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1. Introduction

A stochastic process Zt=(Z)y * ,Z?) taking values in Cn is called a con-
formal martingale if Z* and Z?Z?, l ^ α , β^ny are continuous local martingales.
When Zt is defined only on a time interval [0, η) for some predictable stopping
time η> Zt is said to be a conformal martingale if so is the stopped process ZtAvs
for any stopping time η' strictly less than η.

Let M be a complex manifold of complex dimension n. By a diffusion
process D=(Zt> Pz) on M, we mean a strong Markov process on M with con-
tinuous sample paths defined on [0, £), ζ being the life time. In this paper,
we assume without specific mention that the diffusion D admits no killing inside
M in the sense that Pz(τu<ζ< + oo)=Pz(ζ< + oo)J #eE7, for any relatively
compact open set UdM, where τυ denotes the first exit time from U: τo=
inf {t^O: Zt&U}. We see then that, for any open set UaM, τυ is a predic-
table stopping time with respect to Pz for # e [/.

We call a diffusion process D=(Zt9 Pz) on M a conformal diffusion on M
if, for any holomorphic coordinate neighbourhood (C7, φ), the Cn-valued pro-
cess φ(Zt) defined on [0, τσ) is a conformal martingale with respect to Pz for
each #e£/. We occasionally assume that the transition function pt of D is
absolutely continuous with respect to a volume element V on M:

(1.1) Pt(*,-)<V, ZSΞM.

We aim at proving the following theorem.

Theorem. Let D=(Zt, Pz) be a conformal diffusion on M satisfying the
condition (1.1). Then, for any plurisubharmonic function u on M>

Pz(u(Zt) is continuous in f e[0, ζ) and finite for f e(0, f ) )=l , * e M .

This is a generalization of a theorem of Doob [2] to the cases of higher
complex dimension and our proof is also similar to the one given in [2] in the
sense that we utilize the quasi-continuity of plurisubharmonic functions with
respect to a specific capacity related to the extremal function.
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As we shall see, any plurisubharmonic function u on M is Z>-subharmonic
in Dynkin's sense and consequently u(Zt) is right continuous. Therefore
its continuity would follow from a Hunt's theorem on the regularity of excessive
functions provided that

(1.2) every semi-polar set is polar

for the diffusion D. However, it seems to be unknown whether (1.2) is fulfilled
for all the conformal diffusions being considered.

Indeed, a typical conformal diffusion is a diffusion Don M whose infinitesi-
mal generator is expressible on a local chart as

(1.3) L = - 1 Σ ^
2 ^ 6 8*" 62"

with a continuous non-negative Hermitian tensor field g on M ([6]). If ^ is
sufficiently smooth and non-degenerate, (1.2) is known to be correct for Zλ
But, if g is merely continuous positive or degenerate (D may still satisfy (1.1)
in the latter case), we do not know to what extent (1.2) is true. (1.2) becomes
true under the additional condition of the symmetrizability. But the latter
condition might be false either in general in view of a Fujita's result [4] saying
that there exists a manifold M where no diffusion with generator (1.3) is sym-
metrizable (although only smooth and non-degenerate cases are treated in [4]).

We add a remark that there are many conformal diffusions whose generators
are not expressible by the usual differential operator like (1.3). It was shown
in [5] that fairly general class of symmetrizable conformal diffusions can be
characterized by closed positive currents of type (n—1, n—1). The first two
propositions of the present paper have been proven in [5] for this class of dif-
fusions on a domain of Cn.

This work was motivated by the lectures of Professor Laurent Schwartz
delivered at Kyoto University (cf. [7]). I am grateful to him for his kind guid-
ance to the problem.

2. ZJ-subharmonίcity of plurisubharmonic functions

A function u on an open set EdM taking values in [— <χ>, + oo) is said
to be plurisubharmonic on E if, on each holomorphic coordinate neighbourhood

UdE, u is locally integrable, Σ — g*fp is a non-negative distribution for
3# dz

any ξ=(ξ1

y •••, fΛ)GCw and ess lim sup #(#') = u(z), z^U. Those properties

are intrinsic because they are preserved under holomorphic transformations.
Any plurisubharmonic function is upper semicontinuous.

Let D=(Zt, Pz) be a conformal diffusion on M with transition function^.
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A Borel function u on M taking values in [0, +°o] is called p^excessive if
ptu(Z) f u(z) as 11 0 for each ^ G M . A Borel function w on an open set EdM
taking values in [— oo, -foo) is called D-subharmonίc on E if u is Z>-finely upper
semicontinuous, locally bounded from above and, for any open set V with
compact closure VaE,

(2.1) u(z)^Ez(u(Zτγ); τv<ζ), * e F.

