right]$ and $\Gamma=A\left[t_{1}, t_{2}, \cdots\right]$. Consider a Hopf algebroid $\Phi=A\left[t_{1}\right] \otimes \Lambda\left(t_{2}\right)$ and a coalgebroid $\Sigma=\Gamma \square_{\Phi} A$ over A. Then $\Sigma=A\left[t_{2}^{2}\right.$, $\left.t_{3}, \cdots\right]$ and we have the change of rings theorem :

Lemma 2.1. For a comodule A, there is an isomorphism

$$
\operatorname{Ext}_{\Gamma}^{*}\left(A, M \otimes_{A} \Phi\right) \cong \operatorname{Ext}_{\Sigma}^{*}(A, M)
$$

Proof. Consider a relative injective Γ-resolution of $M \otimes_{A} \Phi$:

$$
M \otimes_{A} \Phi \longrightarrow I_{0} \otimes_{A} \Gamma \longrightarrow I_{1} \otimes_{A} \Gamma \longrightarrow \cdots,
$$

which is split as A-modules. Then apply the cotensor product $-\square_{\varphi} A$ and we obtain a relative injective Σ-resolution of M :

$$
M \longrightarrow I_{0} \otimes_{A} \Sigma \longrightarrow I_{1} \otimes_{A} \Sigma \longrightarrow \cdots
$$

since $\Sigma=\Gamma \square_{\Phi} A$. Thus the both Ext groups are obtained from the same complex $I_{0} \rightarrow I_{1} \rightarrow \cdots$.
q.e.d.

In this paper, we will compute $\operatorname{Ext}_{\Gamma}^{*}\left(A, v_{2}^{-1} A /\left(2, v_{1}^{\infty}\right) \otimes_{A} \Phi\right)$. By virtue of this lemma, we will work in the category of Σ-comodules. In order to compute the Ext groups $\operatorname{Ext}_{\Sigma}^{*}\left(A, v_{2}^{-1} A /\left(2, v_{1}^{\infty}\right)\right)$, we adopt the v_{1}-Bockstein spectral sequence with E_{1}-term

$$
\operatorname{Ext}_{\Sigma}^{*}\left(A, v_{2}^{-1} A /\left(2, v_{1}\right)\right)
$$

To compute the E_{1}-term we recall [7] the structure

$$
\begin{equation*}
\operatorname{Ext}_{\Gamma}^{*}\left(A, v_{2}^{-1} A /\left(2, v_{1}\right)\left[t_{1}\right]\right)=K(2)_{*}\left[v_{3}, h_{20}\right] \otimes \Lambda\left(h_{21}, h_{30}, h_{31}, \rho_{2}\right) \tag{2.2}
\end{equation*}
$$

This is shown by using the change of rings theorems

$$
\begin{aligned}
& \operatorname{Ext}_{\Gamma}^{*}\left(A, v_{2}^{-1} A /\left(2, v_{1}\right)\left[t_{1}\right]\right)=\operatorname{Ext}_{K(2) * K}^{*}(2) \\
&\left.=\operatorname{Ext}_{s(2,2)}^{*}(\boldsymbol{Z} / 2, \boldsymbol{Z} / 2) \otimes_{K(2) *}, K(2)_{*}\left[t_{1}\right]\right) \\
&
\end{aligned}
$$

in which $K(2)_{*}=\boldsymbol{Z} / 2\left[v_{2}, v_{2}^{-1}\right], K(2)_{*} K(2)=K(2)_{*} \otimes_{A} \Gamma \otimes_{A} K(2)_{*}$ and $S(2,2)=$
$\boldsymbol{Z} / 2\left[t_{2}, t_{3}, \cdots\right] /\left(t_{i}^{4}-t_{i}: i>1\right)$. Note here that the action of A on $K(2)_{*}$ is given by sending v_{i} to 0 for $i \neq 2$ and v_{2} to v_{2}, and $\left(K(2)_{*}, K(2)_{*} K(2)\right)$ becomes a Hopf algebroid induced from (A, Γ). The second equation follows from the $K(2)_{*} K(2)$-comodule structure $K(2)_{*}\left[t_{1}\right]=K(2)_{*}\left[t_{1}\right] /\left(v_{2} t_{1}^{4}+v_{2}^{2} t_{1}\right) \otimes_{K(2) *} K(2)_{*}\left[v_{3}\right]$ which is obtained from Landweber's formula $\eta_{R}\left(v_{3}\right) \equiv v_{3}+v_{2} t_{1}^{4}+v_{2}^{2} t_{1} \bmod \left(2, v_{1}\right)$.

Lemma 2.3. The E_{1}-term is given by

$$
\operatorname{Ext}_{\Sigma}^{*}\left(A, v_{2}^{-1} A /\left(2, v_{1}\right)\right)=K(2)_{*}\left[v_{3}\right] \otimes \Lambda\left(h_{21}, h_{30}, h_{31}, \rho\right)
$$

where $K(2)_{*}=\boldsymbol{Z} /(2)\left[v_{2}, v_{2}^{-1}\right]$ and h_{21}, h_{30}, h_{31} and ρ are the homology classes represented by $t_{2}^{2}, t_{3}, t_{3}^{2}$ and $v_{2}^{5} t_{4}+t_{4}^{2}$ in the cobar complex, respectively.

Proof. Let $H^{*} M$ for a Γ-comodule M denote the Ext group $\operatorname{Ext}_{\Gamma}^{*}(A, M)$, and E_{*} and D_{*} be Γ-comodules

$$
E_{*}=v_{2}^{-1} A /\left(2, v_{1}\right)\left[t_{1}\right] \otimes \Lambda\left(t_{2}\right) \text { and } D_{*}=v_{2}^{-1} A /\left(2, v_{1}\right)\left[t_{1}\right]
$$

Then the short exact sequence $0 \rightarrow D_{*} \subset E_{*} \rightarrow \Sigma^{-6} D_{*} \rightarrow 0$ of Γ-comodules yields the long exact sequence

$$
\cdots \longrightarrow H^{s, t} D_{*} \longrightarrow H^{s, t} E_{*} \longrightarrow H^{s, t-6} D_{*} \xrightarrow{\delta} H^{s+1, t} D_{*} \longrightarrow \cdots
$$

with $\delta(x)=h_{20} x$. By (2.2),

$$
H^{*} D_{*}=K(2)_{*}\left[v_{3}, h_{20}\right] \otimes \Lambda\left(h_{21}, h_{30}, h_{31}, \rho_{2}\right)
$$

This shows that $h_{20}: H^{s} D_{*} \rightarrow H^{s+1} D_{*}$ is a monomorphism and we have the lemma. q.e.d.

3. The elements \boldsymbol{x}_{n}

In this section we will define elements x_{n} such that

$$
x_{n} \equiv v_{3}^{2^{n}} \bmod \left(2, v_{1}\right) \text { and } d_{0}\left(x_{n}\right) \equiv v_{1}^{e_{n}} g_{n}
$$

in which g_{n} repesents a generator of $\operatorname{Ext}_{\Sigma}^{1}\left(A, v_{2}^{-1} A /\left(2, v_{1}\right)\right)$ and e_{n} to be taken as greate as possible. These elements play a central role in the Bockstein spectral sequence.

Hereafter we use the following abbreviation :

$$
\begin{aligned}
& \operatorname{Ext}^{*}(N)=\operatorname{Ext}_{\Sigma}^{*}(A, N) \text { for a comodule } N \\
& M(j)=v_{2}^{-1} A /\left(2, v_{1}^{j}\right) \text { and } M=\underset{j}{\lim } M(j)=v_{2}^{-1} A /\left(2, v_{1}^{\infty}\right) \text {. }
\end{aligned}
$$

Then note that

$$
B P_{*}\left(L_{2} X\right)=M \otimes_{A} \Phi \text { and } \operatorname{Ext}^{*}(M)=\operatorname{Ext}_{F}^{*}\left(A, B P_{*}\left(L_{2} X\right)\right)
$$

In $v_{2}^{-1} B P_{*} /(2)$, we define elements x_{n}, which will be used to define elements of $\operatorname{Ext}^{*}(M)$. From here on, we compute everything with setting $v_{2}=1$ for the sake of simplicity. We also write

$$
x \equiv y \bmod \left(v_{1}^{j}\right)
$$

for $x, y \in \Omega_{\Sigma}^{*} M$ if $x=y$ in the cobar complex $\Omega_{\Sigma}^{*} M(j)$.
We first introduce elements $c_{3 i}(i=0,1)$ and \widetilde{c}_{31} in $\Sigma=A\left[t_{2}^{2}, t_{3}, \cdots\right]$ defined by

$$
\begin{align*}
v_{1}^{2} c_{30} & =d_{0}\left(v_{4}^{2}+v_{1}^{2} v_{5}\right)+t_{2}^{8}+t_{2}^{2}, \\
v_{1} c_{31} & =d_{0}\left(v_{4}\right)+t_{2}^{4} \text { and } \tag{3.1}\\
\widetilde{c}_{31} & =c_{31}+v_{1}\left(v_{3}^{2} c_{31}+v_{3} t_{2}^{2}\right) .
\end{align*}
$$

Lemma 3.2. The cochains c_{30} and c_{31} are cocycles of the cobar complex $\Omega_{\Sigma}^{1} M(j)$ for any $j>0$. Furthermore,

$$
c_{30} \equiv t_{3}+v_{3} t_{2}^{8} \bmod \left(v_{1}\right) \text { and } c_{31} \equiv t_{3}^{2}+v_{1} v_{3} t_{2}^{2} \bmod \left(v_{1}^{4}\right)
$$

Proof. Since $d_{1} d_{0}=0, d_{1}\left(t_{2}\right)=0$ and $d_{0}\left(v_{1}\right)=0$, the first part of the lemma follows immediately from the definition, since the multiplication by v_{1} on $\Omega_{\Sigma}^{\frac{1}{2}} M(j)$ is monomorphic. The latter half is shown by the direct computation using

$$
\begin{gather*}
\eta_{R}\left(v_{1}^{2}\right)=v_{1}^{2}, \eta_{R}\left(v_{4}\right) \equiv v_{4}+v_{2} t_{2}^{4}+v_{1} t_{3}^{2}+v_{1}^{2} v_{3} t_{2}^{2} \bmod \left(v_{1}^{5}\right), \\
\eta_{R}\left(v_{4}^{2}\right) \equiv v_{4}^{2}+v_{2}^{2} t_{2}^{8}+v_{2}^{8} t_{2}^{2}+v_{1}^{2} t_{3}^{4}+v_{1}^{4} v_{3}^{2} t_{2}^{4} \bmod \left(v_{1}^{10}\right), \text { and } \tag{3.3}\\
\eta_{R}\left(v_{5}\right) \equiv v_{5}+v_{3} t_{2}^{8}+v_{2} t_{3}^{4}+v_{2}^{8} t_{3} \bmod \left(v_{1}\right)
\end{gather*}
$$

in Σ, noticing that $d_{0}(x)=\eta_{R}(x)-x$. In fact, $d_{0}\left(v_{4}^{2}+v_{1}^{2} v_{5}\right) \equiv t_{2}^{8}+t_{2}^{2}+v_{1}^{2} t_{3}$ $+v_{1}^{2} v_{3} t_{2}^{8} \bmod \left(v_{1}^{3}\right)$, by setting $v_{2}=1$, which gives c_{30}. For c_{31}, follows from $\eta_{R}\left(v_{4}\right)$. q.e.d.

Lemma 3.4. Put $\varphi_{1}=v_{1} v_{3}^{2}\left(v_{4}+v_{4}^{4}\right)$, and we have

$$
d_{0}\left(\varphi_{1}\right) \equiv v_{1}\left(c_{30}^{2}+\widetilde{c}_{31}\right) \bmod \left(v_{1}^{3}\right)
$$

in $v_{2}^{-1} \Sigma=v_{2}^{-1} A\left[t_{2}^{2}, t_{3}, \cdots\right]$.
Proof. Since $d_{0}(x)=\eta_{R}(x)-x$ and η_{R} is a map of algebras, this is verified by Lemma 3.2 and the following facts on η_{R} :

$$
\begin{gathered}
\eta_{R}\left(v_{1}\right)=v_{1}, \eta_{R}\left(v_{2}\right)=v_{2}, \\
\eta_{R}\left(v_{3}^{2}\right) \equiv v_{3}^{2} \bmod \left(v_{1}^{2}\right), \\
\eta_{R}\left(v_{4}\right)=v_{4}+t_{2}^{4}+v_{1} c_{31} \text { and } \eta_{R}\left(v_{4}^{4}\right) \equiv v_{4}^{4}+t_{2}^{16}+t_{2}^{4} \bmod \left(v_{1}^{4}\right)
\end{gathered}
$$

in $v_{2}^{-1} \Sigma$. In fact, by Lemma 3.2, we see that

$$
c_{30}^{2}+\tilde{c}_{31} \equiv v_{3}^{2} t_{2}^{16}+v_{1} v_{3}^{2} c_{31}
$$

On the other hand, we compute

$$
d_{0}\left(\varphi_{1}\right) \equiv v_{1} v_{3}^{2} d_{0}\left(v_{4}+v_{4}^{4}\right) \equiv v_{1} v_{3}^{2}\left(v_{1} c_{31}+t_{2}^{16}\right)
$$

q.e.d.

