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Introduction

The present paper is a continuation to [9] in which we have studied the
asymptotic distribution of eigenvalues (bound state energies) below the bottom
of essential spectrum for Schrodinger operators of one particle systems in
homogeneous magnetic fields. In this paper we consider a similar problem for
Schrodinger operators of many particle systems.

We work in the 3N dimensional space R with generic point x=(x?, «+-, x¥),
a'=(x{, x4, x)R®. Consider N particles of mass p; and charge ¢;, 1<j <N,
interacting with each other through static potentials V,;(x' —xf), 1Si<j<N,
and subjected to external potentials V;(x’), 1<j=<N, and to a homogeneous
magnetic field B=(0, 0, 4), b==0. Under a suitable normalization of units, the
energy Hamiltonian H for such a system takes the following form:

(0.1) H = 2?’-1{(1/2151')7‘5“‘ Voj(xj)} +si<isn V.'j(xj—x") s
where T, is defined by
(0.2) T; = —iV;+A;x'), A;=(¢;[2)Bxx’,

V; being the gradient with respect to &’. Let o,,(H) be an essential spectrum
and let 3(H)=inf o,(H) be the bottom of essential spectrum. We denote
by N(A), A>0, the number of eigenvalues not exceeding 3(H)—A of H with
repetition according to multiplicities. The aim of this paper is to study the
asymptotic behavoir as A— 0 of N(\) when the Hamiltonian H has an infinite
number of eigenvalues below the bottom 3(H). Such a problem has been
already studied by [5] and [8] in the case B=0. The method used here is in
principle the same as that in these works, but the obtained result is quite
different from that in the case B=0.

The paper consists of nine sections. We formulate the main theorem in
section 5. The precise formulation requires several notations and assumptions.
The first four sections have the character of preliminaries. In section 1 we
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disucss the self-adjointness problem for H formally defined by (0.1) and in
section 2 we formulate the HVVZ (Hunziker-Van Winter-Zhislin) theorem on the
location of the bottom 3(H). For a cluster decomposition D={C,, C,, -+, Cy}
of {0, 1, 2, ---, N} with 0C,, we denote by |D| the number of clusters in D
and for a nonempty cluster C, we difine the Hamiltonian %(C) as

(03) HC) = Shieovo(120) T S, sec Vigla/—)

with #°=(0, 0, 0)=R?, where k(C) is considered as an operator acting on L*(R¥),
I being the number of elements in C\{0}. If C={0}, then A(C) is defined as
zero and is considered as an operator acting on the scalar field C. Let o(k(C))
denote the spectrum of 4(C) and let A(A(C)) be defined by A(%(C))=inf o(k(C)).
Then the HVZ theorem gives

2(11) = mln {2§=0 A(h(CJ))’ D= {CO’ °% Ck}) IDl 22} .

We make the basic assumption that the bottom 3(H) is determined only by
single cluster (2—cluster) decompositions D={C,, C}. Throughout the discus-
sion, we use the terminology ‘‘single cluster decomposition” in the sense of
decomposition into two clusterrs. Under this assumption, we will see intuitively
that the asymptotics as A—0 of N(\) is determined by the interaction betwen
sufficiently distant clusters Cy and C. This is the main idea used in the works
[5] and [8] in the case B=0. Indeed, such an asymptotics with B=0 has
been shown to coincide with the asymptotics as A—0 of Np(A) (=number of
eigenvalues less than —2\) of the two particle Hamiltonian —(1/2u(C))A+ Vp(x),
xE R?, acting on L*(R®), where u(C)=23e¢ p; is the total mass of cluster C and
Vp(x)=2>] V;;(x) is the intercluster potential between C, and C, the sum being
taken over pairs (7, j) such that 7 and j are in different clusters. In the case
B=0, such a reduced Hamiltonian takes a different form. Roughly speaking,
this is represented as a pseudodifferential operator of the form

(0.4) —(1/2p(C))(8/0x5)*+ V' 5(y, D,, xy)

acting on LAR?), (v, x)ER?, where V%(y, D,, x;) is defined by the Weyl
formula. To see this, we make, in section 3, a separation of the center of mass
for the Hamiltonian A(C), 0 C, with translation invariant interactions under
the assumption that the total charge e(C)=23];¢c ¢; of cluster C is not zero. In
section 4 we prove the rapidly decaying property of ground state for such a
Hamiltonian obtained by removing the center of mass.

After these preparations in sections 1~4, we formulate the main theorem
in section 5 and prove it in sections 6~8. As stated above, the proof is done
by reducing the problem under consideration to that of eigenvalue asymptotics
for pseudodifferential operators of the form (0.4) and by applying to such oper-
ators the result obtained in [9] for one particle systems. In section 9 we mention
some simple examples to which the main theorem can be applied.
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We conclude the introduction by making some comments on the notations
accepted in this paper. (1) For a self-adjoint operator A4, -we denote by o(A4)
and o,,(4) the spectrum and essential spectium of 4, respectively. We also
define A(4) and Z(4) by A(4)=inf ¢(4) and 3(4)=info,(4). (2) For a
cluster decomposition D, we write ¢Dj if ¢ and j are in the same cluster. If
they are in different clusters, we write ~i4Dj. We also use the notation
3o (resp. 31.;p;) to denote the sum over pairs (7, §), ¢<<j, with property :Dj
(resp. ~2Dj). (3) We work in the various L* spaces LY R"), 1=n=<3N. The
scalar product and norm in L*R") are specified by writing them as (, )¢, and
I|*1lcsy respectively. If there is no fear of confusion, then we use, for notational
convenience, the same notaions (, ) and [|+|| to denote the scalar product and
norm in these spaces.

1. Self-adjoint realization

In this section we discuss the self-adjointness problem for the Hamiltonian
H formally defined by (0.1). This problem has been already studied by many
authors (see [7] and references there). The result here does not contain any
new ones.

For brevity, we fix B as B=(0, 0, 1) throughout the entire discussion, and
we write Vo (x')="V,;(x'—°) with x°=(0, 0, 0). Then the energy Hamiltonian
H under consideration is written as

(1.1) H= Y, (12p;)Ti4+Dosicjsn Vij(x —x'),

where T'; is defined by (0.2) with B=(0, 0, 1). We now make the following
assumption on V;;(x), xER3.

Assumption (V). V() is a real function belonging to the class L¥*(R?)+
L=(R%) and V,j(x)—0 as |x|—>oco.

Assume V(x) to belong to L¥%((R®). Then, for any §>0 small enough,
there exists K such that

(1.2) (IV ¢, $)=8 ZjlID; I+ K,llpll", D; = —id/ox;,

for = C5(R?). The next simple but useful lemma can be found in the book
[7], p- 213, although the essential idea of proof is due to [4].

Lemma 1.1. Assume (1.2). Let b,e L (R%), 1=j <3, be a real function.
Then

IV 1, $)=8 Z-ll(D;+b)) "+ Kl Il

for p= C7(R?) with the same K; as in (1.2).
The above lemma will be used for another purpose in section 4. As an
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immediate conseqence of Lemma 1.1, it follows that the multiplication V=
Shsi<jsn Vijis relatively form bounded with respect to the unperturbed Hamil-
tonian Hy=33Y_,(1/2p,;)T% with bound less than one. Thus we obtain the
following

Theorem 1.2. Assume (V). Let H be defined by (1.1) with the form domain
C3(R*N). Then H admits a unique self-adjoint realization in L*(R*V) (denoted by
the same notation H) with the domain

DH) = {ucL}(R¥): |V,;|"u, T;u, Hue [A(R*)},
where T'; and H act on u in the distribution sense.

2. The HVZ theorem

In this section we formulate the HVZ theorem on the location of the bottom
S(H) of essential spectrum o,,(H). This theorem has been already proved
by many authors in the case B=0 and similar arguments will apply to the case
B=0. For completeness and for later reference, we here sketch a proof by
making use of the geometric spectral method due to Agmon [1].

Theorem 2.1 (HVZ theorem). Let the notations be as in the introduction.
Assume (V). Then

S(H) = min {33}, A(k(C;)); D = {Cy, -+, Ci}, |D| =2}

Before proving the theorem, we introduce several notations and definitions.
We follow the notations in [1]. Let S '={oc=R*¥; |w|=1}. For 0S¥,
0<€«1 and L>1, we define

TSl = {x&R¥; {x, w)>>|x|cos &, |x|>L},

(w3 H) = {inf (H, d)em; lI9ll = 1, 9= CT (T4},
K(w; H) = lim }:im 35(w; H),
240 Lpoo

where { , > denotes the scalar product in R,

Lemma 2.2. Let the notatins be as above. Then:
(i) Kl(w; H) is a lower semi-continuous function of o.
(i) =(H)=min {K(w; H); 0S¥},

The lemma is proved in exactly the same way as in the proof of Theorem
5.2, [1].

Lemma 2.3. Let V(x)=X<icjen Vij(®'—&') with x=(x, -+, xN)ER¥.
If V(x)=V(x+7w,) for some w,&S* ! and all TR, then K(w,; H)=3(H)=
A(H).
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Proof. Define Z=(2', :-+, 2")ER® with 2/=(e;/2)Bx ' € R®, B=(0, 0, 1),
and set

br(x) = P(x+Te) exp (—ir<wy, Z7)

for p=CF(R®™). Then (He,, ¢,)=(H¢, ¢). This relation enables us to prove
the lemma in the same way as in the proof of Lemma 6.1, [1]. O

Let II;;: R — R%, 0<i<j <N, be difined by II;jx=x’—x' for x=(a?, -+,
xV)eR®¥. For given 0 =S !, we difine

H, = 35 (120) T+ Zmjjum0 Vij »
where the sum of V; is taken over pairs (7, j) with property II;; 0=0.
Lemma 2.4. Let H, be as above. Then
K(w; H) = K(; H) = 3(H,) = A(H).

This lemma is also proved in the same way as in the proof of Theorem 6.3,
[1], by making use of Lemma 2.3.
We now proceed to prove Theorem 2.1.

Proof of Theorem 2.1. For given cluster decomposition D, we define the
subset Q, of S3¥~! by

2.1) Qp = {0ESW Y 1,0 = 0 if iDj, II;; 00 if ~iDj},

Qp being defined as empty if |[D|=1. Conversely, for given o &S}, we can
construct a cluster decomposition D uniquely so that w€Q,. If w, and w, are
in the same Q), then it follows from Lemma 2.4 that K(w,; H)= K(w,; H).
Thus, for D={C,, -+, C;}, we can define «(D; H) as

#(D; H) = K(w; H) = A(H), ey,

and also this is written as #(D; H)=3%_, A(ﬁ(C,-)). Hence the theorem follows
from Lemmas 2.2 and 2.4. O

Let 3,(H)=min{«(D; H); |D|=k}, 2<k<N-+1. Since K(w; H) is
lower semi-continuous by Lemma 2.2, it follows that 3,(H) is non-decreasing in
k and hence we have Z(H)=3,(H). Let

(2.2) S, = {D; #(D; H) = S(H)} .

We now make the following basic, assumption.
AssuMPTION (Z). If D3, then |D|=2.

Proposition 2.5. Assume (V)and (Z). Let D={C,, C} €3, 0C,. Then
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the Hamiltonian h(C,) has an eigenvalue of finite multiplicities (ground state energy)
at the bottom in its spectrum. In other words, A(h(C,)) is the ground state energy

of h(Cy).

Proof. The proposition is an immediate consequence of the HVZ theorem.
In fact, if A(A(Cy))==(R(Cy)), then we have = (H)=3Z,;(H) by applying the
HVZ theorem to (Cy). This contradicts the assumption (). O

In section 3, we will prove that A(A(C)), 0&C, is also determined as the
ground state energy of the Hamiltonian obtained by removing the center of mass
{rom A(C).

3. Separation of center of mass

In this section we make a separation of the center of mass (c.m.) for the
Hamiltonian (C), 0¢: C, with translation invariant interactions. For notational
brevity, we fix C as C={N—I+1, .-, N} for some [, 1<I<N. We assume
that ¢(C)=23,ec ¢;%0. If ¢(C)=0, then a different analysis is required and we
do not deal with this case here.

We follow the method in [2] to represent 4(C) in terms of the new coordi-
nates introduced below. Let »'=(r{, 7}, r{)e R% 1<j=<1—1, be the Jacobi
coordiantes defined by

(3.1 = NN () 1) Dy o T
and let R=(R,, R,, R;)= R? be defined by
R, = —(1/e(C)) k- ey-pud =",

(3.2) R, = (1/e(C)) Zhoy ey—rsa? "+
Ry = (1u(C)) Zhey py-raxd ™1,

where u(C)=33;ec pj- It is easy to make a separation of the c.m. motion in
the direction parallel to B.

Lemma 3.1. Decompose L*(R¥) as L¥(R¥)=LYR¥")QLXR"). Then
there exists an operator h,(C) acting on LA(R¥"") for which

h(C) = —1Q(1/2u(C))(8/0Rs)*+h (C)R1,
I being the identity operator.

We further analyze the operator A,(C). Let p=(pV~'*} ..., p¥), ¢=
(¢4 +++, ¢"Y) and O=(0Q,, O,, O,) be the coordinates dual to x=(x¥""*1, ... xV),
r=(r', -+, r'"1) and R=(R,, R,, R;), respectively. Then a simple calculation
shows that:
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x{ = Ry+ai(rl, -+, v,
(3 3) xé - —Rl"l_a%(r%’ H} ré_l) ’
' Pi = (e;/e(C))Q4-bi(gl, -+, ¢i™) s

ph= —(e;le(C)Q,+bi(gs, -+, ¢t7")
for j, N—I4+1<j<N, when af and bj, I<k<2, are represented as linear func-
tions of (r, --+, 7t™*) and (gi, +*+, g ™"), respectively. For later reference, we here
note that the /X [—1 matrix B,, 1<k=<2: (gi, *-+, gi"")— (bf ~'*Y, -+-, bY) has the

property
34 rank B, = [—1.
We now introduce the new coordinates as follows:
y = 1e(C)|7?Q1+(1/2)|(C) [* R,
1= 16(C)| 7" Q,—(1/2)|e(C) |'*R,

2= [e(C)| " Q0,4(1/2))e(C) | R,
= 1€(C)]720,—(1/2)|(C) "R, .

(3.5)

As is easily seen, the transformation above is symplectic;
dQ,AdR,+dQ,\dR, = dyAdy+dt Ndz .
Assume that ¢(C)>0. Then we have by (3.3) that

(3.6) pi—(e;2)xi = [e(C)| " e;34bi—(e;[2)ai ,

' pit(eif2)xf = — |e(C) | 77 e;5+bi+(e;/2)ai
for j, N—I+1<j=<N, aj and b} being as in (3.3). If ¢(C)<0, then we obtain
the same relations as above with 2 and ¢ replaced by —» and —y, respectively.
Thus we have the following lemma.

Lemma 3.2. Decompose L*(R¥") as LA(R¥* ")=LXR¥*)QL*R'). Then
there exists an operator h,(C) acting on LY(R*~?) for which h,(C)=h,(C)QI.

We shall call #,(C) a Hamiltonian with c.m. removed. The HVZ throrem
for h,(C) is formulated as follows (Theorem 6.1, [2]).

Theorem 3.3. Assume (V). Let o be a partition of C into disjoint nonempty
clusters C$ and C4. Then

=(h,(C)) = min {3%., A(C?)); o} .

We will be able to prove the theorem above by making use of the geome-
tric spectral method as in the proof of Theorem 2.1, but we do not go into
details here.
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Let =, be defined by (2.2). In addition to (V) and (3), we make the
following assumption.

AssumPTION (E). e(C)=3X;ec ;%0 for D={C,, C} €3,

Proposition 3.4. Assume (V), () and (E). Let D={C,, C} €3, and let
h,(C) be the Hamiltonian obtained by removing the center of mass from h(C). Then
h(C) has a ground state energy at the bottom in its spectrum.

Proof. The proposition follows immediately from Theorem 3.3 by use
of the same argument as in the proof of Proposition 2.5. O

4. Decaying property of ground states

Let D={C,, C} €3, In the previous section we have shown that the
Hamiltonian 4,(C) has a ground state energy at the bottom in its spectrum. In
this section we will prove that the eigenfunction (ground state) associated with
the ground state energy has the rapidly decaying property.

As in section 3, we fix C as C={N—I+1, -+, N}, 1<I<N. For brevity,
we assume that ¢(C)>0. Then the Hamiltonian %,(C) with c.m. removed is
represented in terms of the coordinates (7, 2)R¥~?, 2 being defined in (3.5).

Proposition 4.1. Let the notations be as above. Then the ground state u=
u(r, 2)€ LA(R¥?) of h,(C) has the following property; (1+ |r| + |2|)%(0/02)uec
L¥R¥~?) for any nonnegative integers K and M.

ReEMARK. In the case B=0, it has been proved by many authors (see [1]
and references there) that eigenfunctions associated with eigenvalues below the
bottom of essential spectrum have the (pointwise) exponentially decaying pro-
perty. It may be possible to prove such a sharp result in the case B==0 also.
Howevr, only a weak bound as in the proposition is sufficient to the later appli-
cation.

Before proving the above proposition, we mention several properties of
h,(C). Let hy,(C) be the Hamiltonian obtained by removing the center of mass
mass from Ay(C) with no interactions; V;;=0 for 7,j&€C. Then Ah(C)=
ho(C)+>3,jec Vij- By (3.6), Hamiltonian £,,(C) takes the form

hOI(C) = Egiil Sj(r’ z) Dn Dz)2 ’
where Sj7, 2, ¢, {) is represented as a linear function of (r, 2, ¢,¢). We see
from (3.4) that gf, 1<k<3, is written as

31-1

q,‘: — Ml aim Sm(r: z) q) g)—l—ci(r)

with some linear function cj(r) of r. This, together with Lemma 1.1, implies
that
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(1) 1Vl $)<8 ST IS, SIP+KGlIGIE,  0<8<1,
for ¢ = CF(R¥"?) and hence the domain 9(%,(C)) is given by
D(h,(C)) = {ucs LA(R¥"2); |V;;|u, S;u, h(Cuc L R¥?)} .
Furthermore, it follows from (4.1) that for ¢ =€ D(h,(C))
#2) SIS $IP+ S sec (1 Vil b H)SK((C), $)+EASIE -
We can also show by use of (3.4) and (3.6) that
255 850, 2, ¢, £)'2v(lq1*+2°+87),  ¥>0.

This implies that multiplications by bounded functions with compact support
are relatively compact with respect to 4,(C) and hence it follows from the
Persson theorem ([6]) that

(4.3) = (h(C)) = lim inf (2,(C), P)w-» »

where the infimum is taken over ¢ =9D(h,(C)), ||pll=1, vanishing on B,, B,
being the ball in R¥~? centered at the origin with radius L. Let Ac=A(%,(C))
and let y,=3(h,(C))—n>0. Then it follows from (4.3) that there exists
L>>1 such that

(44) (B(C)—Nc)$s D)2 (Vc/2) (> $)

for € D(h,/(C)) vanishing on B;.
We now proceed to prove Proposition 4.1.

Proof of Proposition 4.1. Define p(7), 0=€K1, by
pe(T) = (14+7A)VH(14-67%) 72, TER!.

We write Y=(r, 2)€R¥"? and denote by [ , ] the commutator notation.

