SOME EXAMPLES OF HYPOELLIPTIC OPERATORS OF INFINITELY DEGENERATE TYPE

Тознініко HOSHIRO

(Received June 8, 1992)

0. Introduction

The object of the present paper is to study some examples of the operators of the form

(1)
$$P = D_x^2 + a(x)D_y^2 + b(x)D_y,$$

on R^2 where $D_x = -i\frac{\partial}{\partial x}$, $D_y = -i\frac{\partial}{\partial y}$, a(x) and b(x) are functions satisfying:

(2) (i)
$$a(x), b(x) \in C^{-}(\mathbf{R}),$$

(ii)
$$a(x) > 0$$
 for $x \neq 0$, $\partial^{\alpha} a(0) = \partial^{\alpha} b(0) = 0$ for any α .

We consider here C^{∞} -hypoellipticity of the operator P on x=0. In general it is hypoelliptic if b(x) is small compared with a(x), and conversely, not hypoelliptic if b(x) is big. Such conditions for the hypoellipticity were investigated in the previous paper [5]. But the examples considered here cannot be explained by the method of [5] (we cannot regard b(x) small nor big in what follows). They are analogous to the one which A. Menikoff considered in [6], i.e., the finitely degenerate case where $a(x)=x^{2k}$ and $b(x)=bx^{k-1}$. We prove the following theorems.

Theorem 1. Let $a(x) = |x|^{-4} \exp(-2|x|^{-1})$ and $b(x) = b \cdot |x|^{-4} \exp(-|x|^{-1})$ with b being a complex constant. Then the operator P is hypoelliptic if and only if b is not odd integer.

Theorem 2. Let $a(x) = |x|^{-4} \exp(-2|x|^{-1})$ and $b(x) = b \cdot \operatorname{sgn} x \cdot |x|^{-4} \exp(-|x|^{-1})$ with b being a complex constant. Then the operator P is hypoelliptic.

REMARK 1: By the similar argument of the proof of theorem 1 in T. Morioka [8], we can conclude that P is micro-hypoelliptic when P is hypoelliptic.

The hypoellipticity of P is closely connected to the branching of singularities of solutions for the weakly hyperbolic operator $Q = -D_x^2 + a(x)D_y^2 + b(x)D_y$.

772 T. Hoshiro

G.R. Aleksandryan [1] dealt with the one for Q which corresponds the cases in Theorem 1 and Theorem 2. In Section 1, we shall prove the non-hypoellipticity part of Theorem 1, by using the observation of Aleksandryan. Section 2 is devoted to the proof of hypoellipticity parts of Theorem 1 and Theorem 2. We shall show them by constructing the parametrix of P explicitly.

The author is grateful to Professor K. Kajitani for introducing him the article [1] of Aleksandryan.

1. Proof of non-hypoellipticity

In this section we prove that P is not hypoelliptic if a(x) and b(x) are those in Theorem 1, and b satisfies b=2n+1 for some $n \in \mathbb{Z}$. Also we shall explain the reason why Theorem 2 is free from such a condition. Here we adopt the notations from Aleksandryan [1].

At first, let us set $\Lambda(x) = \exp(-|x|^{-1})$ and $\mu(x) = \Lambda'(x)$ (=sgn $x \cdot |x|^{-2} \exp(-|x|^{-1})$). Then the partial Fourier transform of the equation Pu = 0 with respect to y can be written in the following form:

$$-\hat{\mathbf{u}}_{xx} + \left(\mu(x)^2 \eta^2 + b \frac{\mu(x)^2}{\Lambda(x)} \eta\right) \hat{\mathbf{u}} = 0.$$

Furthermore making a change in such a way that $\hat{u}(x, \eta) = xw(\tau)$, $\tau = \Lambda(x)\eta$, it becomes

$$-w_{\tau\tau} - \frac{w_{\tau}}{\tau} + \left(1 + \frac{b}{\tau}\right)w = 0.$$

Set now $z=2\tau$ and $f(z)=e^{z/2}w\left(\frac{z}{2}\right)$. Then (4) turns into Kummer's equation

(5)
$$zf''(z)+(1-z)f'(z)-\alpha f(z)=0,$$

where $\alpha = \frac{1+b}{2}$. Hence we have the following

Proposition 1. (i) Suppose $\eta > 0$. Then there exist solutions $\hat{u}_1(x, \eta)$ and $\hat{u}_2(x, \eta)$ of (3) which have the following expressions:

$$\hat{u}_1(x, \eta) = xe^{-\Lambda(x)\eta} \Psi(\alpha, 1; 2\Lambda(x)\eta)$$
 for $x>0$,

and

$$d_2(x,\eta) = -xe^{-\Lambda(x)\eta} \Psi(\alpha,1;2\Lambda(x)\eta)$$
 for $x<0$,

where $\Psi(\alpha, 1; z)$ is a solution of (5) for z>0 defined in A. Erdelyi et al. [2, page 255-256].