Note that $v_{2}^{-1} \Sigma$ is not a Hopf algebroid and so (3.1) does not imply the above lemma. In fact, $d_{0}\left(v_{4}^{2}\right)=d_{0}\left(v_{4}\right)^{2}+t_{2}^{2}$. This with (3.1) yields the following

Lemma 3.5. In $v_{2}^{-1} \Sigma$,

$$
d_{0}\left(v_{1}^{6} v_{5}\right)=v_{1}^{6}\left(c_{31}^{2}+c_{30}\right) .
$$

Lemma 3.6. There exist elements x_{i} of $v_{2}^{-1} A$ with $x_{i} \equiv v_{3}^{2 i} \bmod \left(2, v_{1}\right)$ such that

$$
\begin{aligned}
d_{0}\left(x_{0}\right) & =v_{1} t_{2}^{2}, \\
d_{0}\left(x_{1}\right) & =v_{1}^{3} c_{31}, \\
d_{0}\left(x_{2}\right) & =v_{1}^{6} c_{30}, \\
d_{0}\left(x_{2 n+1}\right) & \equiv v_{1}^{1+2 a_{n}} v_{3}^{2 b n}\left(v_{3}^{2} c_{31}+v_{3} t_{2}^{2}\right) \bmod \left(v_{1}^{2+2 a_{n}}\right) \text { and } \\
d_{0}\left(x_{2 n+2}\right) & \equiv v_{1}^{a_{n+1}} v_{3}^{b n+1} c_{30} \bmod \left(v_{1}^{1+a_{n+1}}\right)
\end{aligned}
$$

for $n>0$. Here the integers a_{n} and b_{n} are given by

$$
\begin{gathered}
a_{0}=1 \text { and } a_{n}=4 a_{n-1}+2(n>0) \\
b_{0}=0, b_{1}=0 \text { and } b_{n}=4 b_{n-1}+4(n>1) .
\end{gathered}
$$

Proof. Define the elements x_{i} inductively as follows:

$$
\begin{align*}
x_{0} & =v_{3}, \\
x_{1} & =v_{3}^{2}+v_{1}^{2} v_{4}, \\
x_{2} & =x_{1}^{2}+v_{1}^{6} v_{5}, \tag{3.7}\\
x_{2 n} & =x_{2 n-1}^{2}+v_{1}^{a_{n}} v_{3}^{b_{n}} v_{5} \text { and } \\
x_{2 n+1} & =x_{2 n}^{2}+v_{1}^{2 a_{n-1}} v_{3}^{2 b_{n}} \varphi_{1}+v_{1}^{2 a_{n}-3} v_{3}^{2 b n} x_{1} .
\end{align*}
$$

Then the lemma will be proved by induction. The first equation follows immediately from the Landweber formula: $\eta_{R}\left(v_{3}\right)=v_{3}+v_{1} t_{2}^{2}$. The second and the third are verified by (3.1). The others are inductively shown by Lemmas 3.4 and 3.5.
q.e.d.

4. The \boldsymbol{E}_{2}-term

Put $L=v_{2}^{-1} B P_{*} /\left(2, v_{1}\right)$ and $M=v_{2}^{-1} B P_{*} /\left(2, v_{1}^{\infty}\right)$. Then we have the short exact sequence

$$
0 \longrightarrow L \xrightarrow{f} M \xrightarrow{v_{1}} M \longrightarrow
$$

which yields the long exact sequence

$$
\begin{align*}
0 \longrightarrow \operatorname{Ext}^{0}(L) \\
\cdots \xrightarrow{\delta_{n-1}} \operatorname{Ext}^{n}(L) \xrightarrow{f_{*}} \operatorname{Ext}^{0}(M) \xrightarrow{v_{*}} \operatorname{Ext}^{n}(M) \xrightarrow{v_{1}} \operatorname{Ext}^{0}(M) \xrightarrow[v_{1}]{\delta_{0}} \operatorname{Ext}^{n}(M) \longrightarrow . \tag{4.1}
\end{align*}
$$

Here f is a Σ-comodule map given by $f(x)=x / v_{1}$,

$$
\operatorname{Ext}^{n}(N)=\operatorname{Ext}_{\Sigma}^{n}(A, N)
$$

for a Σ-comodule N, and note that the Ext group $\operatorname{Ext}^{*}(L)$ is determined in Lemma 2.3.

We here introduce some notations :

$$
K(2)_{*}=\boldsymbol{Z} / 2\left[v_{2}, v_{2}^{-1}\right], K=K(2)_{*}\left[v_{1}\right]=\boldsymbol{Z} / 2\left[v_{1}, v_{2}, v_{2}^{-1}\right] .
$$

For an element $x \in \operatorname{Ext}^{*}(L)$,
$C_{n}\langle x\rangle$ denotes a cyclic K-module isomorphic to $K /\left(v_{1}^{n}\right)$ generated by $\left\{x / v_{1}^{n}+z / v_{1}^{n-1}\right\} \in \operatorname{Ext}^{*}(M)$ for some $z \in \Omega_{2}^{*} v_{2}^{-1} B P_{*} /(2)$.
$C_{\infty}\langle x\rangle$ denotes a K-module isomorphic to $v_{1}^{-1} K / K$ with basis $\left\{x / v_{1}^{j}+z / v_{1}^{j-1}\right\}_{j>0} \subset \operatorname{Ext}^{*}(M)$ for some $z \in$ $\Omega_{\Sigma}^{*} v_{2}^{-1} B P_{*} /(2)$.

