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1. Introduction. Properties of Brownίan paths have been main sub-

jects of many papers and various results have been already well known. The

size of sample path, for example, has been investigated by evaluating Lebesgue
measure and Hausdorίf measure etc. of path. Taylor [7] determined the Haus-
dorff dimension of almost all Brownian paths. On the other hand, Fukushima

[2] recently studied some basic properties of path, such as nowhere-diίferenti-
ability, Lέvy's Holder continuity, the law of iterated logarithm etc. in connec-
tion with the Dirichlet space theory on the Wiener space. He proved that

these properties hold not only almost surely but also quasi-e very where.
In this paper we shall present a refinement of Taylor's result from the

viewpoint of the Dirichlet space theory. It is easily derived from a combina-
tion of the definition of Hausdorίf measure and Fukushima's result correspond-
ing to Lέvy's Holder continuity that the Hausdorίf dimension of path is no
more than 2 quasi-everywhere. We shall prove that the Hausdorίf dimension

is no less than 2 quasi-everywhere, by showing that a specific Wiener functional
used in [7] belongs not only to L2-space but also to the Dirichlet space.

2. Dirichlet space. We first prepare some notations and definitions
on the Wiener space and a Dirichlet space on it (cf. Shigekawa [6] and Fuku-

shima [2]).
Let W be the Banach space of all jβrf-valued continuous functions w(t)

on [0, 1] satisfying zu(Q)=Q, with standard supremum norm, H be the Hubert
space of all absolutely continuous functions of W having square integrable deri-
vatives, with inner product

and norm \\h\\H=\/ζh, /*>#, where h denotes the derivative of h and a b denotes

the inner product in Rd. Let P be the Wiener measure on W. A Wiener

functional is a real (or more generally Hubert space) valued mapping defined
on W, measurable with respect to the Borel field of W. Let L\W) be the
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Hubert space of real valued Wiener functional, square integrable with re-
spect to Py with inner product

(F, GVort = E[F(w)G(w)] ,

where E denotes the integration with respect to P. Let L\W\H) be the space

of if -valued Wiener functionals F satisfying E[||JF(«;)|||r]<00.
We define a weak derivative of a Wiener functional after [6], A real valued

Wiener functional F is called //-diίferentiable if for every w of W there exists
DF(w) of H such that for any h of H,

F(w+h)-F(w) = <DF(w\ K>H+o(\\h\\H\ as \\h\\H -> 0 .

A real valued Wiener functional F is called to have a weak derivative if there

exists a sequence of real valued smooth (in the sence of [6]) functionals Fk con-

vergent to F in L\W] such that the sequence of ίf-derivatives DFk is a Cauchy
sequence in L\W\H). The weak derivative of -F is defined by L\W\H)-

limit of DFk and denoted by DF (see also Ikeda and Watanabe [3]).

Next we define a Dirichlet space and a Dirichlet form after [2]. Let £F

be the space of Wiener functionals in L\W) having weak derivatives in

L\W;H), and

β(F, G) = ± E[<DF, DGyH] ,

and

(̂F, G) = S(Fy G)+(F, G) ΛlΓ>, F, G <= £F .

Then a capacity is defined by

Cap (-4) = inf {tfxCF, F): Fe£F, F>1, P-a.e. on A}

for an open set A of PF, and for any set B of W

Caρ(β) = inf {Cap (.4): A is open,

It is well known that this capacity is a nonnegative, increasing set function
on W satisfying the following properties :

( I ) P(A) < Cap (A) for any Borel set A, in particular Cap (W) = 1 .

(H) Caρ( U n=ιAn) = sup {Cap(^4w): n> 1}, for an increasing sequence An .

(HI)

(see also [1]). The term ' 'quasi-every where* or simply 'q.e.' means 'except on

a set of zero capacity'.

The Hausdorίf dimension dim (A) of a set of Rd is defined by
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= inf{α>0: Λ*(A) = 0} ,

where Λ" denotes the Hausdorff α-measure, i.e. Hausdorff measure with re-
spect to measure function f (cf. Rogers [5]).

Let w[Q, ί]={w(t): 0<f<l} for w of W. Our result is the following.

Theorem. dim(α;[0, 1]) = 2, q.e. (d>2).

3. Proof of Theorem, i) First we shall prove that dim(w[Q, 1])<2 q.e.

Let «;''(/), \<i<d, be the i-th component of w(t). Theorem 3 of [2] tells us
that

limδ;o sup {I w'ftj-w'fe) I (2t log 1/*)"1/2:

= 1, q.e.

Let AI be the set of w of W such that wi has the above continuity property
and B be the set of w which has λ-Hϋlder continuity peoperties for all 0<λ
<l/2. Then B includes Π iίιAέ and by (IE) and (Π),

Cap(B c)<Cap(U ί^Af)<ΣMι Cap (Af) = 0 .