(ii) Suppose $\eta < 0$. Then there exist solutions $\hat{u}_1(x, \eta)$ and $\hat{u}_2(x, \eta)$ of (3)

which have the following expressions:

$$\hat{u}_{1}(x,\eta) = xe^{\Lambda(x)\eta} \Psi(1-\alpha, 1; -2\Lambda(x)\eta)$$
 for $x>0$,

and

$$\hat{u}_2(x,\eta) = -xe^{\Lambda(x)\eta} \Psi(1-\alpha, 1; -2\Lambda(x)\eta)$$
 for $x<0$.

REMARK 2: It holds that $\hat{u}_2(x, \eta) = \hat{u}_1(-x, \eta)$ for x < 0. Generally, it does not hold that $\hat{u}_1(x, \eta) = -\hat{u}_2(x, \eta)$ (they are linearly independent in generic case), because $\Psi(\alpha, \gamma; z)$ is many-valued holomorphic function of z and its principal branch can be at most defined in the plane cut along negative real axis (see page 257 of [2]).

REMARK 3: Since $\Psi(\alpha, \gamma; z) = O(z^{-\alpha})$ as positive number z tends to infinity (see [2, page 278]), $\hat{u}_1(x, \eta)$ is uniformly bounded for $(\log 2|\eta|)^{-1} \le x \le 1$ and also $\hat{u}_2(x, \eta)$ is uniformly bounded for $-1 \le x \le -(\log 2|\eta|)^{-1}$.

- Proof. (i) We can see the result concerning $\hat{u}_1(x, \eta)$ since $z = \Lambda(x)\eta > 0$ for x > 0 rnd $\eta > 0$ (recall that $\Psi(\alpha, 1; z)$ satisfies (5) for z > 0). In order to obtain the result concerning $\hat{u}_2(x, \eta)$, we make the change of variable $\tilde{x} = -x$ in the equation (3) (notice that $\tilde{x} > 0$ for x < 0). Then (3) becomes the same equation with respect to the variable \tilde{x} since $\Lambda(\tilde{x}) = \Lambda(x)$ and $\mu(\tilde{x})^2 = \mu(x)^2$. Thus we can see that there is a solution of (3) which have the expression: $\hat{u}_2(x, \eta) = \tilde{x}e^{-\Lambda(x)\eta} \Psi(\alpha, 1; 2\Lambda(\tilde{x})\eta)$ for $\tilde{x} > 0$. This implies the result.
- (ii) To obtain the result concerning $\hat{u}_1(x, \eta)$, we set $z=-2\tau$ and $f(z)=e^{z/2}w\left(-\frac{z}{2}\right)$ in the equation (4) (notice that $z=-2\Lambda(x)\eta>0$ for x>0, $\eta<0$). Then (4) becomes

(5')
$$zf''(z)+(1-z)f'(z)-(1-\alpha)f(z)=0,$$

and this implies the result. The argument to obtain the one concerning $\hat{u}_2(x, \eta)$ is also similar.

Next we investigate the Wronskian of \hat{u}_1 and \hat{u}_2 , namely,

$$W(\eta) = \hat{u}_1(0, \eta)\hat{u}_2'(0, \eta) - \hat{u}_1'(0, \eta)\hat{u}_2(0, \eta)$$
.

We can compute the value of $W(\eta)$ which is essential to the proof of Theorem 1.

Proposition 2. (i) For $\eta > 0$, it holds that

(6)
$$W(\eta) = \frac{2}{\Gamma(\alpha)^2} \{ \log 2\eta + \psi(\alpha) - 2\psi(1) \},$$

where $\Gamma(\alpha)$ is Euler's Gamma function and $\psi(\alpha) = \Gamma'(\alpha)/\Gamma(\alpha)$.

(ii) For $\eta < 0$, it holds that

774 T. Hoshiro

(7)
$$W(\eta) = \frac{2}{\Gamma(1-\alpha)^2} \{ \log(-2\eta) + \psi(1-\alpha) - 2\psi(1) \}.$$

Proof. Here we prove the case (i). The argument for the proof of (ii) is completely parallel if α and η are respectively replaced by $1-\alpha$ and $-\eta$.