Note that these $C_{*}\langle x\rangle$ are sub- K-module of $\operatorname{Ext}^{*}(M)$.
We compute $\operatorname{Ext}^{*}(M)=\operatorname{Ext}_{\Sigma}^{*}\left(A, v_{2}^{-1} A /\left(2, v_{1}^{\infty}\right)\right)$ from $\operatorname{Ext}^{*}(L)=\operatorname{Ext}_{\Sigma}^{*}(A$, $\left.v_{2}^{-1} A /\left(2, v_{1}\right)\right)$ by using the following

Lemma 4.2. ([8, Remark 3.11]) Let $\left\{x_{\lambda}\right\}_{\lambda \in \Lambda}$ be a set of generators of $K(2)_{*}$-module $\operatorname{Ext}^{i}(L)$, and $\left\{\xi_{\lambda}\right\}_{\lambda \in \Lambda_{0}}$ and $\left\{\xi_{\lambda, j}\right\}_{\lambda \in \Lambda_{1}}$ subsets of $\operatorname{Ext}^{i}(M)$ such that $\Lambda=\Lambda_{0} \amalg \Lambda_{1}$,

1) there exists a positive integer $a(\lambda)$ for each $\lambda \in \Lambda_{0}$ such that

$$
\begin{gathered}
v_{1}^{a(\lambda)-1} \xi_{\lambda}=f_{*}\left(x_{\lambda}\right) \text { and } \\
\delta_{i}\left(\xi_{\lambda}\right) \neq 0,
\end{gathered}
$$

2) $\xi_{\lambda, 1}=f_{*}\left(x_{\lambda}\right), v_{1} \xi_{\lambda, j}=\xi_{\lambda, j-1}$ and $\delta_{i}\left(\xi_{\lambda, j}\right)=0$ for $\lambda \in \Lambda_{1}$.

Suppose that the set $\left\{\delta_{i}\left(\xi_{\lambda}\right)\right\}_{\lambda \in \Lambda_{0}}$ is linearly independent over $K(2)_{*}$. Then $\operatorname{Ext}^{i}(M)=\oplus_{\lambda \in \Lambda_{0}} C_{a(\lambda)}\left\langle x_{\lambda}\right\rangle \oplus \oplus_{\lambda \in \Lambda_{1}} C_{\infty}\left\langle x_{\lambda}\right\rangle$.

In this section, we will use Lemma 4.2 to compute $\operatorname{Ext}^{*}(M)$, which is the E_{2}-term of the Adams-Novikov spectral sequence for computing $\pi_{*}\left(L_{2} X\right)$. Let ρ denote the homology class of $\operatorname{Ext}^{1}(L)$ given in Lemma 2.3.

Lemma 4.3. There exist elements $\rho_{i} \in \Omega_{\Sigma}^{1} v_{2}^{-1} A /(2)$ such that

$$
\rho_{i} \equiv \rho \bmod \left(2, v_{1}\right)
$$

up to homology and

$$
d_{1}\left(\rho_{i}\right) \equiv 0 \bmod \left(2, v_{1}^{2^{2}}\right)
$$

Proof. In [9], Moreira constructed an element $u \in \Omega_{\Sigma}^{1} L$ such that

$$
\begin{aligned}
d_{0}(u) & =(\tilde{\rho}+\zeta)+(\tilde{\rho}+\zeta)^{2} \\
& =\left(\tilde{\rho}+t_{2}^{2}\right)+\tilde{\rho}^{2}+t_{2}^{2}+t_{2}^{4}
\end{aligned}
$$

in the cobar complex $\Omega_{\Sigma}^{2} L$. Here ζ is represented by a cochain $t_{2}+t_{2}^{2}$ in $\Omega_{\Gamma}^{1} L$, and $\tilde{\rho}$ denotes a cocycle which represents the cohomology class ρ. Since t_{2}^{4} is homologous to 0 , so is $\tilde{\rho}$ to $\tilde{\rho}^{2}$. Hence define $\rho_{i}=\tilde{\rho}^{2 i}$ and we have the lemma.
q.e.d.

For each j, there is an integer i such that ρ_{i} / v_{1}^{j} is a cocycle. In this case, we write

$$
x \rho / v_{1}^{j}=x \rho_{i} / v_{1}^{j} .
$$

Such an abbreviation would not cause any confusion.
The main lemma of the last section implies
Lemma 4.4. For the connecting homomorphism δ_{0} in (4.1),

$$
\begin{aligned}
\delta_{0}\left(v_{3}^{2 t+1} / v_{1}\right) & =v_{3}^{2 t} h_{21}, \\
\delta_{0}\left(v_{3}^{4 t+2} / v_{1}^{3}\right) & =v_{3}^{4 t} h_{31}, \\
\delta_{0}\left(v_{3}^{8+4} / v_{1}^{6}\right) & =v_{3}^{8 t} h_{30}, \\
\delta_{0}\left(v_{3}^{4 n(4 t+2)} / v_{1}^{1+2 a_{n}}\right) & =v_{3}^{4 n+1} t+2 b_{n}\left(v_{3}^{2} h_{31}+v_{3} h_{21}\right) \text { and } \\
\delta_{0}\left(v_{3}^{4 n+1}(2 t+1) / v_{1}^{a_{n+1}}\right) & =v_{3}^{2 \cdot 4^{n+1} t+b b_{n+1}} h_{30}
\end{aligned}
$$

for $t \geq 0, n>0$.
Here v_{3}^{s} / v_{1}^{j} denotes a cocycle of the cobar complex whose leading term is v_{3}^{s} / v_{1}^{j}. Therefore, we obtain the lemma by setting $v_{3}^{2_{s}} / v_{1}^{j}=x_{n}^{s} / v_{1}^{j}$ from Lemma 3.6. Now apply Lemma 4.2 to obtain

Proposition 4.5. The Ext group $\operatorname{Ext}^{0}(M)$ is a direct sum of $C_{\infty}\langle 1\rangle$ and $C_{A_{n}}\left\langle v_{3}^{2 n(2 t+1)}\right\rangle$ for $n \geq 0$ and $t \geq 0$. Here $A_{2 n}=a_{n}$ and $A_{2 n+1}=1+2 a_{n}$.

