
Saisho, Y. and Tanaka, H.
Osaka J. Math.
23 (1986), 725-740

STOCHASTIC DIFFERENTIAL EQUATIONS FOR
MUTUALLY REFLECTING BROWNIAN BALLS

YASUMASA SAISHO AND HIROSHI TANAKA

(Received August 1, 1985)

Introduction

In this paper we construct a random motion of mutually reflecting hard
balls of diameter p in Rd by solving certain stochastic differential equation (ab-
breviated: SDE) with a kind of singular drift. For simplicity we first consider
the motion of mutually reflecting Brownian balls of diameter p. In order to
construct such a motion we pose the following problem. Let W denote the
space of continuous paths in Rd. Given wly •••, wn^W satisfying

(1) l»*(0)-

solve the equation

(2) £,(*) = »<(*)+ Σ3 Γ (£*(*)-£/*
y=κφo Jo

under the following conditions (3) and (4).

(3) ξ^Wy\^i^ny and |£,(f)_£,(f

(4) φi/s are continuous non-decreasing functions with φ, y(O)=O, Φij(t)=Φji{t)
and

where lp(r) = 1 if r = p, and = 0 if rΦp .

A pair (ξ> φ) of functions or simply a function ? is called a solution of
(2) provided that (2), (3) and (4) are satisfied. One of the main results in this
paper is that there exists a unique solution of (2) for given wίy •••, wn. By taking
wl7 •••, wn to be independent rf-dimensional Brownian motions satisfying (1), we
obtain a process (ξι(t)y •••, ?»(*))• This is what we call the motion of mutually
reflecting Brownian balls, ξ^t) denotes the center of the z-th Brownian ball at
time t. In analogy with Skorohod's equation for a 1-dimensional reflecting
Brownian motion ([3] [5] [7]), the equation (2) may be regarded as Skorohod's
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equation for the motion of mutually reflecting Brownian balls.
We next consider the SDE on a probability space (Ω, £F, P) :

(5) dX,(t) = <r(X, (0) dBM+biXM) dt

+j±FO(Xi(t)-X)(t)) dφtJ(t)t l^i^n,

where

σ:Rd-*Rd® R\ b: Rd -> Rd

are given, Xi(0)ys are £F0-measurable initial values satisfying \Xi(0)—Xj(0)\ ^p,
ί^i<j^n, and JB, (Z), l^i^n, are independent J-dimensional £Fradapted
Brownian motion with ΰ, (0)=0. Here {EFt}t^0 is a right continuous filtration
on (Ω, £F, P) such that each 3ίt contains all P-negligible sets. As in (2), Xέ(t)
and Φij(t) should be found under the following conditions (6) and (7).

(6) Xi(t)'s are £Fradapted continuous processes with | Xi(t)—Xj(t) | ^ p , l^i

(7) Φij(t)'s are ̂ -adapted continuous non-decreaεing processes with Φ, , (0)=

0, Φ, y(ί)=Φ / <(0 and

»•

The equation (5) may be considered as Skorohod's SDE for mutually reflecting
diffusion balls with coefficients σ and b. Another main result of this paper is
that there exists a unique solution of (5) provided that σ and b are bounded and

Lipschitz continuous.

Our method for solving (2) and (5) is to make use of the results of [6] con-
cerning Skorohod's equation for general domain. Skorohod's equation for a
multi-dimensional domain D with reflecting boundary (a precise formulation is
explained in 1) was discussed by Tanaka [8] when D is a convex domain and
then by Lions and Sznitman [4] when D is a general domain satisfying Condi-
tions (A) and (B) (see 1) together with the additional condition that D is admis-
sible, which means roughly that D can be approximated in some sense by smooth
domains. Recently, Frankowska [2] and Saisho [6] amplified Lions and
Sznitman's result by removing the additional condition. Now the present
discussion is based on the fact that Skorohod's equation (2) (or SDE (5)) is
equivalent to Skorohod's equation (or SDE) for the domain

