Weiss, R.M.
Osaka J. Math.
32 (1995), 9871000

MOUFANG TREES AND GENERALIZED
TRIANGLES

RicHArRD M. WEISS

(Received April 14, 1994)

1. Introduction

Let " be an undirected graph, let V(I') denote the vertex set of I and let G be
a subgroup of aut(I'). For xe M(I'), we will denote by I', the set of vertices
adjacent to x in T and by G!'! the pointwise stablizer of ', in the stabilizer
G,. An n-path of " for any n>0 is an (n+ 1)-tuple (x,,x,,--+,x,) of vertices
such that x;eI’,, | for 1<i<n and x;#x;_, for 2<i<n. Let
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for any subset {x,y,---,z} of V(I'). The graph I' will be called thick if |[',|>3 for
all ue (). An apartment of I' is a connected subgraph A such that [A,|=2 for
every ue V(A). When there is no danger of confusion, we will often use integers
to denote vertices of T

A generalized n-gon (for n>2) is a bipartite graph of diameter » and girth 2n. A
generalized n-gon I' for n>3 is called Moufang if G{!1 ,_; acts transitively on
I,\{n—1} for every (n—1)-path (1,---,n) of I' for some G<aut(I'). In [6], Tits
showed that thick Moufang n-gons exist only for n=34,6 and 8. If I is a
thick generalized n-gon and G<aut('), then G§!lnG,..,=1 for every n-path
(0,---,n) of I'. (This is a special case of [5,(4.1.1)]; see Theorem 2 of [8].) Thus,
the following (Theorem 1 of [8]) is a generalization of Tits’ result:

Theorem 1.1. Let T" be a thick connected graph, let G<aut(I') and let
n>3. Suppose that for each n-path (0,1,---,n) of T,

(i) G, acts transitively on T,\{n—1} and
(i) GIM1nG,,.. =1
Then n=34,6 or 8.
We will say that a graph I' is (G,n)-Moufang if it is thick, connected and T,

G and n fulfill conditions (i) and (ii) of (1.1). In this paper, we will be mainly
concerned with the case that T" is a tree.
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In [1,(3.6)], the following beautiful connection between trees and generalized
polygons was established:

Theorem 1.2. Let n>3. Suppose I is a tree and o/ a family of apartments of
I' such that

(i) every (n+1)-path of T lies on a unique element of </ and

(i) if (xq,--+,X5,) and (xgy,--,X5,) are two 2n-paths with x;=x; for 0<i<n but
Xp4+17 Xy each lying on an element of o/, then there is a third element

’

of o containing (X, > XpsXn 4 1>***sXap)-

For vertices u and v of T, let u~v if there is an element of </ containing
them both and dist-(u,v)=2n. Let ~ be the transitive closure of ~, let ti be image
of a vertex u of T in V(I')/~ and let T be the graph with vertex set V(I')/ ~,
where two equivalency classes are adjacent in T whenever they contain elements
adjacent in T. Then T is a generalized n-gon and the natural map from V() to
W)/ ~ induces a bijection from T, to T; for every ue V().

For the sake of completeness (and because [1,(3.6)] is phrased differently), we
include a proof of (1.2) in §6 below.

If T is a (G,n)-Moufang graph, we will denote by G° the subgroup of G generated
by the groups G{!1 ,_, for all (n—2)-paths (1,---,n—1) of I'. (Thus, of course, T is
also (G°,n)-Moufang.)

Suppose now that I is a (G,n)-Moufang tree with G= G° containing a G-invariant
family of apartments fulfilling the conditions of (1.2). Let I" be as in (1.2) and let
G denote the subgroup of aut(l’) induced by G. Then by (1.2) and the action of
G, the graph T is a Moufang n-gon. Thus, T and G are known, for n=8 by [7]
and for n=4 and 6 by forthcoming work of Tits (see also [2] for partial results);
the case n=3 is classical and can be found, for instance, in [3]. In particular,
the structure of the amalgam (G,,G,;G,,) for an edge {x,y} is known since, for
every ue V(I'), the stabilizer G, acts faithfully on the set of vertices of I" at distance
at most n—1 from u and, by (1.2), the restriction of the natural map from W(I)
to V(I')/ = to this set is injective. Since G=G, *¢_ G, and I' is isomorphic to the
coset graph associated with this free amalgamated product (as defined in [4,(1.4.1)],
it follows that the pair (I',G) can be reconstructed from the pair (T',G).