At first, let us recall that $\Psi(\alpha, n+1; z)$ $(n=0, 1, \cdots)$ has the following asymptotic behavior as $z \downarrow 0$ (see page 261 of [2]):

(8)
$$\Psi(\alpha, n+1; z) = \frac{(-1)^{n-1}}{n! \Gamma(\alpha-n)} \{ \Phi(\alpha, n+1; z) \log z + \sum_{r=0}^{\infty} \frac{(\alpha)_r}{(n+1)_r} [\psi(\alpha+r) - \psi(1+r) - \psi(1+n-r)] \frac{z^r}{r!} \} + \frac{(n-1)!}{\Gamma(\alpha)} \sum_{r=0}^{n-1} \frac{(\alpha-n)_r}{(1-n)_r} \cdot \frac{z^{r-n}}{r!} ,$$

where $(\alpha)_r = \alpha(\alpha+1)\cdots(\alpha+r-1)$ and

$$\Phi(\alpha, \gamma; z) = \sum_{r=0}^{\infty} \frac{(\alpha)_r}{(\gamma)_r} \cdot \frac{z^r}{r!}.$$

Hence we can conclude that

(9)
$$\hat{u}_{1}(0, \eta) = \lim_{x \downarrow 0} xe^{-\Lambda(x)\eta} \Psi(\alpha, 1; 2\Lambda(x)\eta)$$
$$= \frac{1}{\Gamma(\alpha)}.$$

Next let us recall the following relation (see page 258 of [2]):

(10)
$$\frac{d}{dz} \Psi(\alpha, \gamma; z) = -\alpha \Psi(\alpha+1, \gamma+1; z).$$

This implies that

(11)
$$\hat{u}'_{1}(x,\eta) = e^{-\Lambda(x)\eta} \Psi(\alpha,1;2\Lambda(x)\eta) \\ -x\Lambda'(x)\eta e^{-\Lambda(x)\eta} \Psi(\alpha,1;2\Lambda(x)\eta) \\ -2\alpha x\Lambda'(x)\eta e^{-\Lambda(x)\eta} \Psi(\alpha+1,2;2\Lambda(x)\eta),$$

for x>0. Take now the limit of the equation (11) as $x\downarrow 0$, keeping (8) in mind. Then the cancelation will occur between the terms of order $O(x^{-1})$. Thus we get

(12)
$$\hat{u}_1'(0,\eta) = -\frac{1}{\Gamma(\alpha)} \{ \log 2\eta + \psi(\alpha) - 2\psi(1) \},$$

Similarly, from the expression of $\hat{u}_2(x, \eta)$ for x < 0, we obtain

(13)
$$\hat{u}_{2}(0, \eta) = \frac{1}{\Gamma(\alpha)},$$

$$\hat{u}'_{2}(0, \eta) = \frac{1}{\Gamma(\alpha)} \{ \log 2\eta + \psi(\alpha) - 2\psi(1) \}.$$

The equations (9), (12) and (13) immediately give our assertion.

REMARK 4. From Proposition 2, we can see that $\hat{u}_1(x, \eta)$ and $\hat{u}_2(x, \eta)$ are linearly dependent for $\eta > 0$ if $b = -1, -3, -5, \cdots$ and for $\eta < 0$ if $b = 1, 3, 5, \cdots$ (recall that $\alpha = \frac{1+b}{2}$ and $\frac{1}{\Gamma(-n)} = 0$ for $n = 0, 1, 2, \cdots$). Also it is clear that, for sufficiently large $|\eta|$, $\hat{u}_1(x, \eta)$ and $\hat{u}_2(x, \eta)$ are linearly independent if b is not odd integer.

Next we investigate Theorem 2. In the case of Theorem 2 we consider the equation (3) with $\Lambda(x)$ and $\mu(x)$ being respectively replaced by $\tilde{\Lambda}(x) = \operatorname{sgn} x \cdot \exp(-|x|^{-1})$ and $\tilde{\mu}(x) = \tilde{\Lambda}'(x)$. The similar argument as above gives us the following

Proposition 3. (i) For $\eta > 0$, there exist solutions which have the following expressions:

$$\hat{u}_{1}(x,\eta)=xe^{-\tilde{\Lambda}(x)\eta}\;\Psi(\alpha,1;2\tilde{\Lambda}(x)\eta) \qquad for \quad x>0$$
,

and

$$\hat{u}_2(x,\eta) = -xe^{-\tilde{\Lambda}(x)\eta} \Psi(1-\alpha, 1; -2\tilde{\Lambda}(x)\eta)$$
 for $x<0$.

Moreover the Wronskian of them is

$$W(\eta) = \frac{1}{\Gamma(\alpha) \Gamma(1-\alpha)} \{2 \log 2\eta - 4\psi(1) + \psi(\alpha) + \psi(1-\alpha)\}.$$

(ii) For $\eta < 0$, there exist solutions which have the following expressions:

$$\hat{u}_{1}(x,\eta) = xe^{\Lambda(x)\eta} \Psi(1-\alpha,1;-2\tilde{\Lambda}(x)\eta) \quad \text{for} \quad x>0$$

and

$$\hat{u}_2(x,\eta) = -xe^{-\tilde{\Lambda}(x)\eta} \Psi(\alpha, 1, 2\tilde{\Lambda}(x)\eta)$$
 for $x < 0$.

