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1. Introduction

Let H and V be two Hilbert spaces, V' being densely and continuously
embedded in H. Let a(-, <) be a continuous symmetric sesquilinear form
defined on V' XV satisfying Garding’s inequality. Then, in the usual manner,
a(+, *) defines a positive definite self-adjoint operator 4 in H, and the fractional
power AY? of A takes V as the definition domain. Thus, though the domain
9(A) itself may depend on the sesquilinear form which defines 4, the domain
D(AY?) always coincides with V. Making use of this fact, we may reduce an
evolution equation of the second order to one of the first order in which the
domain of the operator is independent of ¢.

In fact, let

(1.1) duld+ At = f(f), O<t<T

be an evolution equation in H, where, for each #, A(¢) is a positive definite self-
adjoint operator in H associated with a continuous symmetric sesquilinear form
a(t; +, +) on VXV satisfying Garding’s inequality. Assuming that A(+)¥? is
differentiable as a function with values in _L(V, H), we set

{ vy =1A(2)*u
v, = du/dt .

Then (1.1) will be reduced to the following evolution equation

(12) %( Z(l’)z 9I(t)( zj>+ SB(t)( Zf:)+F(:), 0<t<T

in the product space X, where

13 w0 = (0, “4O7), B (HOTEAOTE 0

0
(iA(t)‘/2 0 0 0
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It is clear that
|4 H
DAR) = X, %(t)e.[‘(x) .
|4 H

Since 9(A(2)) is independent of #, we are able to apply the results of linear
evolution equations in [3], [4], [5] to solve (1.2), if A(¢) and B(¢) satisfy some
further smoothness hypotheses. Indeed we know

Theorem 1.1. Let E and F be two Banach spaces such that F is densely
and continuously embedded in E. Let {(t)}o<i<y be a family of the infinitesimal
generators of linear contraction semi-groups on E such that

DAE)=F, O0=<t<T,

and let {B(t)} o<i<r be a family of strongly continuous bounded linear operators on E :

(1.4) BeC([0, TT; L(E)).
If A(2) satisfies

(1.5) AeCY[0, T]; L(F, E)),
and if B(t) satisfies one of the following conditions
(1.6.1) BeC([0, T]; -L,(F))
(1.6.2) BeC[0, T]; L(F, E)),

then there exists a unique evolution operator {1N(t, §)} o<s<i<r for {A(E)+B(t)} oxi<r-

Remarks concerning the proof of the theorem will be made in section 4.

|4
Let us choose E=x , F= X and take as (¢), B(¢) the operators defined
H |14

by (1.3). Then the conditions (1.5), (1.6.1) and (1.6.2) are equivalent to

(1.7) AreCy[0, T]; LV, H))
(1.8.1) dAYdt A= e ([0, T]; LV))
(1.8.2) dAY2dt A2 eCY[0, T; LV, H))

respectively. The first object of the present paper is to give a sufficient condi-
tion to be satisfied by the form a(¢; -, ) in order that (1.7) holds. Actually we
shall prove in Theorem 2.2 that, if there exists a constant 1/2<p=1 such that

(1.9)  1(8/on)a(t; u, o) | SK MA@ ullll A "olle,  u€DA®RY), vEV

holds with some constant K, independent of #, then (1.7) is satisfied. