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1. Introduction

Let H and V be two Hubert spaces, V being densely and continuously
embedded in H. Let fl( , •) be a continuous symmetric sesquilinear form
defined on Γ x F satisfying Garding's inequality. Then, in the usual manner,
β( , •) defines a positive definite self-adjoint operator A in H, and the fractional
power A1/2 of A takes V as the definition domain. Thus, though the domain
S)(A) itself may depend on the sesquilinear form which defines A, the domain
3)(Aλ/2) always coincides with V. Making use of this fact, we may reduce an
evolution equation of the second order to one of the first order in which the
domain of the operator is independent of t.

In fact, let

(1.1) d2ujdt2+A(t)u = /(f), O^t^T

be an evolution equation in H, where, for each t> A(t) is a positive definite self-
adjoint operator in H associated with a continuous symmetric sesquilinear form
a(t\ , •) on VxV satisfying Gar ding's inequality. Assuming that A( )ι/2 is
differentiable as a function with values in XS(V> H), we set

v0 =iA(t)1/2u

vλ = dujdt.

Then (1.1) will be reduced to the following evolution equation

(1.2) -̂f c/o)=Sl(ί) 0)+^(t)( °)+F(t), O^t^T
dt \ vj \ vj \ v-J

H
in the product space X, where

H
/ Π * Δί+W2\ ///A(tW2lslf A(f\-V2 Π

; w \iA(tψ2 0 / w V 0 0
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It is clear that

V
= X ,

Since iZ)(5l(ί)) is independent of /, we are able to apply the results of linear
evolution equations in [3], [4], [5] to solve (1.2), if 2l(f) and 33(£) satisfy some
further smoothness hypotheses. Indeed we know

Theorem 1.1. Let E and F be two Banach spaces such that F is densely
and continuously embedded in E. Let {§!(£)} 0^t^τ be a family of the infinitesimal
generators of linear contraction semi-groups on E such that

and let {%5(t)}0^t^τ be a family of strongly continuous bounded linear operators on E:

(1.4) S E C ( [ 0 , T];XS(E)).

If "§!(*) satisfies

(1.5) VLeCι{[O,T];X.(F9E))f

and if%$(t) satisfies one of the following conditions

(1.6.1) 33e£([O, T];X,(F))

(1.6.2) 33e^([O, T]; J?S(F, £)),

then there exists a unique evolution operator {VL(ty s)}0^s^t^τ for

Remarks concerning the proof of the theorem will be made in section 4.

H V
Let us choose E= x , F~ X and take as 2l(ί), 33(ί) the operators defined

H V
by (1.3). Then the conditions (1.5), (1.6.1) and (1.6.2) are equivalent to

(1.7) AW&C\[0, T];X,(V,H))

(1.8.1) dAιηdtA-v2tΞC([0, T];

(1.8.2) dAl/2jdtA~lf2^C\[^ T]; XS(V, H))

respectively. The first object of the present paper is to give a sufficient condi-
tion to be satisfied by the form a(t; , •) in order that (1.7) holds. Actually we
shall prove in Theorem 2.2 that, if there exists a constant l / 2 < p ^ l such that

(1.9) \(dldt)a(t; u, v ) \ £

holds with some constant Kp independent of t, then (1.7) is satisfied. Either
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(1.8.1) or (1.8.2) is also to be verified. But we see that (1.8.1) jointed with (1.7)

implies that β)(A(t)) is indepednent of /. Indeed, suppose that (1.8.1) holds.

Since (1.8.1) is equivalent to

^ T];

it would follow from

A{t)dA(tγιidt = -dAitγηdtAiή-w

that

(1.10) AdA-ηdtεΞCaO, T]; XS(H)).

Then the result follows immediately from (1.10). Therefore we have to verify

(1.8.2) in the general case where <£(A{t)) depends on t (cf. [1]).

The second object is to prove that, if H=L2(Ω)> V=HX{Ω) and a{t\ , ) is

of the form

a{t;u,υ)=[ j £ ah{t9 x)^- ̂ L+kuv)dx+[ h(t, σ)uvdσ ,
JΩW,/=I dXi oXj ) Jao

then the sufficient condition (1.9) is verified. We shall show by Theorem 3.1

that (1.9) is satisfied with any l / 2 < ρ < 3 / 4 , estimating (d/dt)a(t; u, v) by

I M I I + Θ | M I I - Θ ( O < 0 < 1 / 2 ) and using the fact that £)(A(t)")(0<a<l) is con-

tinuously embedded in i/2α,(Ω).