We shall show that py(| Y |)usD(h,(C)). Since the L? norm of [A,(C),
pe(1 Y )] is bounded uniformly in £>0, we have by (4.4) that p,(| Y |)usL?
(=L R¥"?) and also it follows from (4.2) that both S;p,(|Y |)u and
[Vi;1"2po(| Y |)u are in L?. This proves that py(| Y | us D(h,(C)). By repeated
use of the above arguments, we obtain that py(| Y |)fuc D(h,(C)) for any K =0
and hence the decaying property with M=0 follows at once. To prove this
property for the case M =1, we first note that the coefficients of %,(C) are
smooth in 2 and hence the L? norm of the term p(| Y | )X[A,(C), pe(D,)]u, K> 1,
is bounded uniformly in €>0. Thus the decaying property with M =1 is
proved by applying the same argument as above to pg(D,)u. O

Similarly we can prove that the ground state of #(C)) has the rapidly decaying
property.
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Proposition 4.2. Let 1 =1 be the number of elements in C\{0}. Assume
that the Hamiltonian h(C,) has a ground state energy at the bottom in its spectrum.
Then the ground state u=u(x), x€R¥, of h(C,) has the property (14 |x|)fue
LX(R¥) for any integer K =0.

5. Formulation of main theorem

In tihs section we formulate the main theorem. To do this, we furhter
have to assume a condition which guarantees that H has an infinite number of
eigenvalues below the bottom 3(H) of essential spectrum o, (H). Let D=
{Cy, C} €3, =, being defined by (2.2). In addition to (V), () and (E), we
make the following assumptions on V;(x), x&R?3, with ~zDj and the inter-
cluster potential Vy(x)=31_;p; V;;(%).

ASSUMPTION (A),. (A.0) V,;=V?+V{¥eL¥(R*)+L"(R?.
(A.1) V% is of compact support.
(A.2) V¢ is C=-smooth and there exists p>0 such that

[0z VY| <K (14| x])~*"™

for all multi-indices «.
(A.3) For |x|>Ly>1, Vy(x)<<O0 and

K(1+]x0)"S | Vo) | <K+ 2])?,  K=1,
for the same as p above.

In the above assumption, we have assumed that the same p is chosen for
all D3, In general, such a choice depends on DEZX,. The result below
can be easily extended to this general case.

We introduce the notations. For D={C,, C} €3, we define the Hamil-
tonian /%, acting on L*(R*~%) by

(5.1) hy = h(C)RI+IQHCY) .

By Propositions 2.5 and 3.4, 4, has the eigenvalue = (H)=A(%,(C))+AR(Cy))
as a ground state energy. We denote by m(D) its multiplicity.

Theorem 5.1. Assume (V), (=), (E) and (A4), with p%2. Let N(\), A>0,
be the number of eigenvalues less than Z(H)—\ of H (counting multiplicities).
Then N(\) obeys the following asymptotic formula as »— 0:

N = {Zpez, M(D)Ny(; Vo) (1+0(1)) ,

the sum being over D={C,, C} €3, where the leading term Ny(\: V) is defined
as follows: If 0<p<2, then
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(52)  Ny(n; Vi) = (2m)7*|¢(C) | vol [{(p, x) ER' X R®; kp(p, x)<—2}]
with

ko(p, %) = (1/2u(C))p*+Vo(x)
and if p>2, then
(53)  Ni(A; V) = (22)1e(C) |vol [{wE R?; Wi(w) < —(2u(C)N)¥3}]
with

Wy (w) = glvp(w, x)de, — x= (w, x)ER’.

ReEMARks. (i) In the case B=0, Simon [8] has considered the special case
in which 3, consists of only one single cluster decomposition and Ivrii [5] has
considered the general case in which 3, is not necessarily assumed to consist of
only one sigle cluster decomposition. In [5], the asymptotic formulas with
sharp remainder estimates have been also obtained, although the detailed proof
has not been given. (ii) As is easily seen, N(A) behaves like O(AY2~¥7), 0<<
p <2, and like OA™Y¢D), p>2, as A—0. In particular, N(A)—>o0 as A—0
even in the case p>2. This is one of main differences between the cases B=0
and B==0.

6. Partition of unity and variational principle

As the first step toward the proof of Theorem 5.1, we start by a simple
localization formula, which has been effectively used in proving the Mourre
estimate for N-body Schrodinger operators ([3]).

Lemma 6.1. Let H be defined by (1.1) with B—(0, 0, 1). Let W= {yr.},
V=0, 1Sa=<k, be a smooth partition of unity normalized by k_, Ji=1,
Y, EC(R). Then

H =34 vHYa—J(x; ¥),
where
(6.1) J(x; ®) = 330 (125) Za-1 |V dal®
V; being teh gradient with respect to x' € R®.
Proof. The proof is an easy calculation.

Now, assume that 3, consists of m single cluster decompositions
D,={C3%, C*}, 1=a=<m, with 0C5. Let Q, be defined by (2.1) with D=D,,.
We take a normalized partition of unity, Wo= {yr, V", Yn}, 1=<a=<m, with the
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following properties: (i) s, has support in {x&R; |x| <L} and «r,=1 for
|#| <L/2. (ii) 4" has support in a small conical neighborhood of

(2.6) TL = {x = |x|0€RY; |x| >L[2, 0=Q.} .

(iii) », vanishes in a small conical neighborhood of I'*=U,cu<n I's. We
further take X*€C~(R%¥), 1<a=<m, to satisfy X**=+". We may assume
that the support of X” is contained in a small conical neighborhood of T'; and
dose not intersect with each other.