These give us the cokernel of δ_{0} :
Corollary 4.6. The cokernel of $\delta_{0}: \operatorname{Ext}^{0}(M) \rightarrow \operatorname{Ext}^{1}(L)$ is a $K(2)_{*}-$ free module generated by

$$
v_{3}^{2 t+1} h_{21}, v_{3}^{u^{\prime}} h_{30}, v_{3}^{u} h_{31} \text { and } v_{3}^{t} \rho
$$

for $t \geq 0, u \notin T$ and $u^{\prime} \notin 2 T$. Here T is a subset of the natural numbers N :

$$
T=\left\{n: 4 \mid n \text { or } 4^{i+1} \mid\left(n-2 b_{i}-2\right) \text { for some } i>0\right\},
$$

for $b_{i}=4\left(4^{i-1}-1\right) / 3$.

Lemma 4.7. The complement $U=N-T$ is given as

$$
\begin{gathered}
U=\left\{n: 2 \nmid n \text { or } n=2 \cdot 4^{k} t+6 \cdot 4^{k-1}+2\left(4^{k-1}-1\right) / 3\right. \\
\text { for some } k>0 \text { and } t \geq 0\}
\end{gathered}
$$

For the computation of δ_{1}, we introduce other elements :
Lemma 4.8. Consider an element $\varphi=v_{5}+v_{3} v_{4}^{2}$. Then there exist elements H_{21} and H_{32} in Σ such that

$$
\begin{aligned}
& d_{0}(\varphi)=H_{32}+t_{3}+H_{21}, d_{1}\left(H_{21}\right)=0=d_{1}\left(H_{32}\right), \\
& H_{21} \equiv t_{2}^{2} \quad \text { and } \quad H_{32} \equiv t_{3}^{4} \quad \bmod \left(v_{1}\right)
\end{aligned}
$$

in the cobar complex $\Omega_{\Sigma}^{1} v_{2}^{-1} A /(2)$.

Proof. For an element $\psi=v_{3}^{2}+v_{1}^{7} v_{3}$, we compute $d_{0}(\psi)=v_{1}^{2} t_{2}^{4}$ by $\eta_{R}\left(v_{3}\right)=v_{3}$ $+v_{1} t_{2}^{2}+v_{1}^{4} t_{2}$ in $B P_{*}\left[t_{2}, t_{3}, \cdots\right]$. Now put

$$
H_{32}=t_{3}^{4}+v_{1}^{2} \psi t_{2}^{4}
$$

Then, the formula $\Delta\left(t_{3}^{4}\right)=t_{3}^{4} \otimes 1+1 \otimes t_{3}^{4}+v_{1}^{4} t_{2}^{4} \otimes t_{2}^{4}$ yields

$$
d_{1}\left(H_{32}\right)=0 \quad \text { and } \quad H_{32} \equiv t_{3}^{4} \bmod \left(v_{1}\right) .
$$

Furthermore, we compute

$$
d_{0}(\varphi) \equiv t_{3}^{4}+t_{3}+v_{3} t_{2}^{2} \bmod \left(v_{1}\right),
$$

and so

$$
d_{0}(\varphi) \equiv H_{32}+t_{3}+v_{3} t_{2}^{2} \bmod \left(v_{1}\right)
$$

Put, then,

$$
H_{21}=d_{0}(\varphi)+H_{32}+t_{3}
$$

and we have

$$
d_{1}\left(H_{21}\right)=0 \quad \text { and } \quad H_{21} \equiv v_{3} t_{2}^{2} \bmod \left(v_{1}\right) .
$$

q.e.d.

Lemma 4.9. For the connecting homomorphism $\delta_{1}: \operatorname{Ext}^{1}(M) \longrightarrow \operatorname{Ext}^{2}(L)$, we have

$$
\begin{aligned}
& \delta_{1}\left(v_{3}^{4 t+3} h_{21} / v_{1}^{3}\right)=v_{3}^{4 t+1} h_{21} h_{31}, \\
& \delta_{1}\left(v_{3}^{8 t+5} h_{21} / v_{1}^{6}\right)=v_{3}^{8 t+1} h_{21} h_{30} \text {, } \\
& \delta_{1}\left(v_{3}^{4 n(4 t+2)+1} h_{21} / v_{1}^{1+2 a_{n}}\right)=v_{3}^{4 n+1} t+2 b_{n+1} h_{21}\left(v_{3}^{2} h_{31}+v_{3} h_{21}\right) \text {, } \\
& \delta_{1}\left(v_{3}^{4 n+1}(2 t+1)+1 h_{21} / v_{1}^{a_{n+1}}\right)=v_{3}^{2 \cdot 4^{n+1} t+b_{n+1}+1} h_{21} h_{30} \\
& \delta_{1}\left(v_{3}^{2 t+1} h_{30} / v_{1}\right)=v_{3}^{2 t} h_{21} h_{30},
\end{aligned}
$$

$$
\begin{aligned}
\delta_{1}\left(v_{3}^{4 t+2} h_{30} / v_{1}^{3}\right) & =v_{3}^{4 t} h_{30} h_{31}, \\
\delta_{1}\left(v_{3}^{4 k(4 t+2)+b_{k+1}} h_{30} / v_{1}^{1+2 a_{k}}\right) & =v_{3}^{4 k(4 t+2)-2} h_{30}\left(h_{31}+v_{3}^{-1} h_{21}\right), \\
\delta_{1}\left(v_{3}^{2 t+1} h_{31} / v_{1}\right) & =v_{3}^{2 t} h_{21} h_{31} \quad \text { and } \\
\delta_{1}\left(v_{3}^{4 k(2 t+1)+b_{k+1} / 2} h_{31} / v_{1}^{a_{k}}\right) & =v_{3}^{4 k(2 t+1)-2} h_{30}\left(h_{31}+v_{3}^{-1} h_{21}\right) .
\end{aligned}
$$

Proof. The first four equations follow immediately from Lemmas 4.4 and 4.8 with replacing $v_{3} h_{21}$ by H_{21}. The fifth, sixth and eighth equations follow immediately from Lemmas 3.2 and 3.6. For the other equations, just put

$$
\begin{gathered}
v_{3}^{4 k(4 t+2)+b_{k+1}} h_{30} / v_{1}^{1+2 a_{k}}=v_{3}^{4 k(4 t+2)} d_{0}\left(x_{2 k+2}\right) / v_{1}^{1+2 a_{k}+a_{k+1}} \text { and } \\
v_{3}^{4^{k}(2 t+1)+b_{k+1} / 2} h_{31} / v_{1}^{a_{k}}=v_{3}^{4 k(2 t+1)} d_{0}\left(x_{2 k+1}\right) / v_{1}^{a_{k}+1+2 a_{k}},
\end{gathered}
$$

and we have the result by Lemma 3.6.
q.e.d.