As an application we shall consider in section 4 the Cauchy problem of a

hyperbolic equation of the second order.

We here describe the notations which will be used throughout the paper.

Let Ey F be two Banach spaces. X(E, F) denotes the space of all bounded

linear operators from E to F with the operator norm 11 \\™E py -CS(E, F) denotes

the space X(E, F) equipped with the strong topology. X(E, E) (resp. XS(E, E))

will be abbreviated as X(E) (resp. Xa(E)). C\[α, b] X(E, F)) (resp. C\[αy b]

XS(E, F)) is the set of all Λ-times continuously differentiable mapping from the

interval [α, b] to X(E, F) (resp. Xa(E, F)). We shall write C([α, b]; X(Ey F))

(resp. C([α, b] X,(E, F))) instead of C°([α, b]; X{E, F)) (resp. C\[αΊ b]

XS(E,F))). Let Ω c β " be a region. HS(Ω) (s^O) denotes the usual Sobolev

space and || |L,Ω denotes its norm. We shall abbreviate || |L,Ω a s IIΊL if there

is no fear of confusion. As usual we also use L2(Ω) to denote the space HQ(Ω).

The inner product of L2(Ω) is denoted by ( , •).

2. Differentiability of A(t)1/2 (abstract results)

Let H (resp. V) be a Hilbert space with the norm | | (resp. || ||) such that

V is densely and continuously embedded in H. Let {α(t; , )}0<ztsτ be a
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family of sesquilinear forms defined on VxV. We assume that

a) a(t; u> v) = a(t\ v, ύ), u, v^V

b) \a(t;uyv)\^MQ\\u\\\\v\\y U,VCEV

c) a(t;u,u)^8\\u\\2, u^V
with some constants Mo and δ>0 independent of /.

Then, for each O^t^T, a closed linear operator A(t) in H is defined from

a(t\ , •) in the usual manner:

' 3){A{t)) = { M G F ; ίAer« exists f ^H such that

owing to a) and c), ̂ 4(ί) is a positive definite self-adjoint operator in H> A(t)^S.

It is also verified that

3){A(t)ι/2) = V

with equivalent norms (see [7], English translation, Theorem 2.2.3).

We also assume that, for each u, v e V,a( w, v) is continuously differen-

tiable in t and the derivative ά( w, v) satisfies

d) I ^ z/^I^MJMMMI,
e) lim suΌ\a(t: u, v)—ά(s; u> v)\ =0,

with some constant Mx independent of t.

Then we have

Lemma 2.1. For

(2.1) ( λ + ^ ) ) - 1 ^ ^ ^ , Γ]; J?s(i/, V))

with the following inequalities

(2.2) ||(9/9ί)(λ+A(t))-^H) tzψ ±

(2.3) ^ψ

Proof. From the equality

-f-A(s)-γ, g) = a(s; A(t)-γ, A(s)^g)-a{

we obtain

(2.4) {{dA{t)-ηdt)f, g) = -ά(t; A(ή-γ, A(t)->g),

which, together with the hypothesis e), yields
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dA-ηdteC([O,T];X,(H,V)),

whence (2.1) for \ = 0 follows. For λ>0, we shall repeat the same argument
taking the form

aλ(t; u, v) = a(t; u> v)+X(uy v), w,

which defines X-\-A(t). (2.1) is then obtained from

(2.5) ((dldt)(X+A(t))-γy g) = -a(t; (X+^ί))" 1

instead of (2.4).

Next we shall show the inequalities (2.2) and (2.3). (2.5) together with d)
yields

Then (2.2) follows from

(2.5) implies

(2.6) aλ(t; (9/8ί)(λ+iί(ί))-y, v) = -h(t;

Taking ©=(9/8ί)(λ+^I(ί))"1/and using c), d), we obtain

Then (2.3) follows from

We may now state

Theorem 2.2. In addition to the hypotheses a)~e), assume that there exists
a constant l / 2 < p ^ l such that

f) \ά(t; u, v)\^Kp\A(t)pu\

holds with some constant Kp independent of t. Then A1/2 is a strongly continuously
differentialle function with values in -CS(V, H):

A*f=C\[0, T]; XS(V, H)).