Any ZJ-subharmonic function is J9-finely continuous and hence right continu-
ous along Zt in £e[0, ζ) P^-almost surely ([3]). The negative of a Z?-sub-
harmonic function is said to be Z?-suρerharmonic. A Dynkin's theorem [3;
Theorem 12.4] says that a non-negative Borel function on M is ^-excessive
if and only if it is J9-superharmonic.

Proposition 1. Any plurisubharmonic function on M is D-subharmonic.
The negative of a non-positive plurisubharmonic function on M is prexcessive.

Proof. Let u be a plurisubharmonic function on M. u is then locally
bounded from above on each coordinate neighbourhood. Besides the sub-
harmonicity for the diffusion process is a local property according to a Sur's
theorem ([3; Theorem 12.11]). Hence we may only prove the Zλ-subharmonic-
ity of u by assuming that M is a bounded domain DdCn and u is non-positive.

Take any open set V with compact closure in D and denote by T the first
exit time of Zt from V. Since (Zt, Pz) is a conformal martingale, we see, by
virtue of Schwartz [6; Proposition (5.10)], that (w(Z/Λτ), Pz) is a generalized
submartingale for z^Vf and consequently,

The right hand side is not greater than Ez(u(ZtAr); τ<ζ) and we get the in-
equality (2.1) by letting *-»-J-oo. Since u is upper semicontinuous, we con-
clude that u is JP-subharmonic.

In the remainder of this section, we only consider a bounded domain D
of Cn. For EciD, the extremal functional is defined by uE(z)=suρ {v(z): v
plurisubharmonic on D, — l ^ z ^O on Z), v= — \ on E}, u%{z) = limuE(z'),

We further introduce a set function C t by

(2.2) Ct(E)=-\B«S(x)dV(*) ( = -

where V denotes the Lebesgue measure on D. C# is known to be a Choquet
capacity ([1; Proposition 8.4]). Moreover C$(N)=0 if and only if N is
pluripolar, namely, there exists a plurisubharmonic function v on D with

iΓ^-oo).

Let D=(Zt> Pz) be a conformal diffusion on D. Denote by σE the hitting
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time of a set EczD after 0 + : σ£=inf {ί>0: Z , e £ } . We let σE= + °° if the
event in the braces is empty.

Proposition 2. For any Borel set EdDy

Proof. By Choquet's lemma, there is a non-decreasing sequence of pluri-
subharmonic functions vk such that — l ^ ^ ^ O , vk= — l on E and u*(z)~

hmvo(z') for vo=limΐv By Proposition 1, {—vk(Zt), Pz} is supermartingale

and —vk(z)^—Ez(vk(Zσκ): σκ<ζ)^Pz(σκ<ζ) for any compact set KdE and
z^D, on account of the optional sampling theorem. Letting &->oo and inte-
grating by dVy we have

since vo=u% F-a.e. Taking then an increasing sequence of compact sets
KmdE such that σKm \ σE as m->oo9 P7-a.e., we get the desired inequality.

Corollary 1
(i) If NaD is pluripolar, then there exists a Borel set N'IDN and

(2.3) P2(σ-N'<ζ) = Q V-a.e.

(ii) If OkdD are decreasing open sets such that Urn C#(OΛ)=0, then

(2.4) Pz{limo Ok<ζ) = 0 V-a.e. z^D.

Proof, (ii) is a stronger assertion than (i). (ii) is immediate from Pro-
position 2.

We denote by θs the usual shift operator defined by Zt(θsω) = Za+t(ω).
In particular we have

(2.5) s+σEoθs(ω) = inf {t>s: Zt(ω)^E} , s^O .

Corollary 2. Suppose that the transition function pt of D satisfies the
absolute continuity condition (1.1).
(i) If NaD is pluripolar, then N is B-polar: there exists a Borel set N'~DN
and (2.3) holds for every z^D.
(ii) If Ok(ZD are decreasing open sets such that lίm Q(OA)=0, then

(2.6) P2(lim (s+σ0toθ.)<ζ, s<ζ) = 0

for every s>0 and z^D.

Proof, (i) Denote by f(z) the left hand side of (2.3). Then f(z) =
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limpsf(z)=Oy z&D, by the assumption and Corollary 1 (i). (ii) The left hand

side of (2.6) equals psf(z) for the function/ defined by the left hand side of (2.4).