Moreover the Wronskian of them is

$$W(\eta) = \frac{1}{\Gamma(\alpha) \Gamma(1-\alpha)} \left\{ 2 \log(-2\eta) - 4\psi(1) + \psi(\alpha) + \psi(1-\alpha) \right\}.$$

REMARK 5. As in the case of Theorem 1, we can conclude from Proposition 3 that, for sufficiently large $|\eta|$, $\hat{u}_1(x,\eta)$ and $\hat{u}_2(x,\eta)$ are linearly independent if b is not odd integer (i.e., $\alpha \in \mathbb{Z}$). Moreover, even if $\alpha \in \mathbb{Z}$,

776 T. Hoshiro

$$W(\eta) = \frac{1}{\Gamma(\alpha) \Gamma(1-\alpha)} \{ \psi(\alpha) + \psi(1-\alpha) \}$$

$$= \begin{cases} 1 & \text{if } |2\alpha - 1| \equiv 3 \mod 4, \\ -1 & \text{if } |2\alpha - 1| \equiv 1 \mod 4. \end{cases}$$

(See page 15 of [2].) Thus we see that $\hat{u}_2(x, \eta)$ and $\hat{u}_2(x, \eta)$ are linearly independent for such α . This is the reason why Theorem 2 is free from such an assumption as in Theorem 1.

Now w turn to prove the non-hypoellipticity part of Theorem 1.

Proof of non-hypoellipticity in Theorem 1. First let us observe thrt, if P is hypoelliptic, we get the following inequality from the argument of Banach's closed graph theorem.

For any positive number l and for any pair of open sets Ω and Ω' satisfying $\overline{\Omega}' \subset \Omega$, there exist a positive integer m and a constant C such that

(14)
$$||D_{y}^{l}u||_{L^{2}(\Omega')} \leq C \left\{ \sum_{m_{1}+m_{2}\leq m} ||D_{x}^{m_{1}}D_{y}^{m_{2}}Pu||_{L^{2}(\Omega)} + ||u||_{L^{2}(\Omega)} \right\},$$

$$\forall u \in C^{\infty}(\overline{\Omega}).$$

We are now going to show that the inequality (14) never holds provided b is odd integer. Let us set $\Omega = (-\delta, \delta) \times (-\delta, \delta)$ and $\Omega' = (-\delta', \delta') \times (-\delta', \delta')$ with δ and δ' satisfying $0 < \delta' < \delta < 1$. Moreover set

(15)
$$u_{\eta}(x,y) = e^{iy\eta} \,\hat{u}_{1}(x,\eta)$$
$$= -e^{iy\eta} \,\hat{u}_{2}(x,\eta) ,$$

with $\eta > 0$ if $b = -1, -3, \cdots$ and with $\eta < 0$ if $b = 1, 3, \cdots$ (Observe that $\hat{u}_1(x, \eta) = -\hat{u}_2(x, \eta)$ provided b is odd integer. To see this, compare (9), (12) and (13).) Let us substitute $u_{\eta}(x, y)$ into (14) and compare the asymptotic behavior of the both hand sides as $|\eta| \to \infty$. Clearly, in the right hand side, it holds that $Pu_{\eta} = 0$.

Observe now that there exists a constant C (independent of η) such that

$$|\hat{u}_1(x, \eta)| \leq C$$
 for $0 \leq x \leq 1$,

and

$$|\hat{u}_2(x,\eta)| \le C$$
 for $-1 \le x \le 0$.

This can be seen from the remark after the statement of Proposition 1 and the asymptotic behaviors of $\Psi(\alpha, 1; z)$ and $\Psi(1-\alpha, 1; z)$ as $z \downarrow 0$. Indeed, for example, it follows from (8) that

$$|\hat{u}_1(x,\eta)| = |x|e^{-\Lambda(x)\eta}|\Psi(\alpha,1;2\Lambda(x)\eta)|$$

$$\leq C_1|x|(1+|\log 2\Lambda(x)\eta|)$$

$$\leq C_1(|x|+|x|\log 2+|x\log \Lambda(x)|+|x\log \eta|)$$

$$\leq C_2,$$

for $0 < x < (\log 2\eta)^{-1}$ and $\eta \ge e/2$. Hence, if we substitute u_{η} into (14), the right hand side is not larger than

$$(16) ||u_n||_{L^2(\Omega)} \leq 4\delta^2 \cdot C.$$

On the other hand, in the left hand side of (14), it is clear that

$$||D^l_{\gamma}u_{\eta}||_{L^2(\Omega')}=|\eta|^l\cdot 2\delta'\cdot \left(\int_{-\delta'}^{\delta'}|\hat{u}_1(x,\eta)|^2\,dx\right)^{1/2}.$$

Moreover, from the asymptotic behavior of $\Psi(\alpha, 1; z)$ as $z \to \infty$, it follows that there exist positive constants ε and M such that

$$|\hat{u}_1(x, \eta)| \ge \varepsilon |x|$$
 for $M \le 2\Lambda(x) |\eta| \le 2M$.

