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Introduction

The present paper is a continuation to [9] in which we have studied the
asymptotic distribution of eigenvalues (bound state energies) below the bottom
of essential spectrum for Schrϋdinger operators of one particle systems in
homogeneous magnetic fields. In this paper we consider a similar problem for
Schrΰdinger operators of many particle systems.

We work in the 37V dimensional space R3N with generic point x=(x1, •••Jx
N)y

χi=(x{) χJ

2} xi)&R3. Consider N particles of mass μ,, and charge ejy l^j<^
interacting with each other through static potentials V^ix?— x*)9 l^i<j^,
and subjected to external potentials V0j(xj), l^j ^N, and to a homogeneous
magnetic field £=(0, 0, i), i=j=0. Under a suitable normalization of units, the
energy Hamiltonian H for such a system takes the following form:

(0.1) H=Σf

where Tj is defined by

(0.2) T, = -tVj+A^) , Aj = (e,β)B X x> ,

V; being the gradient with respect to x*. Let σess(H) be an essential spectrum
and let 2(73) =inf σess(H) be the bottom of essential spectrum. We denote
by -ΛΓ(λ), λ>0, the number of eigenvalues not exceeding 2(7ϊ)— λ of H with
repetition according to multiplicities. The aim of this paper is to study the
asymptotic behavoir as λ -> 0 of N(\) when the Hamiltonian H has an infinite
number of eigenvalues below the bottom 2(73). Such a problem has been
already studied by [5] and [8] in the case B=Q. The method used here is in
principle the same as that in these works, but the obtained result is quite
different from that in the case B=Q.

The paper consists of nine sections. We formulate the main theorem in
section 5. The precise formulation requires several notations and assumptions.
The first four sections have the character of preliminaries. In section 1 we
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disucss the self-adjointness problem for H formally defined by (0.1) and in

section 2 we formulate the HVZ (Hunziker-Van Winter-Zhislin) theorem on the
location of the bottom Σ(#). For a cluster decomposition D={CQy Cί9 •••, Ck}
of {0, 1, 2, •••, N} with OeC0, we denote by \D\ the number of clusters in D
and for a nonempty cluster C, we difine the Hamiltonian h(C) as

(0.3) h(C)= ΣyeΛω(l/2Aty)Γ? + Σ<.y«F,/*>-*0

with #°=(0, 0, 0)eJR3, where h(C) is considered as an operator acting on L%R3/),
/ being the number of elements in C\{0}. If C={0}, then h(C) is defined as
zero and is considered as an operator acting on the scalar field C. Let σ(h(C))

denote the spectrum of h(C) and let Λ(Λ(C)) be defined by Λ(A(C))=inf σ(h(C)).
Then the HVZ theorem gives

Σ(H) = min {ΣJ=0 Λ(Λ(C,)); D = {C0, -, C,}, \D\ ̂ 2} .

We make the basic assumption that the bottom Σ(-ίί) is determined only by
single cluster (2-cluster) decompositions D={C0, C}. Throughout the discus-
sion, we use the terminology "single cluster decomposition" in the sense of
decomposition into two clusterrs. Under this assumption, we will see intuitively

that the asymptotics as λ->0 of N(\) is determined by the interaction betwen

sufficiently distant clusters C0 and C. This is the main idea used in the works

[5] and [8] in the case 5 = 0. Indeed, such an asymptotics with B = 0 has
been shown to coincide with the asymptotics as λ->0 of ND(\) (=number of

eigenvalues less than —λ) of the two particle Hamiltonian — (l/2μ(C))Δ,JτVD(x)9

jceΛ3, acting on L%β3), where μ(C)=Σjec Pj ^s Λe total mass of cluster C and
VD(x)=Σ Vij(x) is the intercluster potential between C0 and C, the sum being
taken over pairs (i, j) such that i and j are in different clusters. In the case

βφO, such a reduced Hamiltonian takes a different form. Roughly speaking,
this is represented as a pseudodifferential operator of the form

(0.4) -(l/2μ(Q)(dldX3)
2+ Vl(y, D,, *3)

acting on /,%R2), (y, x3)&R2, where Vw

D(yyDyyx^ is defined by the Weyl
formula. To see this, we make, in section 3, a separation of the center of mass
for the Hamiltonian h(C), OφC, with translation invariant interactions under
the assumption that the total charge e(C)=^ΣjGC βj of cluster C is not zero. In

section 4 we prove the rapidly decaying property of ground state for such a
Hamiltonian obtained by removing the center of mass.

After these preparations in sections 1-—4, we formulate the main theorem

in section 5 and prove it in sections 6~8. As stated above, the proof is done
by reducing the problem under consideration to that of eigenvalue asymptotics

for pseudodifferential operators of the form (0.4) and by applying to such oper-

ators the result obtained in [9] for one particle systems. In section 9 we mention

some simple examples to which the main theorem can be applied.
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We conclude the introduction by making some comments on the notations
accepted in this paper. (1) For a self-adjoint operator A, we denote by σ(A)
and σess(A) the spectrum and essential spectrum of A, respectively. We also

define Λ(-4) and Έ,(A) by Λ(^)=inf σ(-4) and 2(^4) = inf σm(Λ). (2) For a
cluster decomposition Z), we write iDj if i and j are in the same cluster. If
they are in different clusters, we write ~iDj. We also use the notation
Σijo (resp. Σ~ί0/) to denote the sum over pairs (/, j), i<J, with property iDj
(resp. ~iDj). (3) We work in the various L2 spaces L\Rn)y l^n^ZN. The
scalar product and norm in L\Rn) are specified by writing them as ( , ) ( » > and
|| ||(») respectively. If there is no fear of confusion, then we use, for notational
convenience, the same notaions ( , ) and || || to denote the scalar product and
norm in these spaces.

1. Self-adjoint realization

In this section we discuss the self-adjointness problem for the Hamiltonian
H formally defined by (0.1). This problem has been already studied by many
authors (see [7] and references there). The result here does not contain any
new ones.

For brevity, we fix β as jB=(0, 0, 1) throughout the entire discussion, and
we write F0/#0=F0/#'— a°) with *°=(0, 0, 0). Then the energy Hamiltonian
H under consideration is written as

(1.1) H = Σff-i (l/2μ, )7l+ΣOS, </^ V{^-sf) ,

where Tj is defined by (0.2) with -B=(0, 0, 1). We now make the following
assumption on Vij(x), x^R3.

Assumption (V). V{j(x) is a real function belonging to the class L3/2(Λ3)+
L°°(Λ3) and F,v(#)->0 as M-*°°.

Assume V(x) to belong to L3/2(R3). Then, for any δ>0 small enough,
there exists K8 such that

(1.2) ( I V I φ, φ)^8 ΣUP, ΦII2+*8IIΦII2, D, = -ί8/8«, ,

for φeCSΓ(Jδ3). The next simple but useful lemma can be found in the book
[7], p. 213, although the essential idea of proof is due to [4].

Lemma 1.1. Assume (1.2). Let δyeL^Λ3), l^j'^3, be a real function.
Then

( \ V \ φ , φ)^S^=MDj+bj)φ\\2+K8\\φ\\2

for φeC7CR3) with the same K8 as in (1.2).
The above lemma will be used for another purpose in section 4. As an
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immediate conseqence of Lemma 1.1, it follows that the multiplication V=

Σosf </sjv Vίj *B relatively form bounded with respect to the unperturbed Hamil-
tonian H0=^Σ*j=1(l/2μj)T* with bound less than one. Thus we obtain the
following

Theorem 1.2. Assume (V). Let H be defined fry (1.1) with the form domain
Co(R3N). Then H admits a unique self -adjoint realization in L2(R3N) (denoted fry
the same notation H) with the domain

where Tj and H act on u in the distribution sense.

2. The HVZ theorem

In this section we formulate the HVZ theorem on the location of the bottom
Σ(H) of essential spectrum σess(H}. This theorem has been already proved
by many authors in the case 5=0 and similar arguments will apply to the case
J3ΦO. For completeness and for latei reference, we here sketch a proof by
making use of the geometric spectral method due to Agmon [1].

Theorem 2.1 (HVZ theorem). Let the notations be as in the introduction.
Assume (V). Then

;Z)= {C0, -, C,}, \D\^2}.

Before proving the theorem, we introduce several notations and definitions.
We follow the notations in [1]. Let SZN~l={ωϊΞR™ \ |ω| =1}. For
0<£ <1 and L>1, we define

| x \ cos 6, \x

Σ' L(ω; H) = {inf (Hφ, φ)(3JV); ||φ|| = 1

K(ω\ H) = limlimΣ8 L(ω; H) ,
ε ψ O £|oo

where < , > denotes the scalar product in R3N.

Lemma 2.2. Let the notatins be as above. Then:
(i) K(ω\ H) is a lower semi-continuous function of ω.
(ii) Σ(#)=min {̂ (ω; H); ωZΞS™-1}.

The lemma is proved in exactly the same way as in the proof of Theorem

5.2, [1].

Lemma 2.3. Let V(x)='Σosi<j£N J7,-/*''— «*) with x=(xτ, •• ,xrι)^R3N.
If V(x)=V(x+τωo) for some ω^S™-1 and all τ^R\ then K(a>0; ίί)=
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Proof. Define Z=(z\ -, zN)£ΞR™ with ^-(^/2)βχ^eΛ3, B=(Q, 0, 1),
and set

φτ(x) = φ(x+τω0) exp (— z'τ<ω0, Z»

for φ <Ξ C7CR3jV). Then (ίfφτ, φr)=(Hφ, φ). This relation enables us to prove
the lemma in the same way as in the proof of Lemma 6.1, [1]. Π

Let Π<v: R
3N-*R3, Q^i<j^,N, be difined by ΠlV#=#>— x* for x=(x\ —,

. For given ωeS3"'1, we difine

where the sum of Vfj is taken over pairs (i,j) with property Πt yω=0.