/Q\ Γ) t(<v> . . . ΛΛ \ (ZZ T?n^ I v -v I ̂ > Λ 1 < ! < / i < ' 4 ί l
\θj LJ — IV. i» y Xft)^---^*' I ι * ι — ™j\ -"^r> ^ == ̂ ^ v == ̂ i

So the crucial point of our discussions is to prove that the domain D of (8)
satisfies Conditions (A) and (B). In solving Skorohod's SDE for D we make
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use of Theorem 5.1 of Saisho [6].
In 1 we state briefly the results of Lions and Sznitman [4] and Saisho [6]

concerning Skorohod's equation for a general domain. We prove that the
domain D of (8) satisfies Condition (B) in 2 and (A) in 3. We solve Skorohod's
equation (2) in 4 and SDE (5) in 5.

1. Some known results on Skorohod's equation for an iV-dimen-
sional domain with reflecting boundary

Let D be a domain in RN and define the set tJ2x of inward normal unit vectors

= u mXtr
r>0

Xff= {n<=ΞRN: \n\=l, B(x-rn9r)ΠD=φ}>

where B(z, r)={y^RN: \y—z\ < r } , z^RN. In general it can happen that
3Ίx=φ. In what follows < , •> denotes the usual inner product in RN. We
introduce two conditions on the domain D.

Condition (A) (uniform exterior sphere condition). There exists a constant
ro>O such that

Condition (B). There exist constants δ > 0 and /3(l^/3<oo) with the fol-
lowing property: for any jceθί) there exists a unit vector lx such that

for any π G U fΠw.
y€B(χ,δ)(\dD

REMARK 1.1. For any fixed r > 0 and a unit vector n the following two
statements are equivalent.

(i) B(x-rn9r)ΠD=φ.

(ii) ζy-χyn>+^-\y-x\2^0 for any yGfl.

REMARK 1.2. D satisfies Condition (B) if it satisfies the following condi-
tion.

Condition (Bf). There exist δ > 0 and a(0^a<ί) with the following pro-
perty: for any x^dD there exists a unit vector lx such that

C(y, lx, a) Π B(x, S) c f l , My EΞB(X9 S)ΓldD,

where C(y> lxi a) is the convex cone with vertex y, defined by
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C(if, lx)ά) =

Denote by W{RN) (resp. W(D)) the space of continuous paths in RN (resp.
D). Skorohod's equation for D with reflecting boundary is written in the form

(1.1)

where w^W(RN) is given and satisfies aι(0)GD; a solution (ξ> φ) of (1.1)
should be found under the following conditions.

(1.2)

(1.3) φ is a continuous non-decreasing function such that φ(0) = 0 and

φ{t)=\\D(ξ(s))dφ(s).

(1.4) n(j)€=3Zίω if f(j)e9Z).

The following theorem was proved by Lions and Sznitman [4] under the
additional condition that D is admissible. Frankowska [2] and Saisho [6] re-
moved this additional condition. Frankowska's result is of a general type but
contains what we need only in a less explicit form, so we state the theorem in
the form of Saisho [6].

Theorem 1.1. If the domain D satisfies Conditions (A) and (B), then there
exists a unique solution of (1.1) for any given w^W(RN) with w(0)^D.

Next, given

σ: D -> RN®RN, b: D -> RN ,

we consider Skorohod's SDE

(1.5) dX(t) = σ{X{t)) dB(t)+b{X(ή) dt+n{t) dΦ(t),

where the initial value X(0)^D is assumed to be £?O-measurable and B(i) is an
iV-dimensional £Fradaρted Brownian motion with B(0)=0. Here {EFt} is a
right continuous filtration on (Ω, £F, P) such that 3Ό contains all P-negligible
sets. A solution (X(t), Φ(t)) should be found under the following conditions
(1.6)-(1.8).

(1.6) X(t) is a D-valued ^-adapted continuous process.

(1.7) Φ(t) is a continuous non-decreasing process with Φ(0)=0 and
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(1.8) n(s)^mx(s) if X(s)tΞdD.