Proof. We first note that the hypotheses d) and f) imply the similar in-

equality for any Iβ^v^p:

Lemma 2.3. For any Iβ^v^
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(2.7) \ά(t; u, υ)\ £

with some constant Kv determined by Kp and v.

Proof. Because of (2.4), f) implies

with

Similarly d) implies

A{t)ι/2dA{tyιjdtA{t)ιί2^X{H)

with

^ = K1/2.

Therefore, according to the Heinz inequality, we conclude that

with

which conversely implies (2.7).
Generally, when A is a positive definite self-adjoint operator, its fractional

power is defined by means of the spectral resolution of A. But, in view of
Lemma 2.1, the expression by the Dunford integral will often be convenient for
our purposes.

According to this A{t)~ι/2 is written in the form

π Jo

Then our theorem will be equivalent to proving that A~1/2 is strongly continuously
differentiable from H to V:

\[0, T]; X.(H, V)).

(2.1) jointed with (2.2) yields

A-V2€ΞC\[O, T];XS(H))

as well as

[
π Jo
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Therefore, our next step of the proof will be to estimate the product
((dA(t)-1/2ldt)fy A(t)1/2g) by I/I \g \ taking f ^ H a n d g ( Ξ V arbitrarily.

Owing to (2.5) this product is described as

(

π Jo

From f) we have

π Jo

Therefore the desired estimate will follow from

Lemma 2.4. For any 0<α, /3<1

f\i-(-w I A(ty(X+A(t))->f 11 A(ty(X+A(t))->g I dx
Jo

holds with some constant Laβ determined by ay β alone.

Proof. It is obviously sufficient to show that

( V 2 β I A(tnx+A(t))->f \2dX^La\f\2, f<=H
Jo

with some constant La determined by a alone. But this inequality is easily
established with the aid of the spectral resolution (see [7], English translation,
Theorem 4.7.2).

Since we may assume l / 2 < p < l owing to Lemma 2.3, Lemma 2.4 yields

I ((dA(ή-vηdήf, A(ty»g) I g ^ W - P ) i /11 g I, f^H,g<=V;
7t

and hence we conclude that

dA(t)-v2ldt^X(H, V)

with

(2.8)

Thus our final step is to verify

0, T];-Cs(H, V)).
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But, since (2.1) together with (2.3) yields that

(dA-v*ldt)f<=C(([Oy T]; V)

if/<Ξ F, this follows from (2.8) and the density of V in H.
Next, we further assume that, for each uy v^V, a( u, v) is twice con-

tinuously differentiable and the second derivative d( ; u, v) satisfies
g) \a{t;u,v)\^M2\\u\\M\, u,υ(=V
h) lim sup \a(t; u, v)—d(s\ uy v)\ = 0 ,

'>* l l l l^ i

with some constant M2 independent of t.
Then we have

Theorem 2.5. Under the hypotheses a)*—Ίi), A~1/2 is a twice strongly con-
tinuously differentiable function with values in -CS{V):

A-v2eC2([0, T]; ΛS{V)).

Proof. The assertion of the theorem is an immediate consequence of the
following lemma.

Lemma 2.6. For each

(2.9) ( λ + i ( . ) ) - e C 2 ( [ 0 , T] XS{H, V))

with the inequality

(2.10)

Proof. The first assertion (2.9) follows from h). The second inequality
(2.10) is obtained from

aλ{t;

= -2h{t (dldt)(x+A(t))-\f, v)-a(t;

which follows from (2.6).

Therefore, as a corollary we conclude:

Corollary 2.7.

dAι/2ldtΛ-ιί2^C\[^ T]-y XS(V, H)).

Proof. Because of

dA(tf2\dtA{tγχi2 = -A(t)1/2dA(t)-1/2/dt,

this is a direct consequence of Theorem 2.2 and Theorem 2.5.
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3. Differentiability of A(t)1/2 (concrete results)

Let Ω be a region in Rn with the infinitely differentiable compact boundary
9Ω, and let [0, T] be a closed interval. We take H=L2(Ω), V^H^Ω) and set

a(t;u,v)=\ \±aij(t,x)ξ^^+kuϋ}dx + \ h(t, σ)uvdσ ,

u,

where ai} is a real-valued funciton defined on [0, TJxΩ, h is a real-valued
function defined on [0, T] X 9Ω, and k is a real number.