Lemma 2.4. Lei /ίω iβ αί above. Then

This lemma is also proved in the same way as in the proof of Theorem 6.3,
[1], by making use of Lemma 2.3.

We now proceed to prove Theorem 2.1.

Proof of Theorem 2.1. For given cluster decomposition Z>, we define the
subset ΩD of S3"-1 by

(2.1) ΩD = {ωeS3"'1; Π,vω = 0 if iDj, Π,vωφO if

ΩD being defined as empty if \D\ =1. Conversely, for given ω^S3^"1, we can
construct a cluster decomposition D uniquely so that ω^Ω^. If ω1 and ω2 are
in the same ΩDy then it follows from Lemma 2.4 that ^(ω^ H) = K(ω2\ H).
Thus, for D= {C0, •••, CΛ}, we can define κ(D H) as

*(/>; H) = ΛΓ(ω; fl.) - A(fl.) , ωeΩ^ ,

and also this is written as κ(D\ H)= Σy=oΛ(A(C; )). Hence the theorem follows
from Lemmas 2.2 and 2.4. Π

Let Σ jk(fir) = min{ιc(D;H); |Z)|=ft},2^ft^ΛΓ+l. Since K(ω\ H) is
lower semi-continuous by Lemma 2.2, it follows that Σk(H) is non-decreasing in
& and hence we have Σ(H)=Σ2(H). Let

(2.2) Σβ={D;^φ;H)

We now make the following basic assumption.
ASSUMPTION (Σ) . If D e Σ0, then | D | = 2.

Proposition 2.5. ί̂ίwmβ ( V) and (Σ). L ί̂ D= {C0, C} e Σ0, 0 <Ξ C0.
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the Hamίltonίan h(C0) has an eigenvalue of finite multiplicities (ground state energy)

at the bottom in its spectrum. In other zϋords, Λ(λ(C0)) is the ground state energy

o/A(C0).

Proof. The proposition is an immediate consequence of the HVZ theorem.

In fact, if Λ(λ(C0))=Σ(A(C0)), then we have Σ(iO=Σ3(ίί) by applying the
HVZ theorem to h(CQ). This contradicts the assumption (Σ). Π

In section 3, we will prove that Λ(A(C)), OφC, is also determined as the

ground state energy of the Hamiltonian obtained by removing the center of mass

from h(C).

3. Separation of center of mass

In this section we make a separation of the center of mass (c.m.) for the

Hamiltonian A(C), OφC, with translation invariant interactions. For notational

brevity, we fix C as C={N— /+!, •••yN} for some /, ί^l^N. We assume

that £(C)=Σyec £y=t=0 If £(C)=0, then a different analysis is required and we
do not deal with this case here.

We follow the method in [2] to represent h(C) in terms of the new coordi-

nates introduced below. Let ry = (r{, r|, rjJeΛ3, l^j^l— 1, be the Jacobi
coordiantes defined by

/"3 1\ vj VJV-/+/+! /"SΓ^ f * "ϊ"1 ^J ,, ^N-l+k
\Oti) ' — Λ \2Lίk=l V*N-l+k) 2-ik=l μ>N-l+kX

and let R=(Rly R2, R3)^R3 be defined by

R, = -(IMC)) Σί-, «w-,+*^-|+*,

(3.2)

R, =

where μ(C)=Σ/ec A^ It is easY to make a separation of the c.m. motion in
the direction parallel to B.

Lemma 3.1. Decompose L2(Λ3/) as L\R31) =L2(R3l~1) &¥(&). Then

there exists an operator h±(C) acting on L2(R3l~l) for which

I being the identity operator.

We further analyze the operator h±(C). Let p = (pN~l+l, —,!**), q =

(q\ -.., q1"1) and Q== (Q19 Q2J Q3) be the coordinates dual to x=(xN~l+\ •••, xN)y

r=(r1, ••-, rl~l) and R=(Rly R2ί R3], respectively. Then a simple calculation

shows that:
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for j, N—l+l^j^N9 when αj[ and &£, 1^&^2, are represented as linear func-
tions of (ri, •••, r^1) and (ql, •••, jί"1), respectively. For later reference, we here

note that the lxl-1 matrix Bk, l^k^2: (q\, -, ίί-1)-*^-'4"1, -, if) has the
property

(3.4) rank Bk = 1-1.

We now introduce the new coordinates as follows:

y=\e(C)\-v>Q1+(l/2)\e(C)\v>R2,

*=

As is easily seen, the transformation above is symplectic;

dQl/\dRl+dQ2MR2 =

Assume that e(C)>0. Then we have by (3.3) that

\e(C)\ ~* «, *+ «-(«/
( ' { = - \ e(C) \

for j, N—l+l^j^N, a{ and iΐ being as in (3.3). If β(C)<0, then we obtain

the same relations as above with z and ζ replaced by —η and — yy respectively.
Thus we have the following lemma.

Lemma 3.2. Decompose L\R*l~l) as L\R*l-l)=L\R*l-2}®L\R1}. Then

there exists an operator hr(C) acting on L2(l?3/~2) for which hJL(C)=hr(C)®I.