In addition to Conditions (A) and (B), Lions and Sznitman [4] introduced the
following Condition (C) and discussed the existence and uniqueness of the
solution of (1.5).

Condition (C). There exists a function / in C2(RN) which is bounded
together with its first and second partial derivatives such that 3 γ > 0 , VJCG3Z),

The following theorem was proved by Lions and Sznitman ([4: Theorem
3.1]) under Condition (C) and the admissibility of D; however, recently Saisho
([6: Theorem 5.1]) removed these additional conditions.

Theorem 1.2 ([6]). Let D satisfy Conditions (A), (B) and assume that σ
and b are bounded and Lίpschitz continuous. Then for any initial value X(0)^D
there exists a unique {strong) solution of (1.5).

2. D satisfies Condition (Br)

Let D be the domain in Rnd defined by (8). We are going to prove the
following proposition.

Proposition 2.1. The domain D satisfies Condition (Bf), that is, there exist
constants δ > 0 and α ( 0 ^ α < l ) with the following property: for any x€ΞdD there
exists a unit vector lx such that

(2.1)

holds for any y^B(xy 8) Π 3D.

For a non-empty subset /of {1,2, •••, n} and x=(xλ, - , x n ) G D w e set

*(/)={*,:ίe/>.

DEFINITION 2.1. Let /, /' be non-empty subsets of {1, 2, •••, n}.
(i) JC(/) and x(Γ) are said to be separated if

(2.2) IΠΓ = φ and | * , - X j \ ^

(ii) x(I) is called a cluster if

(2.3) for any i,j^I with iΦj there exist /Ό(= i), ίly —, ip-u ip(=j) in / such

that \xik_1-Xik\<2p, l^k^p.
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REMARK 2.1. If x(I) is a cluster, then

(2.4)

(2.5)

|*f-*,|<2(fi-l)p, Vίjel,

< 2 ( n - l ) p , V i e / ,

where x 7 =(#/)" 1 Σyez #/ and #/ is the number of elements in /.
Let x=(x1} •••,#«). Then {xly •••,#„} can be represented as the sum of

mutually separated clusters:

(2.6)

Here ί^m^n. In what follows we assume that x^dD and keep it fixed, so
Il9 •••, Im appearing in (2.6) are also fixed. Let c > l be a constant which will
be determined later and set

ί ug =

Also we set for y=(

We are going to prove Proposition 2.1 with

_ u—x

(2.7)
4(c-l)+2 '

a = cos θ,

where c, S and θ are constants determined by

(c-1) ( " - ! ) = 1/8,
( 2 8 )

(2.9) sin — =
2
— = <s !L, -—,
2 8(c-l) V n (n-l) p

From now on let c, £, δ be constants determined by (2.7) and (2.8). Let
B(x, δ) Π dD and set
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Lemma 2.1. \u—x\ = \z—y\<2(c— 1) \J~n{n—1) p .

Proof, Since i^Ik for some k, we have

(2.10) I«,-*4 | = ( r - l ) | *,-*,, |<2(<:-1) (n-l)P

by (2.5); and hence we obtain the lemma.

Lemma 2.2. (i) For any u'<=B(u, £), v'^B(v} S) and 0 < ί ^ l ,

u" = (1-ί) x+iu'(=D, ι/' = (l-t)y+tv'(ΞD .

(ii) B(u)S)aD, B(vf6)czD.

Proof. Since (ii) can be proved by setting t=\ in (i), it is enough to prove
(i), that is,

\uV-u'/\>p, \vγ-vγ\>p, l^i<j^n.

Case (I): i,j^Ih for some k. Since

u'i'-u" = (1-0 (*ι-*/

we have

and a similar inequality for | vY—v'/ \.
Case (II): ieIk,j<Ξl,(k*l). Since

«<'—*< = ί(«{—»<) = i(«,—»,)+?(«$—M, ) ,

we have

lu'i-Ujl (setting * = 1)

<2(c-l)(fi-l)p+<? (by (2.10)),

and hence, making use of the inequality |#, —Xj\ ^2p which is a consequence
of the assumption that x(Ik) and JC(//) are separated, we have

\uY-u'/\ ^ ixi-xji-iuί'-xti-iuy-xji

>2p-4(c~l) (n-1) p-2S>p .