DerFINTION 1.3, Let T' be a (G,n)-Moufang tree. We will say that the pair
(I',G) has property (x) if there is a G°-invariant family of apartments of I" fulfilling
conditions (1.2.i)) and (1.2.ii).
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CONJECTURE 1.4. Suppose ‘that I' is a (G,n)-Moufang tree. Then the pair
(T',G) has property ().

By the remarks of the previous paragraph, (1.4) would imply the classification of
(G,n)-Moufang trees. In [12] and [13], (1.4) is proved for n=6 and n=8. In
this paper, we will prove (1.4) for n=3:

Theorem 1.5. IfT is a (G,3)-Moufang tree, then the pair (I',G) has property (*).

Note added in proof: The case n=4 of (1.4) has been handled in [11]. By
(1.1), this completes the proof of (1.4).

In the course of proving (1.5), we will require the following result which is
perhaps of independent interest.

Theorem 1.6. Let I be a (G,3)-Moufang graph. Let (1,2,3,4) be a 3-path of
T, let Ui=G!Y, for i=12 and 3 and let U, =(U,,U,,Us>. Let U,,={U,,U,>
and U,3={U,,U;s». Let A be the graph with vertex set consisting of the sets of
right-cosets in U, of U,, U,,, U,5 and U; together with two other elements called L
and R and the following adjacencies: L with R, L with every coset of U,,, a coset
of Uy, with every coset of U, contained in it, R with every coset of U,s, a coset of
U,; with every coset of Uy contained in it and a coset of U, with a coset of U,
whenever their intersection is non-empty. Then A is a Moufang 3-gon.

It will be clear that for given I', the graph A of (1.6) is isomorphic to the graph
[ arising from (1.2) and (1.5); see the remarks at the end of §5 below.

The proof of (1.5) is heavily dependent on Tits’ work on Moufang polygons. In
particular, the idea for (1.6) was suggested by some comments of J. Tits made
in his recent lectures on the classification of Moufang polygons at the College de
France.

ACKNOWLEDGEMENT. Much of this paper was written while the author was a
guest of the University of Gent.

2. Preliminary observations

A version of the following can be found in both [1] and [9].

Proposition 2.1. Let n>3 and suppose that T is a (G,n)-Moufang tree with
G=G" such that for each (n+1)-path (0,---,n+1) of T,

(i) there is a unique vertex in T, \{n} fixed by G, ..., and
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(ii) the only fixed points of GG, ..., in Tyu---Ul,_; are 0,1,---,n—1 and
n.
Then the pair (I',G) has property (*).

Proof. Let o/ be the family of apartments A in I' such that A is fixed by
Gy....n+1 for every (n+1)-path (0,---,n+1) contained in'A. Condition (i) implies
then that o fulfills (1.2.i). To show that condition (i) implies that .o/ fulfills
(1.2.ii), we choose two elements A and A’ of o/ containing 2n-paths (0,---,2n) and
0,---,2n)) such that i=i for 0<i<n. Let A” be the unique element
of o/ containing (2n,---,n,(n+1)) and let H=G"'NG,,...,. By (), H=G"NG,... ,,
In particular, G fixes A”. Also H=G''nG,, .. 2.y, again by (i). Thus #’,---,2n)
are the only fixed points of H in I'(,,,)U--UT 5,y by (ii). This implies that
(n',-+-,(2n)) lies on A", q.e.d.

Let " be a (G,3)-Moufang tree. If T is not trivalent, then (1.5) implies that
condition (2.1.i) holds. This means that the family of G°-invariant apartments
fulfilling (1.2.i) is unique and, since G° is a normal subgroup of G, that this family
is, in fact, G-invariant. If T is trivalent, then there are exactly two
families of G°-invariant apartments fulfilling both (1.2.i)) and (1.2.ii), one for each
of the two G°-orbits of “unordered 5-paths” in I": to each 5-path (0, ---,5), we associate
the family of apartments A such that every S-path lying on A is in the same G°-orbit
as either (0,---,5) or (5,---,0). These two families of apartments are not necessarily
G-invariant in the case that G#G°; see, for instance, [10].