We shall call hr(C) a Hamiltonian with c.m. removed. The HVZ throrem
for hr(C) is formulated as follows (Theorem 6.1, [2]).

Theorem 3.3. Assume (V). Let a be a partition of C into disjoint nonempty

clusters C? and C?. Then

τ(hr(C)) = min{ΣLι Λ(A(C?)); a} .

We will be able to prove the theorem above by making use of the geome-
tric spectral method as in the proof of Theorem 2.1, but we do not go into
details here.
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Let Σ0 be defined by (2.2). In addition to (V) and (Σ), we make the
following assumption.

ASSUMPTION (E). *(C)=Σ/ec */Φθ for D= {C0, C} eΣ0.

Proposition 3.4. Assume (V), (Σ) and (E). Let D={C0, C} <ΞΣ0 and let
hr(C) be the Hamiltonian obtained by removing the center of mass from h(C). Then
hr(C) has a ground state energy at the bottom in its spectrum.

Proof. The proposition follows immediately from Theorem 3.3 by use

of the same argument as in the proof of Proposition 2.5. Π

4. Decaying property of ground states

Let D— {C0, Cj eΣo In the previous section we have shown that the

Hamiltonian hr(C) has a ground state energy at the bottom in its spectrum. In
this section we will prove that the eigenfunction (ground state) associated with

the ground state energy has the rapidly decaying property.
As in section 3, we fix C as C={N— 7+1, •••, N}y 1<^1<^N. For brevity,

we assume that e(C)>0. Then the Hamiltonian hr(C) with c.m. removed is

represented in terms of the coordinates (r, z)R3l~2, z being defined in (3.5).

Proposition 4.1. Let the notations be as above. Then the ground state u=

u(r, z)ζΞL2(R31-2) ofh,(C) has the following property; (l+\r\ + \z\)κ(d/dz)Mu(Ξ
L2(R3l~2) for any nonnegatίve integers K and M.

REMARK. In the case B=Q, it has been proved by many authors (see [1]

and references there) that eigenf unctions associated with eigenvalues below the

bottom of essential spectrum have the (pointwise) exponentially decaying pro-
perty. It may be possible to prove such a sharp result in the case BΦO also.
Howevr, only a weak bound as in the proposition is sufficient to the later appli-
cation.

Before proving the above proposition, we mention several properties of

hr(C). Let h0r(C) be the Hamiltonian obtained by removing the center of mass

mass from h0(C) with no interactions; F,.y = 0 for i,j^C. Then hr(C) =

ec va BY (3 6)> Hamiltonian h^C) takes the form

where Sj\r, z, q, ζ) is represented as a linear function of (r, z, q, ζ). We see

from (3.4) that ql, 1<:&^3, is written as

qί = Σϊ--ί <*{uSm(r, z, q, ξ)+cί(r)

with some linear function c((r) of r. This, together with Lemma 1.1, implies

that
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(4.1) (\Vlf\φ, φ)^8 Σ^T1 \\Sjφ\?+Kt\\φ\? ,

for φeCiΓCR3'"2) and hence the domain 3)(hr(C)) is given by

3)(hr(C}) = {u<=L\R3'-2); I V{,\*u, S,u, hr(

Furthermore, it follows from (4.1) that for φ&<D(hr(C))

(4.2) Σ^lΊ1 115,. φ|P+Σu*c ( I Vti I φ, φ)^^1(Ar(C)φJ φ)+K2\\φ\\z

We can also show by use of (3.4) and (3.6) that

Σ5LΊ1 Sy(0, x, q, ςγ

This implies that multiplications by bounded functions with compact support
are relatively compact with respect to fι0r(C) and hence it follows from the
Persson theorem ([6]) that

(4.3) Σ(/*r(C)) = lim inf (h,(C)φ, φ)(3,_2) ,Ztβ»

where the infimum is taken over φ^*D(hr(C)), ||φ|| = l, vanishing on BL, BL

being the ball in JB3/~2 centered at the origin with radius L. Let λc— A.(hr(C))
and let jc=^(hr(C))— λc>0. Then it follows from (4.3) that there exists

such that

(4.4) (WC)-λc)φ, φ)^(γc/2)(φ, φ)

for φ^<D(hr/(C)) vanishing on BL.
We now proceed to prove Proposition 4.1.

Proof of Proposition 4. 1 . Define pe(τ) , 0 ̂  6 < 1 , by

We write Y=(r, z)^R3l~2 and denote by [ , ] the commutator notation.
We shall show that Po(| Y \)u<=Ξ3)(hr(c]}. Since the L2 norm of [Ar(C),

P d γ\)]u ίs bounded uniformly in 5>0, we have by (4.4) that p0(| Y \)u<=L2

(=L2(R3ί~2)) and also it follows from (4.2) that both SjP,(\Y\)u and
I Vtj \ 1/2p0( \y\)u are in L2. This proves that p0( | Y \ }u^3)(hr(C)}. By repeated
use of the above arguments, we obtain that pQ( \ Y \ )κu^3)(hr(C)) for any ^^0
and hence the decaying property with M=0 follows at once. To prove this
property for the case M^>1, we first note that the coefficients of hr(C) are
smooth in % and hence the L2 norm of the term p0( | Y \ )κ[hr(C), ρs(A)]M> K^l,
is bounded uniformly in £>0. Thus the decaying property with M^l is
proved by applying the same argument as above to p9(Dt)u. Π

Similarly we can prove that the ground state of h(C0) has the rapidly decaying
property.