Next, to prove the inequality for | z;;7—v'/ \, we notice

max \yp-xp\ ^2\y-x\<28 ,
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from which it follows that

\yi-yik\ < \xt-xik\ +28<2(n-l) p+28 (use (2.5)).

Therefore

\vi-yA = (c-\)\yi-yIk\<2{c-\) (n-1) P+2{c-\) 8 ,

and hence

\vV-yi\^t\vi~yi\+t\vf

i-vi\<2(c-ί)(n-l) p+2(c-l)8+S.

Thus we have

ivi'-v'/telyt-yjl-W-yil-W-yj]

^ I Xi-xj I - I yi-Xi I - I yj—xj | - | v'/—y{ \ - | vί/-yj \

>2p-28-4(c-l) (n-ί) p-A{c-\) 8-26

The proof of the lemma is finished.

Lemma 2 3. | z—v \ <ε/2.

Proof. Taking Ik such that i^Ik, we have

and hence

(2.11) \z-Ό\'=±\g,-v,\*
i = l

Because \xik—yik\
2£(#Ik)

 ιΈ \xj—yj\2> we have

and (2.11) yields

\z-v\^2(c-l)\x-y\<2(c-\)8<Sl2.

The proof of the lemma is finished.

Proof of Proposition 2.1. By (ii) of Lemma 2.2 and Lemma 2.3 we have

B(z9el2)czB(v,ε)c:D,

and hence by (i) of Lemma 2.2
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(2.12) DDthe convex hull Γ of the set B(zy ββ) U {y} .

We have also

(2.13) \z-y\ = | α - x | ^ > 2 δ >

because x$B(uy 6) by (ii) of Lemma 2.2. Therefore, if θ is defined by (2.9),
then (2.12) combined with Lemma 2.1 and (2.13) implies that

(2.14) C(yy lχy cos θ)ΠB(y, 2δ)cΓcD .

Since B(xy 8)czB(y, 2δ), (2.14) implies (2.1) with a=cosθ. The proof of
Proposition 2.1 is finished.

3. D satisfies Condition (A)

For 1 ̂ i<.j^n let D4j be the domain defined by

Dh = {x = (xly - , xn

The domain D of (8) is expressed as

D= n

and JCG8D implies JCG (Ί dDu, where

Obviously, if JC G D then x^dD is equivalent to Lx Φ φ. For (ί, j) G LΛ we define
a unit vector n^ in Λnrf by

„ _ so ... π χj~~xJ A ... 0 ^*~x>' 0 ... ΠV/il7 - {0, .», ϋ, -^=-, 0, , 0, -j=-, ϋ, , U| ,

(i-th) ( -th)

let α(0^α<l) be the constant appearing in Proposition 2.1 and set

Proposition 3.1. The domain D satisfies Condition (A) with ro=ρ \l ̂ ~
and for any X G 3 D

(3.1)

Lemma 3.1. (i) B(x-2~1/2 pnφ 2~λβ p) ΠD i J =φ 9

(ii) B(x-2~1/2pnφ 2"1/2 p)Γ[D=φ for any (iJ)tΞLχy JC(Ξ3Z>, that is} Λto
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JlXt2-ι'2Pfor any

Proof. Since (ii) follows immediately from (i), it is enough to prove (i).
We set

V = x-2~ι/2 pnu ,

that is,

Uxi+xjψ for k = i,j,

[xk for k^ij.

Then for any z^B(y, 2~lβ p) we have

I Zi—*j I ̂  I Zi—yt | +1 yt-yj I +1 y$—zj I

and hence z^Dijy completing the proof.