We would like to prove that a(t\ , •) satisfies all the conditions a)^h)
mentioned in section 2, assuming that

2) an{ty x)=aji(t, x)
3) there exists a constant δ '>0 such that

4)
where ^2([0, T]xΩ) (resp. ^2([0, T]x9Ω)) is the set of all twice continuously
differentiable functions defined on [0, Γ ] χ Ω (resp. [0, T]X9Ω) with bounded
derivatives up to the second order.

Then it is easy to see that, if k is sufficiently large, the hypotheses 1)^4)
imply a)^h) except f). Thus the only thing to verify is that:

Theorem 3.1. For any l/2<p<3/4

\ά(t; u, v)\£KM(tYu\\Q\\A(ty-9v\\o, u^g)(A(tγ)y vtΞH^)

holds with some constant Kp independent of t.

Proof. We first note that in the present case A(t) can be precisely described
as a differential operator with the domain in H2{ίϊ). Actually we have

Lemma 3.2. Let

and let

B(t, σ;D)=± a^t, σ)Vi{σ)-^-+h(t, σ) ,
ί y=i oXj

where v(σ)={yι(σ), •••, vn(σ)) denotes the outer normal vector at cr^9Ω. Then
A{t) coincides with:
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3){A(t)) = {«Gff2(ί]); B(t, σ; D)u = 0 on 9Ω}

A(t)u =

For the proof see, for example, [6].

From this fact we derive the following inequality.

Proposition 3.3. For any 0<θ< 1/2

(3.1) \ά(t; uy v)-(d(t)A(t)uy v^^CWuWw

holds with some constant Cθ independent of t and with some real-valued function

such that

(3.2) sup \d(t)\^KΩ)<ooy

where \ \^UQ\ denotes the norm of the space ^\Ω).

Proof. ά(t; uy v) is written in the form

where

β(ί; «, v) = ± \ άo(t, x)$L ^dx+ \ h{t, σ)uvdσ

h,ft, x) = ~ a^t, x) , h(t, σ) = | - h{t, σ).
at ot

According to the trace theorem, the inequality

(3.3) ll IU.Λ. Q^Ctll IUo

holds for any ί>l/2, hence we obtain

If huvdσ ^ C 2 | | M | | 0 > 9 J M | 0 J 9 Q

I JdΩ

with any —ίj2<θ<lβ. In this section Cl9 C2, ••• denote constants determined

by aij9 h, Ω and θ, and hence they are independent of u, v and t.

Next, we would like to estimate the integral

(3.4) ί h,,%-ψ-d*,
JΩ dXi dXj

But the right hand side of (3.1) suggests that integration by parts in a certain

sense is required. Therefore it may be convenient to change (3.4) to a sum of

integrals in the space Rn or R% introducing a system of local neighborhoods and

a partition of unity on Ω.
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Let {Uk}0^k^ι be a finite open covering of Ω such that ί/0CΩ and that, for each
l^k^l9 there exists an infinitely differentiable mapping πk from Uk to

such that π^1 is also an infinitely differentiable mapping from Vk to Uk, πk map-
ping Uk Π Ω to Vk Π Rl and C/fe |Ί 9Ω to F* Π {jy»=O} with the condition that

(3.5) (9y»/9 î, —, QyJdxM)\xssa. = —v(σ), σ E ί7ΛΠ 9Ω .

Let {φ*}o^^/ be a partition of unity such that, for each O^A^/, φA is an
infinitely differentiable non-negative function with the support in Uk and that

2 φί(Λ?) = 1 on Ω .