128 H. TAMURA

Proposition 4.2. Let l^l be the number of elements in C0\{0}. Assume
that the Hamίltonian h(C0) has a ground state energy at the bottom in its spectrum.
Then the ground state u=u(x), x^R31, of h(C0) has the property (l+\x\)κu&
L\R31) for any integer K^O.

5. Formulation of main theorem

In tihs section we formulate the main theorem. To do this, we furhter
have to assume a condition which guarantees that H has an infinite number of
eigenvalues below the bottom Σ(ί/) of essential spectrum σess(H). Let D=
{C0, C}^Σ0, Σo being defined by (2.2). In addition to (V), (Σ) and (£), we
make the following assumptions on Vij(x), x^R3, with ~tD/ and the inter-

cluster potential VD(x) = 'Σ~iDj ^O'W

ASSUMPTION (A)p. (A.O) Fίy

(A.I) V($ is of compact support.
(A.2) Vty is C°°-smooth and there exists p>0 such that

for all multi-indices a.
(A.3) For |#| >L0>1, VD(x)<0 and

for the same as p above.

In the above assumption, we have assumed that the same p is chosen for
all DeΣo In general, such a choice depends On DeΣ0 The result below
can be easily extended to this general case.

We introduce the notations. For Z)={C0, C}^Σ0, we define the Hamil-
tonian hD acting on L2(R3N~2) by

(5.1) hD = hr(C)®I+I®h(CQ).

By Propositions 2.5 and 3.4, hD has the eigenvalue Σ(H)=Λ(λr(C))+Λ(A(C0))
as a ground state energy. We denote by m(D) its multiplicity.

Theorem 5.1. Assume (V), (Σ), (E) and (A)p with pΦ2. Let N(\), λ>0,
be the number of eigenvalues less than *Σ(H) — λ of H (counting multiplicities).
Then N(\) obeys the following asymptotic formula as λ->0:

the sum being over D— {C0, C} eΣ0, where the leading term N0(\: VD) is defined
as follows: IfQ<p<2, then
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(5.2) JV0(λ; Va) = (2π)-*\e(C) \ vol [{(p, x)<=&xR3; kD(p, *)<-

and if ρ>2, then

(5.3) JV0(λ; ΓB)

with

WD(w) = \ VD(ιo, x3)dx3, x = (w,
J -00

REMARKS, (i) In the case J3=0, Simon [8] has considered the special case
in which Σ0 consists of only one single cluster decomposition and Ivrii [5] has
considered the general case in which Σ0 is not necessarily assumed to consist of
only one sigle cluster decomposition. In [5], the asymptotic formulas with
sharp remainder estimates have been also obtained, although the detailed proof
has not been given, (ii) As is easily seen, ΛΓ(λ) behaves like O(λ1/2~3/p), 0<
p<2, and like O(λ"1/(p"1}), p>2, as λ->0. In particular, ΛΓ(λ)-»oo as λ-»0
even in the case p> 2. This is one of main differences between the cases B=G
and£φO.

6. Partition of unity and variational principle

As the first step toward the proof of Theorem 5.1, we start by a simple
localization formula, which has been effectively used in proving the Mourre
estimate for ΛΓ-body Schrϋdinger operators ([3]).

Lemma 6.1. Let H be defined by (1.1) with B=(Q, 0, 1). Let ψ={ψj,
T/r^O, 1<J#<^ be a smooth partition of unity normalized by Sja=i^0=l>

Then

where

(6.1) /(*; Ψ) = Σf-i (lβμj) ΣU-1

Vy being teh gradient with respect to xj^R3.

Proof. The proof is an easy calculation.

Now, assume that 20 consists of m single cluster decompositions
DΛ={Ct C*}, l^α^m, with OeC?. Let Ω,Λ be defined by (2.1) with D=DΛ.
We take a normalized partition of unity, Ψ0

:="W'Ό> *̂> ^i}> l^α^w, with the
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following properties: (i) \Jr0 has support in {^e/J3JV; |#|<L} and ̂ 0

=1 f°r

\x\ <L/2. (ii) ty* has support in a small conical neighborhood of

(2.6) Γ£ - {x = \x\ω<=R3N', \x\>L/2, ωeΩj .

(iii) ψ j vanishes in a small conical neighborhood of ΓL— U^*^ Γ£. We
further take ^eC^R3"), l^a^m, to satisfy X*ψ*=ψ*. We may assume
that the support of %* is contained in a small conical neighborhood of Γ<£ and
dose not intersect with each other.