Lemma 3.2. Let U2X be the right-hand side of (3.1). Then

Proof. By Remark 1.1 it is enough to prove that for any

\xy
Zr0

Let l=lx be the unit vector appearing in Proposition 2.1. Then by Proposi-
tion 2.1

from which it follows that

(3.2) x-mxaC(xy ί,α)*,

where C(x, Z, «)* is the dual cone of C(JC, ly a), that is,

C(JC, I, a)* = {z<ΞRnd: < * - x , ^ - J C > ^ 0 , V^eC(x, Z,

From (ii) of Lemma 3.1 and (3.2)

and hence

(3.3)
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Now let n^3Ίx be expressed as

Then by (3.3)

and hence
1 i - i Σ c > v .

2r0 y/2ρ Vl-a2 V 2 ? <'.

Therefore, for any

^ Σ ci£y-x,niJ

>>+—lLr- Σ * ί y l*-

C«y)e£C«,y)e£ V 2P

by (ii) of Lemma 3.1 and Remark 1.1. The proof of Lemma 3.2 is finished.

Lemma 3.3. For any £(0<£<l) and x^dD there exists δ'>0 such that

{ n Ctj(x96)}nB(x,δ')c:DU{x},

where

Cίy(x, S) = {y^Rnd: <y-x, nu>^6\y-x\}9 (hj)^L .

Proof. Let y&Cij(yy 6), yφx. Then y can be expressed as

y = x+z, < * , n , y > ^ 6 | * | > 0 ,

and hence

I yt-yj \2=\ χi-χj 1 2+2<*,-* y ^ - * y > + 1 *,-« y 1
2

because

V 2p
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Therefore C 0 (JC, S)(ZDij U {x}9 and hence

(3.4)

Since \xi—Xj\>p for any (tyj)^Lx, there exists δ ' > 0 such that for any
B(x, δ')

Iyi—JsI >p f o r a n y (ΐ,

This combined with (3.4) implies

{ Π Cii(x,6)}Γ\B(x,S')cDU{x}.

The proof of the lemma is finished.

Proof of Proposition 3.1. We make use of Lemma 3.3 and then Corollary
in [1: p. 11] to obtain

x JίχL.t M K^ijyx^tji — jLj_^ij\XyC) ,

where Σ means the vector sum. Thus

χ-mxci n { Σ CI7(JC, ε)*}.
o<ε<i Ci.DGL

But the right-hand side of the above is the convex cone with vertex x spanned
by {x—nijΊ (t,j)^Lx}9 so we have

which combined with Lemma 3.2 implies

This means that Proposition 3.1 holds.

4. Mutually reflecting Brownian balls

Since the domain D satisfies Conditions (A) and (B') (and hence (B) by
Remark 1.2), Theorem 1.1 guarantees the existence and uniqueness of the solu-
tion of Skorohod's equation for D:

(4.1) ξ(t) = w(t)+^n(s)dφ(s),

where w=(wly •••, wn), wk^Wy l^k^n, and |w, (0)—Wj(0)\ ^ p , ί^i<j^n. A
solution of (4.1) is a pair (ξ, φ) of functions satisfying (4.1), (1.2), (1.3) and (1.4).
The component-wise expression of (4.1) is
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(4.2) ξi(t) = wk(t)+\tnk{s)dφ{s),
Jo

In this section we prove the following theorem by showing that (4.2) is equi-
valent to the equation

(2) £*(*)"*(*)+ Σ Γ (&(*)-*
y=KΦ*) Jo

Theorem 4.1. There exists a unique solution of Skcrohod's equation (2) for

the motion of mutually reflecting Brownian balls.

Proof. By Proposition 3.1 we have

(4.3a) n{s)= Σ cu{s)nu{ζ(s)),

(4.3b) niΛξ(s)) = (0, .... 0, mj^S\ 0,.... 0, U$*f>. 0, - . 0),

(ί-th) O'-th)

(4.3c) ch{s)^0, l

(4.3d) c(j(s) = 0 for (i,

The component-wise expression of n(s) is

. . _ ξk(s)-ξj(s)

mi.) =f -Σ^As) VΎp +t

Therefore if we define c{j(s) for i>j by Cij(s)=Cji(s), then we have

nk(s) =}

and hence

Σ 4

So if we set

we have

(4.4)
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(4.5)

because φkj(t) can increase only when |?*(O"~?y(OI=P ^Ύ (4.3d). Thus (4.1)
finally yields (2). Recalling (3.1), we see easily that (2) also implies (4.1) with

n(t) =

where Φ(i)= Σ Φij(t) a n d atj(t) 1S the Radon-Nikodym derivative of dφjj(t)

with respect to dφ(t). The proof of Theorem 4.1 is finished.