Now use Lemma 4.2, and we obtain
Proposition 4.10. $\operatorname{Ext}^{1}(M)$ is a direct sum of $\rho \operatorname{Ext}^{0}(M)$ and

$$
\begin{aligned}
e^{1}(M)= & \oplus_{t \geq 0} \\
& \left(C_{1}\left\langle v_{3}^{2 t+1} h_{30}\right\rangle \oplus C_{1}\left\langle v_{3}^{2 t+1} h_{31}\right\rangle \oplus C_{3}\left\langle v_{3}^{4 t+2} h_{30}\right\rangle\right) \\
& \oplus \oplus_{n>0, t 20} C_{A_{n}}\left\langle v_{3}^{2(2 t+1)+1} h_{21}\right\rangle \\
& \oplus \oplus_{t, k 20}\left(C_{1+2 a_{k}}\left\langle v_{3}^{4(4 t+2)+b_{k+1}} h_{30}\right\rangle \oplus C_{a_{k}}\left\langle v_{3}^{4 k}(2 t+1)+b_{k+1 / 2} h_{31}\right\rangle\right) .
\end{aligned}
$$

Corollary 4.11. The cokernel of $\delta_{1}: \operatorname{Ext}^{1}(M) \rightarrow \operatorname{Ext}^{2}(L)$ is a direct sum of ρ Coker δ_{0} and a $K(2)_{*}$-module generated by

$$
v_{3}^{2 t+1} h_{30} h_{31}, v_{3}^{2 u+1} h_{21} h_{31} \text { and } v_{3}^{2 u^{\prime}+1} h_{21} h_{30}
$$

for $t \geq 0,2 u \notin T$ and $u^{\prime} \notin 2 T$.
Lemma 4.12. For the connecting homomorphism $\delta_{2}: \operatorname{Ext}^{1}(M) \rightarrow \operatorname{Ext}^{2}(L)$, we have

$$
\begin{gathered}
\delta_{2}\left(v_{3}^{2 t+1} h_{30} h_{31} / v_{1}\right)=v_{3}^{2 t} h_{21} h_{30} h_{31}, \\
\delta_{2}\left(v_{3}^{4 t+3} h_{21} h_{30} / v_{1}^{3}\right)=v_{3}^{4 t+1} h_{21} h_{30} h_{31}, \\
\delta_{2}\left(v_{3}^{\left.4 k(4 t+2)+b_{k+1}, h_{21} h_{30} / v_{1}^{1+2 a_{k}}\right)=v_{3}^{4(4 t+2)-1} h_{21} h_{30} h_{31},}\right. \\
\delta_{2}\left(v_{3}^{4 k(2 t+1)+\left(b_{k+1} / 2\right)+1} h_{21} h_{31} / v_{1}^{a_{k}}\right)=v_{3}^{4 k(2 t+1)-1} h_{21} h_{30} h_{31} .
\end{gathered}
$$

Proof. Note that $\delta_{2}\left(v_{3}^{2 t+1} h_{30} h_{31} / v_{1}\right)=\delta_{0}\left(v_{3}^{2 t+1} / v_{1}\right) h_{30} h_{31}$ since $h_{3 i}=c_{3 i}{ }^{\prime}$ s are cocycles by Lemma 3.2. Now the first equation follows from Lemmas 4.4 and 4.9. For the other equations, use Lemmas 4.8 and 4.9 since $\delta_{2}\left(v_{3}^{2 t+1} h_{21} h_{3 i} / v_{1}^{j}\right)=$ $\delta_{1}\left(v_{3}^{2 t} h_{3 i} / v_{1}^{j}\right) v_{3} h_{21}$ if we use the representative H_{21} for the cohomology class $v_{3} h_{21}$.

Again by Lemma 4.2, we obtain
q.e.d.

Proposition 4.13. $\operatorname{Ext}^{2}(M)$ is a direct sum of $\rho e^{1}(M)$ and

$$
\begin{aligned}
e^{2}(M)= & \oplus_{t, k \geq 0}\left(C_{1+2 a_{k}}\left\langle u_{3}^{4^{k}(4 t+2)+b_{k+1}+1} h_{21} h_{30}\right\rangle\right. \\
& \left.\left.\oplus C_{a_{k}}\left\langle v_{3}^{4 k(2 t+1)+\left(b_{k+1} / 2\right)+1} h_{21} h_{31}\right\rangle\right) \oplus C_{1}\left\langle v_{3}^{2 t+1} h_{30} h_{31}\right\rangle\right) .
\end{aligned}
$$

Corollary 4.14. The cokernel of $\delta_{2}: \operatorname{Ext}^{2}(M) \rightarrow \operatorname{Ext}^{3}(L)$ is a $K(2)_{*-}$ module ρ Coker δ_{1}.

Now the following proposition follows immediately, by the same argument as above.

Proposition 4.15. For $n>3, \operatorname{Ext}^{n}(M)=0$, and

$$
\operatorname{Ext}^{3}(M)=\rho e^{2}(M)
$$

5. On the map $j_{*}: E_{2}(X) \rightarrow E_{2}(C)$

As is stated in the introduction, C denotes the cofiber of $X_{2} \rightarrow L_{2} X_{2}$. Then it is an X_{2}-module spectrum and $h_{20} \in \pi_{5}\left(X_{2}\right)$ induces a map $h_{20}: C \rightarrow C$. In fact, it is the composition

$$
C=S^{0} \wedge C \xrightarrow{h_{20} \wedge C} X_{2} \wedge C \xrightarrow{\nu} C,
$$

in which ν denotes the X_{2}-module structure. Then we have a cofiber sequence

$$
\Sigma^{5} C \xrightarrow{h_{20}} C \xrightarrow{i} X \xrightarrow{j} \Sigma^{6} C .
$$