Let Jo(x)=J(x; Ψ0) be defined by (6.1) with Ψ=Ψ0 By definition, JQ(x)
vanishes on U ι^Λ^m T2

a

L U {x\ \x\ <L/2}. We may assume that

(6.3) |9?/0(*)|^β(l+|*|)-2-ι*

for Kβ independent of L> 1.
We now define the Hamiltonian if?, l^α^m, by

(6.4) if? = if *+Σ~, zw %" Vitf-tfJjC ,

where

We denote by N(\\ if?), λ,>0, the number of eigenvalues less than Σ(ΐf) — X of
H*. We assert that

(6.5) lim sup JV(λ)/ΣΪ-ι N(\ /f ?) ̂  1 ,

Let Ψ0— {̂ o> 'ΨΛ 1̂} be as above and let Λy— supp -\|ry, O^j^ 1. To prove
(6.5), we evaluate the maximal dimension A^-(λ), O^j^l, of subspaces in
C7(Λ; ) such that

(Hφ, φ)-(/0φ, φ)<(Σ(/f)-λ)(φ, φ) , φeC?(Ay) .

Since Λ|ΓO is of compact support, we can easily obtain NQ(\)^KL for KL

independent of λ. Λ^(λ) is also easy to evaluate. Recall the notation ^(ω; if)

in section 2. If ω is not in Ω= U &**„ Ω*, then ^(ω; ίf)>Σ(ίf ) strictly. By
property (iii), ̂  vanishes in a conic neighborhood of ΓL and hence N1(\)= 0 for
L>1. Thus, by the min-max principle, (6.5) follows from Lemma 6.1.

Next we shall evaulate the lower bound for N(\) as λ— > 0. Let Λ|TO, -ψ * and
%*, l^a^m, be as above and let Λ*= supp -ψΛ We denote by NΛ(\) the
maximal dimension of subspaces in CSΓ(Λβf) such that

(ίfφ,

Then we have ΛΓ(λ) ̂  ΣΓ-i -^V*(λ). We now take a normalized partition of
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unity Ψ*={ψ0, ψ
-, f J and define JΛ(x)=J(x , Ψ") by (6.1) with Ψ=Ψ*. JΛ

has a property similar to /0. Let

(6.6) Hί = H*+^iDΛl X* VtjX'+J* .

We denote by N(\; #?), λ>0, the number of eigenvalues less than Σ(ff)— λ of
if?, if? being considered as an operator acting on L?(R3N). We claim that

(6.7) lim inf N*(\)IN(\ H J) ̂  1 ,
λ->0

if Λf(λ; ίf?)->oo as X->0. If this is proved, then

(6.8) liminf ΛΓ(λ)/Σ"-ι ΛΓ(λ; tf?)^l .
λ->0

Set

To prove (6.7), we apply Lemma 6.1 with ψ=ψ* to #S, so that

HI =

We first note that fy*H*ty* = fy*H fyΛ. The multiplication operator by
*Σ~iD*j'X'*Vij'X'* 1S relatively compact with respect to H* and hence K(ω\ H%)
=K(a>\ H*) for all ωeS8*"1. Under assumption (2), we can also show that
K(ω\ H")^2(H) and K(ω\ HΛ)=^(H) for ωeΩΛ only. Since ξΛ vanishes in a
small conical neighborhood of Γ£, (6.7) is obtained by making use of the same
argument as used to prove (6.5).

7. Reduction to pseudodifferential operators

We keep the same notations as in section 6. The problem is now reduced
to the study on the asymptotic behavior as λ->0 of Λf(λ; Jϊ?) and ΛΓ(λ; if?).
We fix one of DΛ, l^a^>my and denote it by D= {C0, CJ . For this fixed α,
we also write %, H^ and H2 for %*, ίί? and /ί?, respectively. For notational
brevity, we further write C0 and C as C0={0, 1,— ,N—l} and C— {ΛΓ--/+
1, * ,ΛΓ} for some /, 1^/^ΛΓ, and assume that β(C) = Σiec^y an(i f^(^)==

Σyec A*y are normalized as e(C)=μ(C)=l.
We study the asymptotic behavior as λ -> 0 of ΛΓ(λ /?!) only. A similar

argument applies to AΓ(λ; jGΓ2). Define

Recall that % vanishes on {#eJR3*; |#|<L/2} and%=l forΛ?=|,x: |ω, |
with ωeΩ0. Hence, if we take L large enough, then it follows from (A)p that
UD is C°° -smooth and
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(7.1) \d*UD\^Kβ(l+ |*|)— I* , * = min(p, 2) ,

for Kβ independent of L>1. Let r=(r\ -^r'-^eΛ3'-3 and R=(RlyR2,R3)
^R3 be defined by (3.1) and (3.2), respectively. We now write X= (x1, •••,
xP~ly r)^R3N~3 and denote by UD(R, X) the representation for UD(x) in terms of
the coordinates (R, X)^R3N. Then we have