Hence we obtain that

(17)
$$||D_{y}^{I}u_{\eta}||_{L^{2}(\Omega')}$$

$$\geq |\eta|^{I} \cdot 2\delta' \cdot \left(\int_{M \leq 2\Lambda(x)|\eta| \leq 2M} |\hat{u}_{1}(x,\eta)|^{2} dx \right)^{1/2}$$

$$\geq |\eta|^{I} \cdot 2\delta' \cdot \varepsilon \cdot 3^{-1/2} \left\{ \left(\log \frac{|\eta|}{M} \right)^{-3} - \left(\log \frac{2|\eta|}{M} \right)^{-3} \right\}^{1/2} .$$

Finally taking $l \ge 1$ immediately implies the contradiction among (14), (16) and (17).

2. Proof of hypoellipticity

In the present section, we assume that $W(\eta) \neq 0$ for $|\eta| \geq C$, and denote by $Q(x, x'; \eta)$ the Green function of (3) (in the case of Theorem 2, $\Lambda(x)$ and $\mu(x)$ being replaced respectively by $\tilde{\Lambda}(x)$ and $\tilde{\mu}(x)$), i.e.,

$$Q(x, x'; \eta) = \begin{cases} \frac{\hat{u}_2(x, \eta) \hat{u}_1(x', \eta)}{W(\eta)} & (x < x'), \\ \frac{\hat{u}_2(x', \eta) \hat{u}_1(x, \eta)}{W(\eta)} & (x' < x). \end{cases}$$

Then we have the following

Proposition 4. For any non-negative integer m, there exists a constant C_m such that the following inequalities hold:

(18)
$$\int_{-1}^{1} |\partial_{\eta}^{m} Q(x, x'; \eta)| dx' \leq C_{m} |\eta|^{-m} \text{ for } -1 \leq x \leq 1 \text{ and } |\eta| \geq \max\{C, e\},$$

(19)
$$\int_{-1}^{1} |\partial_{\eta}^{m} Q(x, x'; \eta)| dx \leq C_{m} |\eta|^{-m} \text{ for } -1 \leq x' \leq 1 \text{ and } |\eta| \geq \max\{C, e\}.$$

Proof. Here we prove the proposition in the case of Theorem 1. First we shall verify (18) when m=0. Observe now the following inequality:

(20)
$$\int_{-1}^{1} |Q(x, x; \eta)| dx'$$

$$\leq \left\{ |\hat{u}_{2}(x, \eta)| \int_{x}^{1} |\hat{u}_{1}(x', \eta)| dx' + |\hat{u}_{1}(x, \eta)| \int_{-1}^{x} |\hat{u}_{2}(x', \eta)| dx' \right\} \cdot |W(\eta)|^{-1} .$$

Let us set $x_{\eta} = (\log |\eta|)^{-1}$ (then $\Lambda(x_{\eta})|\eta| = 1$). We are going to estimate the right hand side of (20). Here we assume $\eta > 0$. In the case of $\eta < 0$, the argument is completely parallel if α is replaced by $1-\alpha$.

(I) Now we are going to show that the value of $\int_{-1}^{1} |Q(x, x'; \eta)| dx'$ is uniformly bounded for $x_{\eta} \le x \le 1$ and $\eta \ge \max\{C, e\}$. Concerning the first term on the right hand side of (20), we can use the expression of $\hat{u}_{1}(x', \eta)$ for x' > 0 and the asymptotic behavior $\Psi(\alpha, \gamma, z) = O(z^{-\alpha})$ as $z \to \infty$. Hence we have

$$|\hat{u}_1(x',\eta)| \le Ce^{-\Lambda(x')\eta} (\Lambda(x')\eta)^{-\alpha}$$
 for $x_{\eta} \le x' \le 1$.