3. C$-quasi-continuity of plurisubharmonic functions

We continue to consider a bounded domain DdCn and the capacity C$
defined by (2.2).

Proposition 3. Suppose that the domain D is strongly pseudo-convex.

Any plurisubharmonic function u on D is then C^-quasi-continuous. More speci-

fically, for any 6>0, there exists an open set OczD with C$(O)<6 such that u

is finite valued and continuous on D-0 with respect to the relative topology.

Proof. We deduce this from several results of Bedford-Taylor [1]. First,
according to [1; Theorem 3.5], any plurisubharmonic function on a bounded
domain D is quasi-continuous in the above sense but with respect to another
capacity which we shall denote by CBT. CBT admits the expression

(3.1) CBT(O) = [ {dd'utf ,
JD

for open set O with compact closure OaD. Therefore it suffices to show
the implication

(3.2) C B Γ ( O , ) - > 0 ^ 0 , ( 0 ^ 0

for decreasing sequence of open sets 0k<zD.
A function on D is quasi-continuous relative to a capacity if and only if

it is so on each open set E with compact closure EdD. Hence, in proving
(3.2), we may assume that O1 has compact closure 0 , c D . Set v=Yιmu%u,

v*(z)=limv(zf), and assume now the strong pseudo-convexity of D. We

then easily see that v*(z)->0 as z->dD. Moreover by the continuity of the
Bedford-Taylor measures [1; Proposition 5.2], {ddcu$k)

n-+{ddcv*)\ Λ-*oo.

Hence we get, from (3.1) and the hyposesis in (3.2), I (ddcv*)n=O and con-
JD

sequently {ddcv*)n is the zero measure. We can finally use a comparison theo-

rem [1, Corollary 4.4] to obtain v*=0 and v—0 F-a.e. We arrive at the con-

clusion in (3.2): lim C^Ok)=[ v(z)dV(z)=0.
*->°* JD

4. Proof of Theorem

The right continuity of u(Zt) at t=0

(4.1) Pz(limu(Zt) = u(z))=l,
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follows from Proposition 1.
For a stopping time ^ G [ 0 , +<*>], let us consider the event An={u(Zt) is

finite and continuous for ί^(0, η)}. We aim at proving

(4.2) P2(Aζ)=l, z<=M.

We assume the condition (1.1). Choose a system of holomorphic coordinate
neighbourhoods (UΛ, φa) of M such that φJJJ^ is a strongly pseudo-convex
bounded domain of Cn. Proposition 3 and Corollary 2 (ii) to Proposition 2
are applicable to the function u \ Ua and to the part DΛ of D on TJΛ respectively.
In view of (2.5), we then readily see that Pz(u(Zt) is finite and continuous for
t^(s, τ U a ) y s ' < τ U a ) = P z ( s ' < τ U a ) , 0<s^sr, z^Ua. B y l e t t i n g s j O a n d t h e n
s' I 0, we get

(4.3) P * ( A r ^ ) = l , *^Ua.

We now use a Sur's method. Take two members, say, £/0 and U1 from
the chart system and let V be an arbitrary open set with VCZUQUU^ By
[3; Lemma 12.6], we can find open sets Vo and Vx such that V=V0{jVli

ΓOCC/O, V.dU, and F o Π ( M - V x ) Π ^ Π ( M - V 0 ) = φ. Denote by τ° and r 1

the exit time from Vo and Fx respectively, and let γ o =0, 7^+χ—7jfe+T8*o^,
&^ 1, where fΛ=Λ mod 2. By virtue of [3 Lemma 12.4], it holds then that

(4.4) Ύk = τv from some k on.

Together with the event Λ,, for the stopping time η> we also consider the
event A,,= {u(Zt) is finite continuous at each t e(0, η) and also at ^=77 if
In view of (4.3), we have

(4.5)

Since (4.5) is trivially true for z^D— Viy we obtain from the strong Markov
property and (4.5),
Pz(λi2)=P£u(Zt) is finite continuous for t>0, τ ° = + oo)-f Ez(u(Zt) is finite
continuous for *e(0, τ°], τ°< + oo P ^ τ 0 ( ^ τ

1 ) ) = ^ ( ^ τ 0 ) = l ) * ^ V. By induction
and (4.4), we get

(4.6) P , ( A T F ) = 1 ,

By letting V I U0{J Uly we are led from (4.6) to

(4.7)

for G= Uo U Uv Repeating the same argument, (4.7) can be seen to be true
for the union G of finite number of £/Λ's. Now (4.7) holds for any relatively
compact open set GczM. We finally let G f M to get the desired identity (4.2).
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