3. The proof of (1.5): First part

Suppose that I' is a (G, 3)-Moufang graph. Let (0,1,2,3,4) be an arbitrary 4-path
in T and let U;=G!},, for 0<i<3. If H is a group, H* will denote the set of
nontrivial elements of H.

Proposition 3.1. The following hold:
() [U,Uis1]=1 for 0<i<2,
() [U,U;y,1<U;yy for 0<i<1 and

(iii) [a,,a;]#1 whenever a, e U¥ and aye U%.

Proof. We have [U,U; ]1<UnU;y,, so [U,U;;]=1 by (1.lii) for
0<i<2. This proves (i); (ii) is clear. Let a;eU; for i=1 and 3. If [a,,a;]=1,
then a; e (G =GM for x=4". If a, #1, then x#4 by (1.1ii), so a;e G}!} =1,
also by (1.1.ii). q.ed.

Proposition 3.2. The following hold:
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() If a,e U and a, e U,, then there exists a unique element ay in Uj such
that [a,,a;]=a,.

(i) [UpUiy,]=Uyyy for 0<i<l.

Proof. Let a;eU and a,eU,. Choose 5eI,\{3} and let x=4°" By
(1.Lii), x=4""%4, Thus 5" and 5% 'eT',\{3). By (l.Li), therefore, there
exists ay€ Uy such that 5%7'5'=5%2¢7"  Thus Sl@v*l=5% By (1.1.ii) and (3.1.i),
it follows that [a;,a;]a; 'eU,nGs=1. Thus a,=[a,a;]. If also a,=[a,,b;]
with bye U, then [ay,a3b5']=1 by (3.1i), so by=a; by (3.lii)). This proves
(). By (i) and (3.1i1), [U,U3s]=U, By a similar argument, [U,,U,]="U,.

g.e.d.

Proposition 3.3. U, U, is abelian.

Proof. It follows by (3.1.i) and (3.2.ii) that U, and U, are both abelian. The
claim follows by another application of (3.1.i). ged.

The next two steps are derived from (1.4.1) and Lemma 9 of [6].

Proposition 3.4. The following hold:

(@) If ae U, then there exist unique elements v (a)e U; for 0<i<3 such that
0,---, 4@ =(4,---,0) for w(a)=av;(a)vo(@)v,(a)v,(a).

(i) If ae U, then there exist unique elements v a)e U, for 0<i<3 such that
0,-+,4y" =(4,---,0) for u(a)=ave(a)vs(a)v,(a)o,(a).

(i) w(a)=w(vo(@)) for all ac U$.

(iv) vy regarded as a function from U to Ug is a bijection.

Proof. LetaeU§. By (l.l.i), there exist elements vy(a) e U, and v4(a) € U, such
that 3°3@=1 and 1°2@@ =3 Thus (1,2,3)"@*@=(32,1). By (1.1.i) again, there
exist elements v,(a) € U, and v,(a) € U, such that 0?3@20@¥1() =4 and 42 @ro@vz(a) — (),
Also, [v,(a),v,(@)]=1 by (3.1.). Thus u(a), as defined in (i), reflects the 4-path
0,---,4). Suppose p'(a)=avs(a)o(a)i(a)vy(a) with vi(a)e U; has the same property.
Since p'(a) reflects (1,2,3), it follows that wvja)=v{a) for i=0 and 3 by
(1.1ii). Therefore, (@)™ 'w'(@)=v,(a)” 'v\(a)  v,(a) " 'vy(@) e UyU,NGy,... 4. 1t follows
by (1.1.ii) that v,(a)~'v}(a)e U; nG4=1 and v,(a)” 'v3(@) e Gon U,=1. This proves
(i); (i) follows by applying (i) to the path (4,--:,0).

If ae U, then

u(a)=avy(a)vs(a)va(a)y,(a)

=0v,(a)3(a),(a)o,(@)a"®
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— vol@os(@evy(a)°o, a),

where e=a*@e U, by (3.1), v,(a)v,(a)°e U, U,. By the uniqueness of u(f) for
given fe UF, it follows that u(vg(a@))=u(a). This proves (iii).

We have 1°°@=3 for all ae U} By (1.1.i) and (1.1.ii), the maps from Ug
and U} to TI')\{1,3} sending a,eU, to 3% and a;eU; to 1% are both
bijections. Assertion (iv) follows. q.e.d.