We cannot use the expression of $\hat{u}_2(x, \eta)$ for x>0. So let us express it by linear combination of $\hat{u}_1(x, \eta)$ and

$$\hat{u}_3(x, \eta) = xe^{-\Lambda(x)\eta} \Phi(\alpha, 1; 2\Lambda(x)\eta)$$
 for $x>0$

(concerning the definition of $\Phi(\alpha, \gamma; z)$, see page 248 of [2]). From the facts that $\mathcal{U}_3(0, \eta) = 0$ and $\mathcal{U}_3(0, \eta) = 1$, it follows

(21)
$$\hat{u}_{2}(x, \eta) = A\hat{u}_{1}(x, \eta) + B\hat{u}_{3}(x, \eta)$$
,

where

$$A=1$$
,
$$B=rac{2}{\Gamma(lpha)}\{\log 2\eta+\psi(lpha)-\psi(1)\}.$$

Hence we obtain

(22)
$$|\hat{u}_{2}(x,\eta)| \int_{x}^{1} |\hat{u}_{1}(x',\eta)| dx' \cdot |W(\eta)|^{-1}$$

$$\leq \{ |W(\eta)|^{-1} \cdot |\hat{u}_{1}(x,\eta)| + C \cdot |\hat{u}_{3}(x,\eta)| \} \int_{x}^{1} |\hat{u}_{1}(x',\eta)| dx'.$$

Now recall that

$$\Phi(\alpha, \gamma; z) = \frac{\Gamma(\gamma)}{\Gamma(\alpha)} e^z z^{\alpha - \gamma} (1 + O(|z|^{-1})) \text{ as } z \rightarrow +\infty$$

(see page 278 of [2]), and $\Lambda'(x')\eta = \mu(x')\eta \ge (x_{\eta})^{-2}$ for $x_{\eta} \le x' \le 1$. Hence, concerning the second term on the right of (22), we have furthermore

$$\begin{split} | \hat{\mathcal{U}}_{3}(x, \eta) | & \int_{x}^{1} | \hat{\mathcal{U}}_{1}(x', \eta) | dx' \\ \leq & C_{1} \cdot x_{\eta}^{2} \cdot e^{\Lambda(x)\eta} (\Lambda(v)\eta)^{\omega-1} \int_{x}^{1} (\Lambda(x')\eta)^{-\omega} e^{-\Lambda(x')\eta} \Lambda'(x')\eta dx' \\ \leq & C_{1} \cdot x_{\eta}^{2} \cdot e^{\Lambda(x)\eta} (\Lambda(x)\eta)^{\omega-1} \int_{\Lambda(x)\eta}^{\infty} t^{-\omega} e^{-t} dt \\ \leq & C_{2} \cdot x_{\eta}^{2} \cdot (\Lambda(x)\eta)^{-1} \leq & C_{3} \,. \end{split}$$

Here we have used the fact that $\int_s^\infty t^{-\alpha} e^{-t} dt = O(s^{-\alpha} e^{-s})$ as $s \to +\infty$. The similar argument is applicable for estimating the first term on the right of (22). Consequently, the first term on the right of (20) is uniformly bounded for $x_{\eta} \le x \le 1$ and $\eta \ge \max \{C, e\}$.

Concerning the second term on the right of (20), let us decompose it in the following way:

$$|\hat{u}_{1}(x,\eta)| \int_{-1}^{x} |\hat{u}_{2}(x',\eta)| dx' \cdot |W(\eta)|^{-1} = |\hat{u}_{1}(x,\eta) \cdot W(\eta)^{-1}| \\ \times \left\{ \int_{-1}^{-x_{\eta}} |\hat{u}_{2}(x',\eta)| dx' + \int_{-x_{\eta}}^{x_{\eta}} |\hat{u}_{2}(x',\eta)| dx' + \int_{x_{\eta}}^{x} |\hat{u}_{2}(x',\eta)| dx' \right\}.$$

For $x' \leq x_{\eta}$, the expression of $\hat{u}_{2}(x', \eta)$ can be applied, and also for $x_{\eta} \leq x'$, $\hat{u}_{2}(x', \eta)$ can be decomposed as (21). Thus, by using the asymptotic behaviors of $\Psi(\alpha, 1; z)$ and $\Phi(\alpha, 1; z)$ as $z \to \infty$, we see that the first and the third terms are uniformly bounded. Concerning the integral with $-x_{\eta} \leq x' < 0$, the expression of $\hat{u}_{2}(x', \eta)$ and the asymptotic behavior of $\Psi(\alpha, 1; z)$ as $z \downarrow 0$ can be applied (see page 262 of [2]). Hence it holds that

$$\begin{split} |\hat{u}_{1}(x,\eta)\cdot W(\eta)^{-1}|\cdot & \int_{-x_{\eta}}^{0} |\hat{u}_{2}(x',\eta)| dx' \\ & \leq C_{1} e^{-\Delta(x)^{\eta}} (\Lambda(x)\eta)^{-\alpha} \cdot |W(\eta)|^{-1} \int_{-x_{\eta}}^{0} |x'\log 2\Lambda(x')\eta| dx' \\ & \leq C_{2} \cdot |W(\eta)|^{-1} \cdot \left\{ \int_{-x_{\eta}}^{0} dx' + (\log 2\eta) \int_{-x_{\eta}}^{0} |x'| dx' \right\} \\ & \leq C_{3} \, . \end{split}$$

Concerning the integral with $0 \le x' \le x_{\eta}$, we can estimate in the similar way, by using the fact (21). Thus we see that the second term on the right of (20) is also uniformly bounded for $x_{\eta} \le x \le 1$ and $\eta \ge \max\{C, e\}$.