Let $E_{r}^{*}(Y)$ denote the E_{r}-term of the Adams-Novikov spectral sequence converging to $\pi_{*}\left(L_{2} Y\right)$ for a spectrum Y, and $d_{r}^{A N}$, its differentials. Then this gives rise to the exact sequence

$$
0 \longrightarrow E_{2}^{0, t}(C) \xrightarrow{i_{*}} E_{2}^{0, t}(X) \xrightarrow{j_{*}} E_{2}^{0, t-6}(C) \xrightarrow{\delta} E_{2}^{1, t}(C) \longrightarrow \cdots .
$$

Here $E_{2}^{s, t}(X)=\mathrm{Ext}^{s, t}(M)$, whose structure is given in the previous section. We further consider a cofiber E of $h_{20}: C \rightarrow C$. Then we have a commutative diagram

in which rows and columns are cofibrations.
Lemma 5.2. Let v_{3}^{t} / v_{1}^{A} denote a generator of $E_{2}(X)$ as a $\boldsymbol{Z} / 2\left[v_{1}, v_{2}, v_{2}^{-1}\right]$-module. Then

$$
j_{*}\left(v_{3}^{t} / v_{1}^{A-1}\right)=0 .
$$

Proof. If $t=2^{n}(2 s+1)$ for some $n, s \geq 0$, then v_{3}^{t} / v_{1}^{A} is a homology class represented by $x_{n}^{2 s+1} / v_{1}^{A_{n}}$. For $n=0$, the lemma is trivial. Now suppose that $j_{*}\left(x_{n}^{2 s+1} / v_{1}^{A n}\right)=0$ for even $n=2 m$. Then squaring this, we obtain

$$
j_{*}\left(x_{n+1}^{2 s+1} / v_{1}^{A n+1}\right)=v_{3}^{w} / v_{1}
$$

for some $w \geq 0$. Consider the diagram

$$
\begin{array}{lllll}
& E_{2}^{0}(X) & \xrightarrow{j_{*}} & E_{2}^{0}(C) \\
\downarrow \delta & & \downarrow \delta \\
E_{2}^{1}(D) & \xrightarrow{i_{*}} & E_{2}^{1}(E) & \xrightarrow{j_{*}} & E_{2}^{1}(D)
\end{array}
$$

induced from (5.1). Since $\delta\left(x_{n+1}^{2 s+1} / v_{1}^{A n+1}\right)$ is in the image of i_{*} by Lemma 4.4, $\delta\left(v_{3}^{w} / v_{1}\right)=0$ in $E_{2}^{1}(D)$ by the above diagram, and so $2 \mid w$ since $\delta\left(v_{3}^{w} / v_{1}\right)=w v_{3}^{w-1} h_{21}$ by Landweber's formula $d_{0}\left(v_{3}\right)=v_{1} t_{2}^{2}+v_{1}^{4} t_{2}$ in $B P_{*}\left[t_{2}, t_{3}, \cdots\right]$. Thus we have

$$
j_{*}\left(x_{n+1}^{2 s+1} / v_{1}^{A n+1}\right)=v_{3}^{2 u} / v_{1} .
$$

Square this, and we have

$$
j_{*}\left(x_{n+2}^{2 s+1} / v_{1}^{A_{n+2}}\right)=v_{3}^{4 u} / v_{1}^{2} .
$$

Notice that $j_{*}(x)=y$ if $d_{0}(x)=y t_{2}$, where $d_{0}(x)=\eta_{R}(x)-x$. A direct computation shows us $d_{0}\left(v_{3}^{4 u} x_{1} / v_{1}^{4}\right)=v_{3}^{4 u} t_{2} / v_{1}^{2}$ in the cobar complex $\Omega_{\Sigma}^{2} M$. Thus we have shown inductively that $j_{*}\left(v_{3}^{2^{n}(2 s+1)} / v_{1}^{A n}\right)$ equals to 0 if n is even, and to $v_{3}^{2 s} / v_{1}$ for some u if n is odd.
q.e.d.

6. The Adams-Novikov differential

Consider the cofiber E of $h_{20}: \Sigma^{5} D \rightarrow D$. Then by [7, Th. 7.1], we immediately obtain the following

Proposition 6.1. The Adams-Novikov spectral sequence for computing $\pi_{*}\left(L_{2} E\right)$ collapses from the E_{2}-term.

Note that the E_{2}-term for our X is

$$
E_{2}^{*}(X)=\operatorname{Ext}_{\Gamma}^{*}\left(A, v_{2}^{-1} B P_{*}(X)\right)=\operatorname{Ext}^{*}(M)
$$

Lemma 6.2. For the Adams-Novikov differential $d_{3}^{A N}: E_{2}^{0}(X) \rightarrow E_{2}^{3}(X)$, $d_{3}^{A N}\left(v_{3}^{t} / v_{1}^{A}\right)$ is a sum of the elements of the form $v_{3}^{2 u+1} h_{21} h_{3 i} \rho / v_{1}^{k}$ for $i=0,1$ and $k>1$. Here v_{3}^{t} / v_{1}^{A} is a generator of the $\boldsymbol{Z} / 2\left[v_{1}, v_{2}, v_{2}^{-1}\right]$-module M_{0}.

Proof. Consider the diagram (5.1). The third column induces the long exact sequence

$$
\cdots \longrightarrow \operatorname{Ext}^{3}(M) \xrightarrow{v_{1}} \operatorname{Ext}^{3}(M) \xrightarrow{\delta_{3}} \operatorname{Ext}^{4}(L) \longrightarrow \cdots
$$

of the E_{2}-terms. If the δ_{0} image of v_{3}^{t} / v_{1}^{A} is $x \neq 0$, then $\delta_{3}\left(d_{3}^{A N}\left(v_{3}^{t} / v_{1}^{A}\right)\right)=d_{3}^{A N}(x)=$ 0 by Proposition 6.1. Thus $d_{3}^{A N}\left(v_{3}^{t} / v_{1}^{A}\right)$ is divisible by v_{1}. Furthermore it implies that $v_{3}^{2 t+1} h_{30} h_{31} \rho / v_{1}$ cannot be a target of $d_{3}^{A N}$. In fact, it is not divisible by v_{1} by Proposition 4.15. Now the lemma follows from Lemma 4.15. q.e.d.

Theorem 6.3. The Adams-Novikov spectral sequence for computing $\pi_{*}\left(L_{2} X\right)$ collapses from the E_{2}-term.