Let Jy(x)=J(x; ¥,) be defined by (6.1) with ¥=w,. By definition, Jy(x)
vanishes on U ,<o<n I'25 U {x; |x| <L/2}. We may assume that

(6.3) |02 (%) | = Kg(14|2])7*71#!

for Kg independent of L» 1.
We now define the Hamiltonian HY, 1<a=<m, by

(6.4‘) HT == Hw—*“z.,,'paj Xu V,-,-X“—X‘]oxd Py
where
H® = 29’-1 (l/zﬂj)T§+2iD¢i Vij .

We denote by N(A; HY), A>0, the number of eigenvalues less than S(H)—x of
H¢$¢. We assert that

(6.5) lim sup N(\)/335- N(v; HY) =1,

if N(vy HY)—>o0 as A —0.

Let Wy={yr,, ¥, Y} be as above and let A;=supp;, 0=<j=<1. To prove
(6.5), we evaluate the maximal dimension N;(A), 0=<j=1, of subspaces in
C%(A;) such that

(He, $)—(Jod, $)<(ZH)—N)( ¢),  $ECT(A,).

Since 4, is of compact support, we can easily obtain N,(A\)<K, for K,
independent of . INy(\) is also easy to evaluate. Recall the notation K(w; H)
in section 2. If wis not in Q= U <,<n Qu, then K(w; H)>3(H) strictly. By
property (iii), 4, vanishes in a conic neighborhood of T'* and hence N,(A)=0 for
L>1. Thus, by the min-max principle, (6.5) follows from Lemma 6.1.

Next we shall evaulate the lower bound for N(\) as A—0. Let r, 4* and
X*, 1<a=<m, be as above and let A®=supp *. We denote by N*(\) the
maximal dimension of subspaces in C5(A*) such that

(H¢: ¢)<(2(H)_7\')(¢: d’)’ ¢EC3°(A¢) .
Then we have N(A) =37 N¥(A). We now take a normalized partition of
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unity ¥*={yr,, ¥*, t,} and define J (¥)=J(x; ¥*) by (6.1) with T=¥*. ],
has a property similar to J,. Let
(6.6) Hf = H* 430 ipai X Vis X"+ ] -

We denote by N(A; H%), A>0, the number of eigenvalues less than Z(H)—2x of
H$, H3 being considered as an operator acting on L R*). We claim that

(6.7) lir}r\}> inf N*(\)/N(n; H) 21,

if N(A; H3)—>o0 as A—0. If this is proved, then

(6.8) lim inf N(A)/3e- N(n; H)=1.
Set

Hf =H"+3 ;5 X" Vi X" .
To prove (6.7), we apply Lemma 6.1 with J»=+" to H§, so that
HE = Yo Higo+v" Hop" +EHGE

We first note that Y*Hy\*=+"H+s". The multiplication operator by
D inai X*V;;jX® is relatively compact with respect to H” and hence K(w; H)
=K(w; H”) for all =8* -, TUnder assumption (), we can also show that
K(w; H*)23(H) and K(w; H*)=3(H) for 0€Q, only. Since ¢, vanishes in a
small conical neighborhood of T2, (6.7) is obtained by making use of the same
argument as used to prove (6.5).

7. Reduction to pseudodifferential operators

We keep the same notations as in section 6. The problem is now reduced
to the study on the asymptotic behavior as A—0 of N(A; HY) and N(»; H3).
We fix one of D,, 1<a=<m, and denote it by D={C,, C}. For this fixed «,
we also write X, H, and H, for X*, H{ and H$, respectively. For notational
brevity, we further write C, and C as C,={0, 1, -::, N—I} and C={N—I+
1, -, N} for some [, I=S/<N, and assume that ¢(C)=X;ec¢; and u(C)=
Sljec pj are normalized as e(C)=pu(C)=1.

We study the asymptotic behavior as A—0 of N(\; H,) only. A similar
argument applies to N(A; H,). Define

Up(x) = X(2){2-ip; Vij(# — ') — Jo(%)} X (x) .

Recall that X vanishes on {x&R%®; |x|<<L/2} and X=1 for x=|x|w, |x|>L,
with o€Q,. Hence, if we take L large enough, then it follows from (4), that
U, is C~-smooth and



132 H. Tamura

(7.1) |08 Up | SKpg(1+4 |x])™ ¥, &= min(p, 2),

for K, independent of L»1. Let r=(r',---,r""’)&R¥"% and R=(R,, R,, R;)
ER? be defined by (3.1) and (3.2), respectively. We now write X= (&, ---,
xV-! r)e R* -3 and denote by Up(R, X) the representation for Up(x) in terms of
the coordinates (R, X)&R®®. Then we have

(7-2) UD(R, X) |X=o = VD(RZ: —Rl: R1) = 2~wi Vx‘j(Rz, —Rn Ra)

for |R|>L.