Then we can write (3.4) in the form

du dv j
(3.6) I α f V — ^— ώc = Σ <*i

It is clear that for any

It i i , Φ k ^ ^
U Q 9^, 9Λiy

We shall first consider the case where k=0 in (3.6). According to ParsevaΓs
theorem we have

ί n3\aijΦ^\βϊ^ϊ

therefore with any 0 < # < l

•i o,Rn

whence

When l^k^l, ^yields

ρ.«=ijR
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where

If ή'Φw, using the partial Fourier transform £F' in the variables y\ we have

7 , du 9 / , - \ T l f ° ° f L i du 9 / , - \ 7 / 7

ί **V ^ 9 y / V "̂  I Jo JΛ""1 M r 8y, 9 Λ

 v r * ' * *

therefore with any 0

applying the inequality

II IL2C0.00 s jsr.CΛ—*))

which is valid for any ί^O, we obtain

whence

When q=n, by integration by parts in the variable yny we have

(3.7)

(3-8)

It is easy to observe that for any l^p^n

B oyp

It κ^-{btnφk)ψ-
1JR+ oyn oyp

Let us estimate (3.7) and (3.8). If p^n in (3.7), we shall repeat the same
argument as in the case where q + n, and hence we conclude that
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IL
with any 0 « ? < l . If pΦn in (3.8), we have

(3.9)

Since

with any — l/2<0<l/2, it suffices to estimate (3.9). According to ParsevaPs
theorem it follows that

therefore with any 0«9<l/2

{ L ' ? ί ' 1 + 2 Θ ' ff/[^]'2dξf

the trace theorem (3.3) then yields

^ C u | |φ*«| |1+β,Λ« I \bpnφkv\ \λ-βtRι

Thus we have obtained the desired estimates of (3.7) and (3.8) in the case where

There remain two integrals now:

Since , Lemma 3.2 implies

«'i=i OX \ OX I

9
on 9Ω,
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therefore in the local coordinates 32M/9J» is written in the form

dyl

where

(3.10) ^ = » Π i T +

and Ak is a differential operator of the first order; and in view of (3.5) dujdyn in
the form

(3.11)

where

(3.11) yields

dy
= Σ bp~d.hu on VkΠ {% = 0} ,

J ^.Λ 5 ,
then, as was already verified,

with any 0<<9<l/2. On the other hand (3.10) yields

+ \ n bnnφk{Aku)φkϊ>dy+ \ bnJkφk{A{t)u)φkvdy.

But it is now easy to see that

bnnφl{Aku)vdy

and that

with any
equal to

d2u φkvdy

because of (p, q)-^(n, n). Finally, since the last integral is
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we shall take d(t) as

Then it is obvious that d(t) belongs to B\ίΐ) and satisfies (3.2).
Thus we have demonstrated Proposition 3.3.
From (3.1) we have

\a(t; uy v)\^\(d(t)A(t)u, V)\+C9\\U\\I+$\\V\\I-Θ

But, according to the Heinz inequality, the inequality

which follows from (3.2) implies

for any l / 2 ^ p ^ l , hence it follows that

I(d(t)A(t)u, v)\ = \(A(t)% A{ty-»d(t)v)I

for any l / 2 ^ p ^ l .
Therefore, we complete the proof of the theorem with p=(l-f 0)/2, if we

show

Lemma 3.4. For any O^ctίSl, <D(A{t)a) is continuously embedded in

(3.12) H«ll2.^Cβ||^(ί) «|lβ, u<=<3){A{t)»),

with some constant Ca independent of t.

Proof. Lemma 3.2 jointed with the a priori estimates of elliptic operators
yields

<£{A{t))cH2{CΪ)

with the inequality

INI 22SCi 8P(ίHo, u<Ξ3){A{t)),

which shows that (3.12) is valid when α = l . (3.12) is trivial when α = 0 ;
). Then, since 3){A{t)a) (resp. HJiβ)) is obtained as
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the intermediate space between <D{A(t)) and <D{A(tf) (resp. H2(Ω) and H0(Ω)),
(3.12) will follow for any 0<a<l from the interpolation theorem applied to the
identity mapping on L2(fί) (see [6]).