Proposition 3.5. The following hold:

(i) If[ag,a,]=a, witha;e U for 0<i<2, then a4’ =a; ! and[a,,v5(a0)] =a,.
(i) If[ay,a3]=a, witha;e U* for 1 <i<3, then a}“> =a, and [vy(a;),a,] =a,.
Proof. Suppose [ag,a,]=a, with a;e U* for 0<i<2. Then a4“eU,, so

a9 = ghlaovo@) ™! by (314). Thus k@ =a%@ for b=(v,(a)v,(a))*® *; by (3.1),
beU,U,. Thus

a0 = gBov @b _ (5. [a,,a,])"*@®
=(a;"[a5,a0]" [[a5,20],03(@)])"
=a,"[a5,a,][[a5,a,],05()]
=aay '[a; ',v3(a)]

and hence a,a%“ =q,[a; !,v;(@)] by (3.1) and (3.3). Since a,a4“Y e U,, a,[a; *,v5(a)]
e U, and, by (1.1.ii), U, n U, =1, it follows that a5“? =qa; ! and [a,,05(a)] =a,. This
proves (i); (i) follows by applying (i) to the path (4,---,0). qed.

Now choose e;e U and let h=p(e;)*>. We have heG, ... ,.

Proposition 3.6. a=a;! for every a,eU,.

Proof. Choose a,e U} and let a,=[a,,e;]. Then a,e U} by (3.1.ii) and
[voles),as]=a, by (3.5.ii), so ai®©P=g; ' by (3.5i). Thus a4 =a;! by
(3.4.iii). Also a¥*¥=a, by (3.5.ii). It follows that a"=a;’. g.ed.

h_

Proposition 3.7. a=a; "' for every a,eU,.

Proof. Since U,=U%*Y and [h,u(e;)]=1, the claim follows from (3.6).
q.ed.

Proposition 3.8. [h,U;]=1.

Proof. Choose a, e U¥ and aye Uy and let a,=[a;,a;]. Then [d%,a"]=a".
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By (3.1.i), (3.6) and (3.7), we have [a7',d4]=a;’, so [a,,a}]=a,. Thus a;'a’=1
by (3.2.1). q.ed.

Proposition 3.9. G, .., acts transitively on U} (by conjugation).

Proof. Let a,e U and a,,a,e U By (3.2.), there exist ajay€ Us such
that [ay,a;]=a, and [a,,d3]=d,. By (3.5ii), a#“=a, and a#“¥=ga,. Thus
ay®) M@ =g, The claim follows since p(as)™'u(as)e Go.... s qed.

Proposition 3.10. If exp(U,)#2, then h has a unique fixed point in T',\{3}.

Proof. Suppose exp(U,)#2 and let xel',\{3}. By (3.9), the map from
U, to itself which sends each element to its square is therefore onto. This
observation and (1.1.i) imply that there exists de U, such that x*=x%. By (3.7),
hd~'=dh. It follows that 4 fixes x* Thus 4 has at least one fixed point in
I,\{3}. By (3.9) and the assumption that exp(U,)#2, the group U, does not
contain any involutions; thus Cy,(h)=1 by (3.7). Since U, acts faithfully and
regularly on I',\{3} by (1.1.i) and (1.L.ii), it follows that A does not have more
than one fixed point in T \{3}. g.ed.

Proposition 3.11. Ifexp(U,) #2, then G, ... 4 has a unique fixed point in T 4\ {3}.

Proof. If ae Ng(U)), then [a,h] € C4(U)) for i=2 and 3 by (3.7) and (3.8). By
(1.1), Go....an Ce(U)< G, for i=2 and 3. This implies that [G,....,,h] <G}
NG, By (l.lii), therefore, A is central in G,.., The claim follows by
(3.10). g.e.d.

Let 5 be the unique fixed point of G, ... 4 in T,\{3}.

Proposition 3.12. If exp(U,)#2, then the only fixed points of GINNG, 345
in Tyul', are 2,34 and 5.

Proof. By (1.1.i), the group U, acts regularly I',\{3}; by (3.8), it follows that
he G, By (1.1.)and (1.1.ii), the group U, acts faithfully and regularly on I';\{2}; by
(3.6), it follows that h has no fixed points in I';\{2,4}. The claim follows now
by (3.10). qed.