Let w=(y, 2)€R? and &=(y, {)ER? be defined by (3.5) with ¢(C)=
uw(C)=1, so that Rj=z—» and R,=y—f. We write s&R" for the variable
R;. Then, in the coordinate system (w, s, X), the multiplication operator by
Uy(R, X)) acts as the pseudodifferential operator A,=a%(w, D,, s, X) defined by
the Weyl formula

Aof = @) [[ e ap(@tw)2, &, 5, X)f @, 5, X)duo' d
with the symbol
(7.3) ap(w, &, s, X) = Up(z—n, y—¢, 5, X),

where the intrgration with no domain attached is taken over the whole space.
We further introduce the coordinates §=(z, X)&R® % and decompose
L}(R%) as
L{R™) = LX(R))QL(R:) QL (R;"™*) .
Then the operator H, defined by (6.4) is represented as
H, = IQIQh,—IQ®(1/2)(8/0s)’QI+A),
or
H, = hp—(12)(8/0s)*+A4)p
in the simplified form, where %, is defined by (5.1). Recall that %, has the
ground state energy 3(H). We now assume that 3(H) is a simple eigenvalue
(multiplicity m(D)=1). This assumption is not essential. At the end of this
section, we make a brief comment on modifications to be made in the case that
S(H) is m-fold degenerate, m=m(D)>1.
Now, let ¢o(@)=¢o(2, X) be the normalized ground state of %, associated
with 3(H). We define the projection P: L* R*)— L* R*) by
(B> 8, 0) = (F(35 85 +)s Bo(*)ean-2 $o(6)
and Q by O=I—P. Let
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E3 = P(—(1/2)(8/0s)*+Ap+-8"14%)P
for >0 small enough, & being fixed. Then we have
(74) E;+Fp+3(H)=H,<E}+F3+3(H)
in the form sense, where
F3 = Q(iy—(1/2)(0/05)+Ap£8)Q .
This follows from the operator inequality
PA,0+QA,P<8Q+8'PALP.

Since Upy(x)=O(L™™) by (7.1), Ap is a bounded operator with bound O(L™*),
when considered as an operator from L*R%) into itself. Hence, if we take §
small enough and L large enough, then F3 has no eigenvalues below the bottom
S(H). Let N(n; E$), A>0, be the number of eigenvalues less than —\ of
E3%. By (7.4), we have that N(A; E3)<N(\; H)<N(\; Ep).

We proceed to analyze the operator E3. If we write Pf=g(y, s)¢o(0) with
g=(f(y, S, +); ¢o+)), then

(7.5) (PApPf)(3, 5, 0) = (Bog) (3, $)$o(0) ,
where
(76)  Bog=(2m)" ([ e bo((y9)12, , ey, '

with the symbol b,(y, 7, s) defined by
by = @) [ e ar(y, (5402, m, 8, 5, X)oa', X)de(0)dz'dEdp .

DerINITION 7.1. We denote by S¢, d €R!, the class of all smooth symbols
a(y, u, §) such that

10507 a|l S Kpm(14- |y |+ 9|+ |s])é 7+

for Kj,, independent of s.
We define the operator a”(y, D,, s) with symbol a(y, 5, s) by the Weyl
formula (7.6) and denote by OPS? the class of such operators with symbols in S?.

Lemma 7.2. Let B,=0b}(y, D,, s) be defined by (7.6). Then By is of
class OPS™*, p being as in (A),, and

(77) bD(y) 7 S) = UD(z—'ﬂ’ y_C) S X) |z=§=x=0 (mOd S_p_l) .

Proof. The proof is done by use of the standard asymptotic expansion
method for oscillatory integrals, so we giev only a sketch for the proof.
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We first note that the ground state ¢,(z, X) is smooth in 2 but is not neces-
sarily smooth in X, although any serious difficulty does not come from this
fact. We write

b= { c(3, % 7, 5, X)B(6)d8,

where

¢ = (2x)™ SS e ap(y, 2-Luf2, 9, &, 5, X)do(z--u, X)dude .
The symbol ¢ is asymptotically expanded as

¢ = 35 7;0[0[an(y, 2 0, &5 5, X)o(2, X)]l ¢-oten

with some constant «y;, 0=<j< N—1, (y,=1). By partial integration, it follows
from (7.1) that the remainder term cy=cy(y, 2, 3, s, X) satisfies

lewl K | (| Qw897 a9, 50, &, 5, X)dudgar,
where
doy = (14| y—=L |+ In—2—7u/2| + |s| + | X |)7" 32j20](8/0=) po(2+7u, X)|.
By Propositions 4.1 and 4.2, we have (14 |2|+ | X |)%(8/02)™ ¢ LA RN ~?) for
any nonnegative integers K and M, and hence

[1en(, 2 7 5 X)@0)1d0 = O+ 1y1+1nl+15177).

We again use Propositions 4.1 and 4.2. Then the Taylor expansion formula
yields

bp = ap(y, 2, 0, £, $ X) limgmx=otO((1+ | 1+ 7]+ |s])"7) .