(7.2) Γk(Λ, -X) I XH) - FΛ -A, iy = Σ~

for |
Let w = (y, #)eΛ2 and f = (07, f)e/22 be defined by (3.5) with *(C) =
)=l, so that JRi^^r— 07 and ^=3;— f. We write s^R1 for the variable

R3. Then, in the coordinate system (v), s, X), the multiplication operator by
UD(Rί X) acts as the pseudodifferential operator AD=aζ(zo, Dw) s, X) defined by
the Weyl formula

A0f= (2πΓ ^"-•^βpίίw+wOA ξ, *,

with the symbol

(7.3) aD(a, ξ, s, X) = UD(z—η, y~ζ, s, X) ,

where the intrgration with no domain attached is taken over the whole space.
We further introduce the coordinates θ=(z, X)^R3N~2 and decompose

L2(R3N) as

L2(R3N) = L\R})®L2(Rl

s)®L\RlN'2} .

Then the operator Hl defined by (6.4) is represented as

H, = I®I®hD-I®(l/2)(d/ds)2®I+AD

or

H, = hD-(l2)(Q/ds)2+AD

in the simplified form, where hD is defined by (5.1). Recall that hD has the

ground state energy Σ(ίf). We now assume that Σ(.ff) is a simple eigenvalue
(multiplicity m(D)=l). This assumption is not essential. At the end of this
section, we make a brief comment on modifications to be made in the case that
2(#) is w-fold degenerate, m=m(D)>\.

Now, let ΦQ(Θ)=ΦO(Z, X) be the normalized ground state of hD associated
with Ί,(H). We define the projection P: L2(R3N)-*L2(R3N) by

(Pf)(y, s, θ) = (f(y, s, •), Φo( )W-2)Φo(0)

and Q by Q=I—P. Let
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Eϊ = P(-(\β)(QIQsf+AD±?>-*Al)P

for δ>0 small enough, δ being fixed. Then we have

(7.4) Eϊ+F-B+2(H)^H^EΪ+Fϊ+2(H)

in the form sense, where

n = Q(hD-(ll2)(dldsγ+AD±S)Q .

This follows from the operator inequality

PADQ+QADP^SQ+8~1PA2

DP .

Since UD(x) = O(L~*) by (7.1), AD is a bounded operator with bound O(L~*)y

when considered as an operator from L2(R3N) into itself. Hence, if we take δ

small enough and L large enough, then F* has no eigenvalues below the bottom
Let ΛΓ(λ; £"#), λ>0, be the number of eigenvalues less than — λ of

By (7.4), we have that 7V(λ; E$)^N(\; HJ^Nfa £5).
We proceed to analyze the operator E^. If we write Pf=g(y, s)φQ(θ) with

> )>Φo( ))>then

(7.5) (PADPf)(y9 *, θ) = (BDg)(y, s)φQ(θ) ,

where

(7.6) BDg = (2* J-1 j j ^- )̂* Mίy +y ')/2, * *)g(y',

with the symbol bD(y, η, s) defined by

bD =

DEFINITION 7.1. We denote by Sd, d^R1, the class of all smooth symbols
a(y, η, s) such that

for ^Aιw independent of s.
We define the operator aw(y, Dyy s) with symbol a(y, η, s) by the Weyl

formula (7.6) and denote by OPSd the class of such operators with symbols in Sd.

Lemma 7.2. Let BD = b%(y, Dyy s) be defined by (7.6). Then BD is of
class OP*S~P, p being as in (A)p, and

(7.7) bD(y, r,, s) = UD(z-η, y-ξ, s, X) \ π.ς.x^ (mod S^-1) .

Proof. The proof is done by use of the standard asymptotic expansion
method for oscillatory integrals, so we giev only a sketch for the proof.
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We first note that the ground state φQ(zy X) is smooth in z but is not neces-

sarily smooth in Xy although any serious difficulty does not come from this

fact. We write

bD=^c(yyzyrίysyX)φQ(θ)dθy

where

c = (2π)~l (( e~iu^aD(yy z+uj2y ηy ζy sy X)φQ(z+uy X)dudξ .

The symbol c is asymptotically expanded as

c = Σ7-01 vfl'ξQί[<*D(y, %> v> f, *, -ϊ)Φo(*f -X)] I ̂ o+^

with some constant jjy 0^j^N—l9 (γ0=l). By partial integration, it follows

from (7.1) that the remainder term cN=cN(yy z, ηy sy X) satisfies

\cκ\^K,, (l+u>+ζ*)-»dτN(u, y, z, ,, ζ, s, X)dudζdr ,

where

By Propositions 4.1 and 4.2, we have (1+ |*| + | X \ )κ(d/dz)MφQεΞL2(R3

θ

N-2) for
any nonnegative integers K and M, and hence

We again use Propositions 4.1 and 4.2. Then the Taylor expansion formula
yields

bD = aD(yy z, v, ζ, s, X)\.-ς-z-1>+O((l+\y\ + \q\ + \s\)'P'1) -

The same argument as above applies to dk

yd%bD and we obtain that bD is of

class S~p. Relation (7.7) follows immediately from (7.3). Thus the proof is
complete. Q

The operator PA2

DP is also represented in the form (7.5)

(PA*DPf)(yy sy θ) = (CDg)(y, s)φ0(θ) .