Proposition 3.13.  Suppose that exp(U,)#2 and that T is a tree. Then the pair
(I',G) has property (#).

Proof. Since (0,--+,4) is an arbitrary 4-path of T, it follows by (3.11) that for
each 4-path (xg,---,xs) of T, Gy,....,, has a unique fixed point in I,\{x;}. By
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(L.1.), for each xe W(I'), the stabilizer G, acts transitively on the set of 4-paths
(x5 x4) With xo=x. Since 2 is an arbitrary vertex of T, it follows by (3.12)
that for each 3-path (x,,-:+,x3) of T, the only fixed points of G'nG,, ..., in
I, url,, are x, x;, x, and x; The claim follows, therefore, by (2.1).

g.e.d.

4. The proof of (1.6)

Now let A be as in (1.6) and let D=aut(A). Observe that A is bipartite, that the
shortest circuit through the edge {L,R} is of length six and that every vertex of
A is a distance at most three from both L and R. Thus, to prove that A is a
generalized 3-gon, it will suffice to show that D acts transitively on the edge set
of A. From the action of U, on A by right multiplication, we see that D, p acts
transitively on both A \{R} and Ag\{L}. If we can show that neither D, nor
Dy lies in Dy g, it will follow that D, acts transitively on A, for both u=L and
R and hence that, in fact, D acts transitively on the edge set of A.

By (3.1), we have U, =U,U,U,;. Let x=pu(e;), where u is as defined in (3.4)
and e;e Uy Since (0,---,4)*=(4,---,0), we have Uf=U,_; for 0<i<3. Let ¢ be
the function from V(A) to itself which fixes L, exchanges R and U,, and sends

Uia, to Uyzd;,

Uzsa, to U,d,

Usa,a, to U,aia5,

U,,a; to U, ,ve(as)™™ and

U,aas to U,[velas).a,] “velas) ™"

for all a,eU,, a,e U, and a;e U} By (3.4.v), ¢ restricted to the set of cosets
of U,, different from U,, itself is a permutation. For given aye U§, the map
from U, to U, which sends a, to [aq,a,] is a bijection by (3.1). It follows that
o is a permutation of V(A).

We show now that ce D. Leta, € Uy, a,,a5€ U,and a;e UF. By (3.1), U,a,a,
and U,a,d, are adjacent vertices of A if and only if [a,,a;]=a; 'd,. The images
of these two vertices under ¢ are adjacent if and only if [(a%)*,ve(as)™*]
=[vo(a3),a2]"a'{, or eqUivalent]y’ [vo(as),az_lalz]=a1- By (35)a [Uo(aa),az_ la,2]
=(aj 'a,) ") and [a,,a;]=a%“?. By (3.4.ii) and (3.7), it follows that U,a,a,
and U,a,a, are adjacent vertices if and only if their images under ¢ are. It is
easy to check that the same assertion holds for any other pair of vertices
of A. Thus, ceD and hence D, £Dj p.

To show that D& D; g, we argue similarly. First choose 5eI',\{3}. We
observe that the function u introduced in (3.4) depends on the 4-path (0,---,4); we
rename it g .. 4 to emphasize this dependency and then set v=yps .. ,. Thus,
v(a)=awy(a)w,(a)w,(a)w;(a) for ae UF¥ and v(a)=aw(a)w,(@)ws(@)w,(a) for ae U}
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with w{a)e U, for 1<i<4 and (1,---,5)"®=(5,--,1) for each ae U}*U U} moreover,
by (3.4.ii), (3.4.iv), (3.5) and (3.6), the following hold:

Proposition 4.1. v(a)=v(w,(a)) for all ac U}

Proposition 4.2. w, regarded as a function from U to U} is a bijection.
Proposition 4.3.i. [a,,a;]=a3;"“ for a,e U and ae U,.