5. Skorohod's SDE for mutually reflecting diffusion balls

Let Bi(t)y l^i^n, be independent ^-dimensional £?rBrownian motions
with Bj(0)=0 defined on a probability space (β, £F, P) with a filtration
We assume that each 3ϊt contains all P-null sets and ΞFt= Π 3t+s. Given the
coefficients

σ: Rd -> Rd®R\ b: Rd -> Rd ,

we consider the following Skorohod's SDE for mutually reflecting diffusion
balls:

(5.1) dX.it) = σ(X, (')) dBM+biXM) dt

+ Σ

where the initial values are assumed to be ΞFo-measurable random variables
satisfying \Xi(0)-Xj(0)\>p, l^ί<j^n. The solution Xfc), l^i^n, should
be found under the following conditions.

(5.2) Xi{t)'s are £Fradapted continuous processes with \Xi(t)—Xj(t)\ ^p,

(5.3) Φij (ί)'s are EF^-adapted continuous non-decreasing processes with Φ, /(0)

= 0, Φ,y(f) = Φjiiή and

Φ ιy(ί) =

In this section we prove the following theorem.

Theorem 5.1. Suppose σ and b are bounded and Lipschitz continuous.
Then there exists a unique strong solution of (5.1).

Proof. Let



D = {X = (Xy,

and for x = (xly—,xn)

σ{x) =
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: \xι—#; |>p, ί^i<Cj^n} ,
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set

0

σ(x2)

L 0 σ(xH) J

Then as in 4 the SDE (5.1) can be regarded as Skorohod's SDE for D

(5.4) dX(t) = σ(X(t)) dB(t)+b(X(t)) dt+n(t) dΦ(t) ,

where B{t) is an wrf-dimensional 2vBrownian motion. The solution X(t) is

to be found under the following conditions.

(5.5) X(t) is a 5-valued continuous process.

(5.6) n(t)ζΞJlxω if X(t)£ΞdD.

(5.7) Φ(i) is a continuous non-decreasing process and

Φ(t)=\\D(X(s))dΦ(s).

But since D satisfies Conditions (A) and (B), it follows immediately from Theorem

5.1 in [6] that the Skorohod's SDE (5.4) has a unique strong solution. The

proof is finished.

References

[1] W. Fenchel: Convex cones, sets, and functions, Lecture notes, Princeton Univ.,
1953.

[2] H. Frankowska: A viability approach to the Skorohod problem, Stochastics 14
(1985), 227-244.

[3] N. Ikeda and S. Watanabe: Stochastic differential equations and diffusion pro-
cesses, North Holland-Kodansha, Amsterdam-Tokyo, 1981.

[4] P.L. Lions and A.S. Sznitman: Stochastic differential equations with reflecting
boundary conditions, Comm. Pure Appl. Math. 37 (1984), 511-537.

[5] H.P. McKean: Stochastic integrals, Academic Press, New York, 1969.
[6] Y. Saisho: Stochastic differential equations for multi-dimensional domain with re-

flecting boundaryy to appear in Probab. T h . Rel. Fields.
[7] A.V. Skorohod: Stochastic equations for diffusion processes in a bounded region 1,

2, Theor. Veroyatnost. i Primenen. 6 (1961), 264-274; 7 (1962), 3-23.
[8] H. Tanaka: Stochastic differential equations with reflecting boundary condition in



740 Y. SAISHO AND H. TANAKA

convex regions, Hiroshima Math. J. 9 (1979), 163-177.

Department of Mathematics
Faculty of Science and Technology
Keio University
Kohokuku, Yokohama 223
Japan