Proof. By proposition 4.15, the Adams-Novikov differentials are all trivial except for $d_{3}^{A N}: E_{2}^{0}(X) \rightarrow E_{2}^{3}(X)$. So it is sufficient to show that $d_{3}^{A N}\left(v_{3}^{t} / v_{1}^{j}\right)=0$ for each $v_{3}^{t} / v_{1}^{j} \in E_{2}^{0}(X)$. By Lemma 6.2,

$$
\begin{equation*}
d_{3}^{A N}\left(v_{3}^{t} / v_{1}^{A-k}\right)=\sum_{u, i} \lambda_{u, i} v_{3}^{2 u+1} h_{21} h_{3 i} \rho / v_{1}^{2} \tag{6.4}
\end{equation*}
$$

for some $k \geq 0$, where $\lambda_{u, i} \in \boldsymbol{Z} / 2$. Since

$$
d_{3}\left(v_{3}^{2 u+1} h_{21} h_{3 i} \rho / v_{1}^{2}\right)=v_{3}^{2 u} h_{20}^{2} h_{3 i} \rho / v_{1} \neq 0
$$

in the cobar complex $\Omega_{\Gamma}^{4} B P_{*}(C)$, we see that

$$
\begin{equation*}
j_{*}\left(\sum_{u, i} \lambda_{u, i} v_{3}^{2 u+1} h_{21} h_{3 i} \rho / v_{1}^{2}\right)=\sum_{u, i} \lambda_{u, i} v_{3}^{2 u} h_{20} h_{3 i} \rho / v_{1} \neq 0 . \tag{6.5}
\end{equation*}
$$

Now send (6.4) by j_{*} and we have a contradiction to Lemma 5.2 , which says $j_{*}\left(v_{3}^{t} / v_{1}^{A-k}\right)=0$ if $k>0$. If $k=0$ and $j_{*}\left(v_{3}^{t} / v_{1}^{A}\right) \neq 0$, then

$$
j_{*}\left(v_{3}^{t} / v_{1}^{A}\right)=v_{3}^{2 u} / v_{1}
$$

for some $u \geq 0$ as is seen in the proof of Lemma 5.2. Therefore, (6.4) and (6.5) yield

$$
d_{3}^{A N}\left(v_{3}^{2 u} / v_{1}\right)=\sum_{u, i} \lambda_{u, i} v_{3}^{2 u} h_{20} h_{3 i} \rho / v_{1} \neq 0
$$

in $E_{2}^{*}(C)$ for some $\lambda_{u, i} \in \boldsymbol{Z} / 2$. Now pull this back to $E_{2}^{*}(D)$ under the map i_{*} : $E_{2}^{*}(D) \rightarrow E_{2}^{*}(C)$ to obtain the non-trivial differential

$$
d_{3}^{A N}\left(v_{3}^{2 u}\right)=\sum_{u, i} \lambda_{u, i} v_{3}^{2 u} h_{20} h_{3 i} \rho \neq 0
$$

in $E_{2}^{*}(D)$, which again contradicts to a result of [7] which says $d_{3}^{A N}\left(v_{3}^{4 k}\right)=0$ and $d_{3}^{A N}\left(v_{3}^{4 k+2}\right)=v_{3}^{4 k} h_{20}^{3}$ for $k>0$. q.e.d.

References

[1] J.F. Adams : Stable homotopy and generalised homology, University of Chicago Press, Chicago, 1974.
[2] A.K. Bousfield: The localization of spectra with respect to homology, Topology 18 (1979), 257281.
[3] M. Hikida and K. Shimomura: An exact sequence related to Adams-Novikov E_{2}-terms of a cofibering, J. Math. Soc. Japan 46 (1994), 645-661.
[4] P.S. Landweber : Homological properties of comodules over $M U_{*}(M U)$ and $B P_{*}(B P)$, Amer. J. Math. 98 (1976), 591-610.
[5] M. Mahowald : Ring spectra which are Thom complexes, Duke Math. J. 46 (1979), 549-559.
[6] H.R. Miller and D.C. Ravenel : Morava Stabilizer Algebras and the localization of Novikov's E_{2}-term. Duke Math. J. 44 (1977), 433-447.
[7] M. Mahowald and K. Shimomura: The Adams-Novikov spectral sequence for the L_{2}-localization of a v_{2}-spectrum, the Proceedings of the International Congress in Algebraic Topology, Edited by M. Tangora, 1991, Contemporary. Math. 146, A.M.S. (1993), 237-250.
[8] H.R. Miller, D.C. Ravenel, and W.S. Wilson: Periodic phenomena in Adams-Novikov spectral sequence, Ann. of Math. 106 (1977), 469-516.
[9] M.R.F. Moreira : Primitives of $B P_{*} B P$ modulo an invariant prime ideal, Amer. J. Math. 100 (1978), 1247-1273.
[10] D.G. Quillen: On the formal group laws of unoriented and complex cobordism theory, Bull. A. M.S. 75 (1969), 1293-1298.
[11] D.C. Ravenel : The structure of $B P_{*} B P$ modulo an invariant prime ideal, Topology 15 (1976), 149-153.
[12] D.C. Ravenel : The cohomology of the Morava stabilizer algebras, Math. Z. 152 (1977), 287-297.
[13] D.C. Ravenel : Localization with respect to certain periodic homology theories, Amer. J. Math. 106 (1984), 351-414.
[14] D.C. Ravenel : Complex cobordism and stable homotopy groups of spheres, Academic Press, 1986.
[15] D.C. Ravenel : The geometric realization of the chromatic resolution, In W. Browder, editor, Algebraic topology and algebraic K-theory, 1987, 168-179.
[16] D.C. Ravenel : Nilpotence and periodicity in stable homotopy theory, Ann. of Math. Studies 128, Princeton Univ. Press, 1992.
[17] K. Shimomura: The homotopy groups of the L_{2}-localized Mahowald spectrum $\left.X<1\right\rangle$, Forum Math. 7 (1995), 685-707.
[18] D-Y. Yan : Brown-Peterson homology of Mahowald's X_{k} spectra, Trans. Amer. Math. Soc. 344 (1994), 261-289.

Department of Mathematics, Faculty of Science, Okayama University, Okayama, 700,
Japan
Faculty of Education, Tottori University, Tottori, 680,
Japan