Proposition 4.3.ii. [a,,a,]1=a"" for a,e U, and a,e U}

Proposition 4.4. a3’ =a; ! for a;e U, and ac U}

Now choose e, € U;* and let A=v(e;). Then U}=Us_,for 1<i<4. We define
7 to be the function from V(A) to itself which fixes R, exchanges L and U, , and sends

Usa, to Uy,d5,

U,,a; to Usa},

U,a,a; to U,aial,

U,sa, to U,swy(a;)”* and

Usa,a, to U3w4(al)—l[w4(al)’a2] -

for all a, e U}, a,e U, and a;e U;. By (4.2), 1 restricted to the set of cosets of
U,; different from U,, itself is a permutation. For given a,e U, the map from
U, to U, which sends a, to [a,,a,] is a bijection by (3.1). It follows that t is
a permutation of V(A). Let a e U, a,,a5e U, and ay;eU,. Then U,a,a; and
U,a,d, are adjacent vertices of A if and only if [a,,a;]=a; 'ay; by (4.3.), this
holds if and only if a3’ =a; 'a,. The images of these two vertices under 7 are
adjacent if and only if [w,(a,),a; 'ay]=a3'. By (4.3.i), this holds if and only if
as=(a; 'a,)"™@, By (4.1) and (4.4), it follows that U,a,a; and U,a,a, are
adjacent vertices if and only if their images under 7 are. It is easy to check that
the same assertion holds for any other pair of vertices of A. Thus reD and
hence Dr£ Dy g.

We conclude that D acts transitively on the edge set of A. It follows that A is
a generalized 3-gon and, from the action of U, on A by right multiplication, that A is
Moufang. This completes the proof of (1.6).

5. The proof of (1.5) : Conclusion

We continue to assume that I is a (G,3)-Moufang graph. Let A be as in (1.6)
and let (0,---,5) and U, for 0<i<4 be as in the previous sections. By (1.6) and the
classification of Moufang 3-gons (see [3]), there exists an alternative division
ring F such that each U; is isomorphic to the additive group of F; moreover,
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we can choose isomorphisms from F to U, for 1<i<3 so that;

Proposition 5.1.  [x,(s),x5(t)] = x,(st) for all s,t € F, where x(v) denotes the image
of veF in U; for 1<i<3.

Recall that the elemeats e, € U and e;e Uf used to define x=p(e;) and
A=v(e,) in the previous section were chosen arbitrarily; thus, we can assume now
that e;=x,(1) and e;=x;(1). (We do this just to avoid introducing new
letters.) From [x,(s),x3(1)]=x,(s) for se F, we obtain x,(s)*=x,(s) by (3.5.i)). We
now label the elements of U, by setting x,(f)=x,(t)* for each te F. Conjugating
equation (5.1) by x, we find that [x,(s),xo(f)]=x,(st)=x,(st). By (3.6),
x,(st)* =x,(—sf). Hence;

Proposition 5.2. [x(s),x,()]=x,(ts) for all s,;teF.

From [x,(1),x;5(t)] = x,(t) for t € F, we obtain x,(f)* = x,(—) by (4.3.)). We now
label the elements of U, by setting x,(s) = x,(s)* for each se F. Conjugating equation
(5.1) by 4, we find that [x,(s),x,(—0)]=x,(s0)*=x3(—s0)*’. By (4.4), x;(—st)*
=x,(sf). Hence;

Proposition 5.3. [x,(s),x4(t)] = x5(ts) for all s,teF.
Proposition 5.4. U;,_ U;=\),cr,Gl}) for i=2 and 3.

Proof. Leti=2. Fors,teFwiths#0, wehave x,(s)x,(f)=x,(s)**¢ "V e U3¢0
by (5.1) and the fact that s(s”'f)=t in an alternative division ring. Thus
x1(8)x,(t)e G for u=1%¢""" If yel,\{3}, then there exists ae U; such that
GI'1=U{ by (1.1i) and U{<U,U, by (3.1.i). The claim follows. The case i=3
follows by a similar argument. q-ed.

By (5.4), we have U,U, 9G, and U,U, <G;.
Pl'OpOSiﬁOII 5-5. CGz(Ul U2)= Ul U2 and CGJ( U2 U3)= U2 U3.