(II) For $-1 \le x \le -x_{\eta}$, the argument for the estimate is completely parallel if we interchange the roles of $\hat{u}_{1}(x, \eta)$ and $\hat{u}_{2}(x, \eta)$. Also for $-x_{\eta} \le x \le x_{\eta}$, the argument is similar if we rewrite (20) as

780 Т. Нозніко

$$\int_{-1}^{1} |Q(x, x'; \eta)| dx'
\leq |W(\eta)^{-1} \cdot \hat{u}_{2}(x, \eta)| \cdot \left\{ \int_{x_{\eta}}^{1} |\hat{u}_{1}(x', \eta)| dx' + \int_{x}^{x_{\eta}} |\hat{u}_{1}(x', \eta)| dx' \right\}
+ |W(\eta)^{-1} \cdot \hat{u}_{1}(x, \eta)| \cdot \left\{ \int_{-1}^{-x_{\eta}} |\hat{u}_{2}(x', \eta)| dx' + \int_{-x_{\eta}}^{x} |\hat{u}_{2}(x', \eta)| dx' \right\},$$

and estimate the each term on the right hand side. Consequently, we see that the value of $\int_{-1}^{1} |Q(x, x'; \eta)| dx'$ is uniformly bounded for $-1 \le x \le 1$ and $\eta \ge \max\{C, e\}$.

The argument to show (18) for m>0 is similar to the above if we notice the fact (10) and

$$\frac{d}{dz}\Phi(\alpha,\gamma;z)=\frac{\alpha}{\gamma}\Phi(\alpha+1,\gamma+1;z)$$

(see page 254 of [2]). Thus the proof of Proposition 4 is clear.

Now we are in position to verify the hypoellipticity parts of Theorems.

Proof of hypoellipticity: First let us notice that the operator P is elliptic except x=0. Hence we can restrict our consideration at $(0, y_0)$. Moreover, since P is non-characteristic with respect to the variable x, the smoothness of the solution w.r.t. the variable x follows from the one w.r.t. the variable y. To be more precise, let $H^{k,l}$ be the space of distributions u satisfying $(1+\xi^2)^{k/2}(1+\eta^2)^{l/2}\hat{u}(\xi,\eta) \in L^2(\mathbb{R}^2)$ (ξ and η are the dual variables of x and y respectively). Then $u \in H^{k,l}$ and $Pu \in C^{\infty}$ at $(0, y_0)$ implies that $u \in \bigcap_{m=1}^{\infty} H^{k+2m,l-2m}$ at $(0, y_0)$. Thus $u \in H^{0,\infty}$ and $Pu \in C^{\infty}$ at $(0, y_0)$ implies that $u \in C^{\infty}$ at $(0, y_0)$. So it suffices to prove that $u \in H^{0,\infty}$ at $(0, y_0)$ when $Pu \in C^{\infty}$ at $(0, y_0)$.

Secondly we can assume that the support of the solution is contained in a small neighborhood of $(0, y_0)$. To observe this, let us take a function $\mathcal{X}(x, y) \in C_0^{\infty}$ satisfying $\mathcal{X}(x, y) \equiv 1$ for $|x| + |y - y_0| \le \delta/2$ and $\mathcal{X}(x, y) \equiv 0$ for $|x| + |y - y_0| \ge \delta$. Then the second term on the right of

$$Pu = PXu + P(1-X)u$$

is equal to 0 in a neighborhood of $(0, y_0)$. So it suffices to show that χu is smooth at $(0, y_0)$ provided $P\chi u$ is smooth there.

Now take a function $\phi(\eta) \in C^{\infty}$ such that $\phi(\eta) \equiv 0$ for $|\eta| \leq \max\{C, e\}$ and $\phi(\eta) \equiv 1$ for $|\eta| \geq 2\max\{C, e\}$, and set

(23)
$$Qu(x,y) = \frac{1}{2\pi} \iiint e^{i(y-y')\eta} Q(x,x';\eta) \phi(\eta) u(x',y') dx' dy' d\eta.$$