The same argument as above applies to 9%97b, and we obtain that b, is of
class S7*. Relation (7.7) follows immediately from (7.3). Thus the proof is
complete. O

The operator PA%P is also represented in the form (7.5);

(PALEf)(3, 5, 0) = (Cog)(3» $)$ol6) -

It follows from Lemma 7.2 that Cp, is of class OPS%. In view of (7.2), we
have Up(—2n, 3, $, X) | x=0=V5p(y, 9, $) for | y|+|5|+|s|>L. We now define
the symbol e,&€S7° to satisfy ey(y, n, $)=Vp(y, 3, 5) for (¥, 5, s) as above.
Then the operator EF takes the following form:

E% = —(1/2)(8/0s)"+¢§(, D,y s)+¢%(y, D,y s)



AsymproTiC DISTRIBUTION OF EIGENVALUES 135

with e. €877, o=min (2p, p+1), when it is considered as an operator acting on
L*(R3 ;)=Range P.
We conclude this section by making a brief comment on modifications in
the case that the ground state energy X(H) is m-fold degenerate. In this case,
5 is considered as an operator acting on the space ZPL* R’ ), m summands,
and has the following matrix representation:

E$ = —(1/2)(8/9s)*+¢€5(y, Dy, s)+ex(y, Dy, 5,

where e, is a mXm matrix with components in S~°. The argument below
applies to such a system case without any essential changes.

8. Completion of proof

In this section we complete the proof of Theorem 5.1. The problem is
now reduced to the study on eigenvalue asymptotics for the pseudodifferential
operator E3 and the proof is completed by deriving the asymptotic formula for
N(\; EF) as v—0.

To do this, we consider the Hamiltonian T, (acting on L?(R?) for one
particle system in the homogeneous magnetic field B=(0, 0, 1);

Tp = (1/2)(—iV-+(B[2) X x)*+ V() .

Under assumption (4),, T has essential spectrum beginning at 1/2; o,,(Tp)=
[1/2, o), and an infinite number of eigenvalues below the bottom =(7)) (=1/2).
Let N(\; Tp), A>0, be the number of eigenvalues less than 1/2—X\ of T,
Then, in the first paper [9], we have proved that N(A; T,) obeys the asymptotic
formula

Nv; Tp) = No(ns Vo)(140(1)),  aA—0,

where the leading term Ny(\; V) is defined by (5.2), 0<p<<2, and (5.3), p>2,
with ¢(C)=wu(C)=1. In [9], we have also shown implicitly that

lim N(v; E3)/N(v; Tp) = 1
and hence it follows that
NOv; H) = Nvs Vo)(14o(l),  A—0.
By a similar argument, we obtain
N(\; Hy) = Ny(n; Vp)(14-0(1)), A—0.

This proves the theorem in the case that ¢(C)=u(C)=1 and the ground state
energy %(H) of Ap is simple. The arguments can be easily extended to the case
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without normalization or to the case that 3(H) is degenerate. Thus the proof
of the main theorem is now complete. O

9. Examples

We mention two simple examples to which the main theorem (Theorem
5.1) can be applied.

ExampLE 9.1. Consider two particles of charge e¢;4=0, 1=<j =<2, interacting
with each other through static potentials and subjected to external electrostatic
and (homogeneous) magnetic fields. The energy Hamiltonian for such a sys-
tem is of the form

H= 2?-1 {(1/2,1,,-)T§—|— Vo;‘(xi)}‘l’Vu(xz_xl) ’

where T;=—Vi;+(¢;/2)BXx’, 1=j<2. Assume V;;, 0<i<<j=<2, to satisfy
the assumption (V). If V;(x), x€R? behaves like Vy,~—v;|x| ", p>0, with
v;>0, as |x]|—> oo, then the Hamiltonian (1/2p,;)T%+V,; for one particle system
has a ground state energy at the bottom in its spectrum. Hence it is easily seen
that the basic assumption () is satisfied. If V,=0, then the bottom 3(H) is
determined by the single cluster decomposition D,={C%, C®} with C*={«a},
1sa<2. If V,=<0 and the single cluster decomposition D,={{0}, {1, 2}}
determines the bottom Z(H), then we have to assume that 33;.; ¢;40. In any
case, the main theorem can be applied to this Hamiltonian, if the intercluster

potential ¥, for D,, 0=a =<2, satisfies the assumption (4),, p=2.

ExampLE 9.2. Consider a nucleus fixed at the origin with positive charge
Ne and N moving particles with negative charge —e subject to Coulomb poten-
tials. The corresponding energy Hamiltonian H takes the form

H=3X, {(1/2p,)} T34 Voj(xj)} +3isi<jsw Vij(xj—xi) ’

where T;=—1V;—(e[2)BX &%, V,j(x')=—Ne*/|x’| and V;(x' —a')=€*/| &' —a*|.
Since V;;=0, 1=i<j <N, a simple inductive argument on NN proves that the
bottom 3(H) of essential spectrum is determined only by N single cluster de-
compositions D, ={Cq, C*} with C*={a}, 1<a <N, and hence the basic
assumption (=) is satisfied. The other assumptions (V'), (E) and (4),, p*2,

are easy to check. Thus the main theorem can be applied to this example.
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