Proof. LetdeCg,(U,U,). ThendeN; (U)=G,;,fori=1and2. By(l.Li),
there then exists an element ee U, U, such that dee G, ... ,. By (3.3), dee C;,(U,U,).
Choose a, e U and a,e U, arbitrarily and let a,=[a,,a;]. By (3.lii), a,e U,.
Conjugating by de, we find that a,=[a,,a’]. The element a% lies in U, since
dee Gy, thus a¥=a; by (3.24). Hence [de,Us]=1. By (1.L.i), it follows that
dee GLY; similarly, dee G!!! since [de,U,]=1. By (l.lii), we conclude that
decGYnG,=1 and therefore deU,U,. Thus Cg,(U,Uy)=U U, Cg,(U,U;)
=U,U, follows by a similar argument. g.e.d.
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Let M,={UyU;» and M;=(U,,U,>. Fori=2 and 3, let X; be the M-orbit
containing the vertex i—2.

Proposition 5.6. Suppose exp(U,)=2. Then for i=2 and 3, the vertex
i+2 lies in X; and |X;nT,|=1 for each ueT,.

Proof. Leti=2. By (1.Lii), both0'* and 4Y° contain a unique element in I", for
each xeT',\{1,3}. It will thus suffice to show that {0} U4Y={4}U0Y>. Choose
uel,\{1,3}. By (1.1i) and (1.1.i), there exist unique elements ae U, and be U,
such that u"=3 and u’=1. Choose zeTl,\{2}. By (l.Li), there exists de G}
mapping 1 to 3 and then eeG!'] mapping 0 to 4. Thus (2,1,0°=(2,3,4) for
c=de. Since (2,u,2z) and (1,2,3) are in the same G-orbit, we can apply (5.4) to
conclude that there is a vertex vel,\{2} such that ceG!'. Since U, and
Gl are conjugate in G,¢>=1. Thus (0,---,,4) =(4,---,0); from this, a®be G, N U, =1
and hence a°=b follows. By a similar argument, there exists wel';\{2} and
f€GL), such that (0,1,2,u0) =(v,4,2,1,0). Then a’=c, so b=a"=a’ =f(af)? and
hence (af)*=fb. Since a and fare involutions, we have (af)*=(af)” ' and therefore
(fb)y*=(fb)~'. By(3.3),[bf,Us]=1. Thus, {fb) is normalized by (a,U,>. Since
bfeG{" and (a,U;) acts transitively on [, it follows that bfeG.!! for all
xel,. By (1.1ii), it follows that b=f. Thus 0°=0/=v and therefore 4°=4°=Qb
=v. We conclude that {0} u4U°={4} U0"* as claimed. The case i=3 follows by
a similar argument. q.ed.

Proposition 5.7. Suppose exp(U,)=2. Then {M,G;_; ...;4+2) 0 U;_ U;=1 for
i=2 and 3.

Proof. Let i=2. Since G,.., normalizes M, and fixes 0, the group
(M3,G,...4» stabilizes X,. By (5.6), U,;U,;nGx, <G, .., By (1.1ii), U,U,n
Gy..4=1. The case i=3 follows by a similar argument. q.e.d.

We are now in a position to conclude the proof of (1.5). By (3.13), we can
assume that exp(U,)=2. Let H,={U,U,,U,,Us), Hy=<U,,U,,U3,U,>, K,=
(Hy,,H3;nG,y and K;=<{H;,H,nG;). Since I' is connected, (K, K;) acts
transitively on the edge set of I' and hence G°=<K,,K;3). The action of M; on
U;_,U; is determined by (5.1), (5.2) and (5.3) for i=2 and 3. By (5.5) and (5.7),
this determines H; as a split extension of M; by U;_,U; for i=2 and 3.

In particular, the action of H;nG, on U U, is determined. For each
ae H; N G,, there exists by (1.1.i) an element de U, U,U, such that ade Hy;N G, ... 4.
Thus {(M,,H3;nG,) and {(M,,H3;nG, . ,> have the same action on U,U,. By
(5.5) and (5.7), this determines the structure of K,. By a similar argument for Kj,
it follows that the structure of the amalgam Ar=(K,,K;3;K,NKj;) is uniquely
determined. In particular, there is an isomorphism from A to an amalgam
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Ap=(M,Mg; M, My) sitting inside of (D;,Dg; Dy ). If we now assume (for the
first time!) that I" is a tree, then by [4,(1.4.1)], this isomorphism extends to an
isomorphism ¢ from G to the free amalgamated product M =M, * y, .y Mg and
there is an isomorphism ¢ from ' to the coset graph Q associated with A,
compatible with ¢ and the action of M on Q by right multiplication. (Q is the
graph with vertex set the union of the set of right cosets of M, and of My in M,
where two of these cosets are adjacent in Q whenever their intersection contains
a right coset of M, "My) The natural map from M onto D° induces a map =
from Q onto A which sends Q, bijectively to A, for u=x" and for all xe V(Q). Let
of be the family of apartments of I’ which are mapped by Y=n to 6-circuits of
A. Then ./ is G-invariant and fulfills conditions (1.2.i) and (1.2.i); the graph T’
described in (1.2) is (up to isomorphism) precisely A. The proof of (1.5) is now
complete.