It follows from Lemma 7.2 that CD is of class OPS~2P. In view of (7.2), we

have UD(—ηy yy sy X) \ x^= VD(yy ηys)ίor \y\ + \η\ + \s\ >L. We now define
the symbol eD^S~p to satisfy eD(y, ηy s)=VD(y, ηy s) for (y, ηy s) as above.
Then the operator E* takes the following form:

%(yy Dyy s)+el(yy Dyy s)
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with €±€=3'*, <r=min(2/), p+1), when it is considered as an operator acting on
L\R2ytS}^ Range P.

We conclude this section by making a brief comment on modifications in
the case that the ground state energy Σ(H) is m-fold degenerate. In this case,
Zip is considered as an operator acting on the space Σ0L2(/2^S), m summands,
and has the following matrix representation:

Eί = _(l/2)(8/8ί)»+*S(y, Dy, s)+el(y, D,, s) ,

where e± is a mxm matrix with components in S~*. The argument below
applies to such a system case without any essential changes.

8. Completion of proof

In this section we complete the proof of Theorem 5.1. The problem is
now reduced to the study on eigenvalue asymptotics for the pseudodifferential
operator E * and the proof is completed by deriving the asymptotic formula for
N(\\ Eί)asλ->0.

To do this, we consider the Hamiltonian TD (acting on L2(R3)) for one
particle system in the homogeneous magnetic field jB=(0, 0, 1);

TD = (l/2)(-ί V+(B/2) X *)2+ VD(x) .

Under assumption (A)p, TD has essential spectrum beginning at 1/2; (re$s(TD)=
[1/2, oo), and an infinite number of eigenvalues below the bottom Σ(TD) (=1/2).
Let N(\ y TD), λ>0, be the number of eigenvalues less than 1/2— λ of TD.
Then, in the first paper [9], wτe have proved that ΛΓ(λ; TD) obeys the asymptotic
formula

; TD) = JV0(λ; VD)(l+o(l)) , λ - 0 ,

where the leading term JV0(^; VD) is defined by (5.2), 0<p<2, and (5.3), p>2,
with e(C)= μ(C)=l. In [9], we have also shown implicitly that

; TD) = I
λ o

and hence it follows that

ΛΓ(λ; HΊ) = ΛΓ0(λ; VD)(l+o(ί)) , λ -» 0 .

By a similar argument, we obtain

ΛΓ(λ; H2) = ΛΓ0(λ; VD)(l+o(l)) , λ - 0 .

This proves the theorem in the case that e(C)=μ(C)=l and the ground state
energy Σ(ίί) of hD is simple. The arguments can be easily extended to the case
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without normalization or to the case that Σ(H) is degenerate. Thus the proof
of the main theorem is now complete. Π

9. Examples

We mention two simple examples to which the main theorem (Theorem
5.1) can be applied.

EXAMPLE 9.1. Consider two particles of charge £, ΦO, I<*j<ί2, interacting
with each other through static potentials and subjected to external electrostatic
and (homogeneous) magnetic fields. The energy Hamiltonian for such a sys-
tem is of the form

H = Sj-i {(l/2μj)Tϊ+VQj(x*)} + V12(x?-x>) ,

where Tj = -Vίj+(ejβ)Bxxi, l^/^2. Assume F<v, 0^i</^2, to satisfy
the assumption (F). If V0j(x), x^R3, behaves like V0j~—7j\x\~p

9 p>0, with
γy>0, as \x\-^> oo, then the Hamiltonian (ll2μj)Tj+VQί for one particle system
has a ground state energy at the bottom in its spectrum. Hence it is easily seen
that the basic assumption (Σ) is satisfied. If F12^0, then the bottom Σ(ίϊ) is
determined by the single cluster decomposition DΛ— {C?, C*} with C*={a},
l^a^2. If F12^0 and the single cluster decomposition D0 = {{0}, {1, 2}}
determines the bottom Σ(JΪ), then we have to assume that ΣLi βyφO. In any
case, the main theorem can be applied to this Hamiltonian, if the intercluster
potential VΛ for DΛJ 0^α^2, satisfies the assumption (A)p, pΦ2.

EXAMPLE 9.2. Consider a nucleus fixed at the origin with positive charge
Ne and N moving particles with negative charge — e subject to Coulomb poten-
tials. The corresponding energy Hamiltonian H takes the form

where T~-iVj-(e/2)Bxx>\ VQfat)=—N#l\*?\ and V,fat-x?)
Since F^ ̂ O, l^i<j^Ny a simple inductive argument on N proves that the
bottom 2)(H) of essential spectrum is determined only by Λf single cluster de-
compositions DΛ = {C%, C06} with C* = {a}, l^a^N, and hence the basic
assumption (Σ) is satisfied. The other assumptions (F), (E) and (A)p, pΦ2,
are easy to check. Thus the main theorem can be applied to this example.
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