4. Application

Let us consider the Cauchy problem of a hyperbolic equation

(4 1)

+c(t, x)u+f(t, x) in (0, Γ)XΩ

Σ «,,(*, σ)Vi{
du

o n X

in

(cf. [2]), where α, is a real-valued function defined on [0, Γ ] x Ω and aijf h are
real-valued functions satisfying the hypotheses 1)~4). We also assume that
aiy bi and c satisfy
5) flt.G^([0,r]xn)

6) Σ ai(f> o)Pi(σ) ̂  0 on [0, T] x 9Ω

7) i^e^ίtO, Γ]xfl).
The equation (4.1) is rewritten in the form

t

χ)-±ψi(t, x))ψ-+(c(t, x)+k2)u+f(t, x)
J=I oXj I ΌXi

with some constant kλ such that

(4.2) ft,2= in [0, Γ]xΩ

and with some sufficiently large constant k2.
Therefore, if we define operators A(t)y B(t) and C(t) as follows:

£)(A(t)) =
iιj — 1

—
OX:

, σ)« = 0 on

A(t)u =-± £-Lj(t, x
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1 C{t)u = ±(b£t, x)-±ψi{t, x))^+{c{t, x)+k2)u;

then the problem (4.1) may be interpreted as the Cauchy problem of the evolu-
tion equation

(4.3)

B{t)ψ
dr at

u0

in L2(Ω).
Before proceeding to the problem (4.3), we verify some properties of the

operators A(t), B(t) and C(t). According to Lemma 3.2, A(t) is associated with
the form

a{t\ u,υ)=[ ( Σ a^t, x)^- ^-+k2uΰ)dx+\ h(t, σ)uvdσ
jQli,y=i dXi oXj ) JδQ

on H1(Ωs)xH1(Ωl). Hence the results obtained in sections 2,3 are applicable
to A(t); in paticular, Theorem 2.2, Corollary 2.7 and Theorem 3.1 yield that

Lemma 4.1.

A«\ (dAvηdt)A-ί/2(ΞC\[0, T]; Xa(Hx(Ω)9

We next have

Lemma 4.2.

(4.4) Re(B(t)u, u)^Q, u&Hx(Ω).

Proof. By integration by parts we obtain

-kS \u\2dx)

= t ( Σ αiVλ Iu I *dσ- \ ( I ! %±+ 2k) \u | Ux,
JdΩ\»=l / JΩ\i = l OX} I

hence the lemma follows from 6) and (4.2).
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Finally, we easily verify

Lemma 4.3.

B, C<=C\[O, T]; XJiH^Ω), L2(Ω))).

Now, in view of Lemma 4.1, we set

v0 = iA{t)ι'zu

1 dt

Then (4.3) is reduced to the Cauchy problem of the evolution equation

(4.3)
(vo(0)\(uΛ

L2(ίl)
in the product space X ,where

L2(ίl)

o

It is obvious from Lemma 4.1 and Lemma 4.3 that

= X
(2{)

, T]; Xi X ).
\L2(Ω)J

We are now able to apply Theorem 1.1 to solve (4.5) with

() ()
E= x , F= x .

L2(Ω) HX(Ω)

Indeed Lemma 4.1 and Lemma 4.3 also imply that

φ , T]; Xa(F,E))

([O, T];Xt(F9E)).

Thus the only thing to verify is that, for each O ^ ί ^ Γ , Sl(ί) generates a con-
traction semi-group on E. But, as may be well known, this assertion is equi-
valent to:

Proposttion 4.4. For each O^t^T, §l(£) is a maximal dissίpative operator
inE.
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Proof. For any ( u ] e F , we have

\ u)+(B(t)v, v)

= 2ί Re (A(t)1/2u, Ό)+(B(t)υ9 v).

Hence it follows from (4.4) that

which shows that 5l(£) is dissipative. We verify that St(ί) is maximal from

the fact that 2I(ί) has the bounded inverse

onE.
We conclude this section with noting that Theorem 1.1 is established by

making use of the theorem of Kato and Kobayasi. For this theorem see [4] or
[5], We shall here follow the notations in [5].

Proof of Theorem 1.1. It is sufficient to prove that {—(Sl(f)+2J(*))}o£isr
satisfies three hypotheses of the above theorem stated in [5]. By an elementary
calculation, (I) is verified from the hypothesis that §ϊ(£) is the generator of a
contraction semi-group and from (1.4). (II) is obvious from (1.4) and (1.5).
In the case where the conditoin (1.6.1) holds, we shall take

S(t)= 1+S(f), O ^ f ^ Γ .

Then (III) follows from (1.5) and (1.6.1). In the case where (1.6.2) holds, we
shall take

S(t) =

with some constant β> sup |β3(0ll_/ΎE) Then (III) follows from (1.5) and

(1.6.2). Thus we have completed the proof of the theorem.
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