It should be clear now that I 2 A also when exp(U,)#2. Here is a circuitous
way to see this. By (1.2.i) and (1.2.i), the element p(e;) as defined in (3.4) lies in
M,=CU,,Us). B’S{ (3.8), he Z(M,). By (3.6), 0 and 2 are the only fixed points
of h in T',. This implies that the conclusions of (5.6) hold. Thus T =~ A holds
exactly as in the case that exp(U,)=2.

6. The proof of (1.2)

Let T, o/ and n fulfill the hypotheses of (1.2). Let n denote the natural map
from V(I to M(I).

Proposition 6.1. Suppose uxv. Let uy,u,,---,u, be a sequence of vertices of
I' of minimal length m such that uo=u, u,=v and u;~u;_, for 1<i<m. Let
d,=dist(ug,u;) for 1<i<m. Then d,<d,<---<d,.

Proof. Suppose the conclusion is false. Then we can choose ¢>1 minimal
such that d,, , <d,. Let (0,---,2n) be the 2n-path from 0=u, to 2n=u,_, and let
(0',---,(2n)) be the 2n-path from 0'=u, to 2n) =u,,,. Then i=i for 0<i<n since
d,_,<d, and d,,<d,. If n+1=(n+1) as well, then u,_,=u,,, by (1.24). If
n+1#(m+1), then u,_;~u,,, by (1.2ii). Both conclusions contradict the

minimality of m. qged.

Proposition 6.2. Let u and v be distinct and let m=distp(up). If u=u,
then m>2n and m is even.

Proof. If u~w, then m=2n. The first claim follows by (6.1) and the second
by induction. q.ed.
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Proposition 6.3. 7 induces a bijection from T, to T'; for each ue V(I').

Proof. By (6.2), no two neighbors of a given vertex of I' are equivalent. It
thus suffices to show that if u ~ v, then to each neighbor of u there exists an equivalent
neighbor of ». Let u~v and choose weI',. Let A be the element of .&/ which
contains u# and v and let (—1,0,---,2n,2n+1) be the (2n+2)-path on A with O=u
to 2n=v. Then —1~2n—1 and 1~2n+1, so we can assume that w¢ V(A). By
(1.2.i), there exists a 2n-path (0,---,(2n)’) lying on an element of .« such that 0'=w,
(n+1)Y=n and (n+2) #n+1. Again by (1.2.i), there exists a 2n-path (0”,---,(2n)")
lying on an element of & such that 1"=2n and (r+2)"=(n+2). By (1.2.ii),
(2n)y=(2n)". Let z=0". Then zeI', and w~(2n)'=(2n)"~z, so wxz. qg.ed.

Proposition 6.4. The girth of T is 2n and T is bipartite.

Proof. The image in T of a 2n-path of I' which lies on an element of .« is
a circuit of T, so the girth of T is less than or equal to 2n. Let (x¢,x;,-,X,,) be
an m-path of T such that x,=x, and m>0. By (6.3), there exists an m-path
(0,---,m) of " such that e=x, for 0<e<m. Then Ox~m since x,=x,. Thusm>2n
and m is even by (6.2). q.ed.

Proposition 6.5. The diameter of T is n.

Proof. Let p and g be two vertices of . Choose u and ve V(I') such that ii=p,
o=q and m=dist(u,v) is minimal. Let (0,---,m) be the m-path in " with 0=
u and m=v. If m>n, then by (1.2.i), there exists a 2n-path (0',---,(2n)) lying
on an element of &/ such that 0'=m and (n+1)=m—n—1. Then disty(,(2n))
<dist(u,v) and v=0"~(2n). This contradicts the choice of u and w. q.ed.

With (6.3), (6.4) and (6.5), the proof of (1.2) is complete.
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