On the other hand, by the same argument as in [7], it is easily seen that

for a λ-Hϋlder continuous w, α;[0, 1] has zero Hausdorff /3-measure for β>l/\.
Thus for any w of B, w[Q, 1] has zero Hausdorff /3-measure for any /5>2. This

implies the desired result.
ii) We shall next prove that dim(α;[0, 1])>2 q.e. [7] showed that for

any w of W and l<a<2,

( ( I w(s)—w(t) I -* ds dt< oo
JoJo

implies that 20[0, 1] has positive Hausdorff α-measure. We define Wiener
functionals F(*\ l<α<2, by

F< >(to) = (TI w(s)-w(t) I -Λ ds dt,
JoJo

and Fn=FV-l/n\ n=l, 2, —. If we can show that for any ra, Cap({Fw=oo})

—0, then by (Π)

and for any w of Π»=ι{ί1»<00}, ̂ [0,1] has positive Hausdorff (2— l/w)-measure.
This shows that dim^O, 1])^2 q.e.

Therefore we have only to prove that Cap({-F(Λ)=oo})=0 for any
<2. Fkα, l<α<2. Let

Λ Λ,
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Then Fζ is continuous on W and for any w, Fζ(w) f F(*\w)—F(w) as 6 I 0.
If we can verify that F^EF and jfiΓ=suρt>051(/'lβ, Fe) is finite, then the next well-
known inequality (cf. [1])

51(Fε, Ff), λ>0 ,

and (H) imply that for λ>0,

Cap({F>λ})<supε>0Cap({ί1

ε>λ})<λ-2ί:.

Letting λ->°<>, we have Cap({F=oo})r=0.
The finiteness of K is derived from the following two lemmas and the

proof of Theorem is completed.

Lemma 1. supε>0(Fe, Fe)

Lemma 2. supβ>0<?(.Fβ, Fε)<oo .

Proof of Lemma 1. Let φt(x) = ( \ x \ d+£)~*/d and

o Jo

o

Then Δ/ε(^)— φg(#), where Δ is the Laplacian on Rd

o Jt

"

In the above we have used the time-homogeneity of Brownian motion. To
estimate the right-hand side, we apply the Ito formula to/s(#),

where
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Since \f,(x)\ ^(d-a)-\2~a)-l\x\2-a and |V/,(*)I <(<*-

[((V,Hί))ώ)2]
JO

4E[(ΛK1))-

Γ | V/,K*)) 1 2ds]
Jo

<oo.
o

This completes the proof of Lemma 1.

Corollary. The Ito formula is applicable to \x\2~°>, a<2, i.e.

I w(t) 1 2-* = Γ(2-α) I zσ(ί) | -*a;(ί) </w(s)+ ( V~«) (2~«) I «<
Jo Jo

Furthermore, [ \ w(s) \ -*ds<=L\W) .

Proof of Lemma 2. We use the same notations as in the proof of Lemma
1. By the mean value theorem, for w of W and h of if,

= (1duh(U) (2('dt\1Vφ,(w(S)-zϋ(t))ds)+o(\\h\\ll)Jo Jo J K

as 11^11^-^0. This implies the //-differentiability of FQ and its //-derivative
is given by

Since the boundedness of 110 (̂̂ )11^ on W is easily derived from that of | Vφε

(x)\9 by the same argument as in Section 2 and 3 of Kusuoka [4], it is verified
that the //-derivative of Fζ coincides with the weak derivative of Fe a.s. Thus

2£(F,, F,) =

= 4 (Λ Σ/-ι E[( \"dt\ V.y(w(ί)-
Jθ Jθ Jtt

where ψ^x) is the /-th component of Vφε(#). Let gζj(x) be the j-th com-
ponent of V/ε(#). Then g2j(x) is twice continuously differentiable and Δgζj(x)
=iψtj(χ) To estimate the above, we again apply the Ito formula to gej(x),
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Hence we have

As for the first term in the right-hand side, it is less than

16E [ "{gtWV-

since |£8;(#)l <(d— a)'1 M1"*, |# |ΦO. Thus the first term is bounded in-
dependently of 6 by Corollary of Lemma 1. As for the second term, by stand-
ard calculation we have

O Ju

= E[\ttdt\"dv( (
»Ό Jθ Ju

X

Note that

α - * - *

= ((^-α)-1 1 * I -'{( I * I '+ε?- " -&-•"} (-d x, *. I * I

where δ^ is Kronecker's symbol. Hence we have
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Therefore the second term in the right-hand side of (*) is less than

Jo

and is bounded independently of 6 by Corollary of Lemma 1. This com-

pletes the proof of Lemma 2.
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