Then it follows from (18) and (19) with m=0 that Q is a bounded operator $H^{0,l}((-1,1)\times \mathbb{R})$ for all $l\in \mathbb{R}$. Moreover since $Q(x,x';\eta)$ is the Green func-

tion of (3), it holds that $PQ=I+K_1$, where K_1 is an operator with symbol $1-\phi(\eta)$, in particular, it is regularizing operator w.r.t. y, i.e., the one from $H^{0,l}((-1,1)\times R)$ into $H^{0,\infty}(-1,1)\times R)$. Now let $Q_1(x,x';\eta)$ be the Green function of (3) with b being replaced by \bar{b} , and let R be the adjoint operator of (23) with $Q(x,x';\eta)$ being replaced by $Q_1(x,x';\eta)$. Then it holds that

$$RP = I + K$$
,

where K is an operator from $H^{0,l}((-1,1)\times \mathbb{R})$ into $H^{0,\infty}((-1,1)\times \mathbb{R})$. Furthermore R has pseudo-local property w.r.t. $y \mod H^{0,\infty}$. To be more precise, let $\chi_1(y)$ be a function of class C_0^{∞} satisfying $\chi_1(y)\equiv 1$ for $|y-y_0|\leq \varepsilon$. Then the second term of the right of

$$Rf = RX_1f + R(1-X_1)f$$

belongs to $H^{0,\infty}$ at $(0, y_0)$ for any $f \in H^{0,l}$. It is a consequence of (18) and (19). Indeed, $R(1-x_1)f$ is expressed as

$$\frac{1}{2\pi} \iint e^{i(y'-y)^{\eta}} \, dy' d\eta \int Q_2(y,y';x,x';\eta) f(x,'y') \, dx',$$

where

$$Q_2(y,y';x,x';\eta) = \frac{1-\chi_1(y')}{(y'-y)^m} D_{\eta}^m \{\overline{Q}_1(x',x;\eta) \phi(\eta)\},\,$$

for arbitrary positive integer m, and the values of

$$|\eta|^{m+\gamma}\int |\partial_y^{\alpha}\partial_{y'}^{\beta}\partial_{y'}^{\gamma}\partial_{\eta}^{\gamma}Q_2(y,y';x,x';\eta)|dx'$$

and

$$|\eta|^{m+\gamma}\int |\partial_y^{\alpha}\partial_y^{\beta}\rangle \partial_{\eta}^{\gamma}Q_2(y,y';x,x';\eta)|dx$$

are uniformly bounded for $\eta \in \mathbb{R}$, $|y-y_0| \le \varepsilon$ and $y' \in \mathbb{R}$. Hence $Q_2(y, y'; \cdot, \cdot; \eta)$ is an operator valued symbol of class $S^{-\infty}((y_0-\varepsilon, y_0+\varepsilon) \times \mathbb{R}_{y'} \times \mathbb{R}_{\eta}; L^2(-1, 1))$.

Thus, if P u is of class $H^{0,\infty}$ at $(0, y_0)$ and the supports of \mathcal{X} and \mathcal{X}_1 are taken properly small, then all terms on the right hand side of the equation

$$\chi u = RP\chi u - K\chi u
= R\chi_1 P\chi u + R(1 - \chi_1) P\chi u - K\chi u$$

are of class $H^{0,\infty}$ at $(0, y_0)$, since χu becomes of class $H^{0,l}$ for some l and the singular support of χu becomes contained in $\{(x, y) | x = 0\} \cap \sup \chi$. This completes the proof.

References

- [1] G.R. Aleksandryan: The parametrix and propagation of the wave front of the solution of the Cauchy problem for a model equation, Soviet Journal of Contemporary Mathematical Analysis 19 (1984), 33-46.
- [2] A. Erdelyi, W. Magnus, F. Oberhettinger and F.G. Tricomi: "Higher Transcendental Functions, vol. 1," McGraw Hill, New York, 1953.
- [3] V.S. Fedii: On a criterion for hypoellipticity, Math. USSR Sb. 14 (1971), 15-45.
- [4] A. Gilioli and F. Treves: An example in the solvability theory of linear PDE's, Amer. J. Math. 96 (1974), 367-385.
- [5] T. Hoshiro: On Levi-type conditions for hypoellipticity of certain differential operators, Comm. PDE 17 (1992), 905-922.
- [6] A. Menikoff: Some examples of hypoelliptic partial differential equations, Math. Ann. 221 (1976), 167–181.
- [7] Y. Morimoto: On the hypoellipticity for infinitely degenerate semi-elliptic operators, J. Maht. Soc. Japan 30 (1978), 327-358.
- [8] T. Morioka: Some remarks on micro-hypoelliptic operators of infinitely degenerate type, Osaka J. Math. (to appear).
- [9] M. Suzuki: Hypoellipticity for a class of degenerate elliptic operators of second order, Tsukuba Math. J. 16 (1992), 217-234.

Institute of Mathematics, University of Tsukuba Tsukuba-shi Ibaraki 305, Japan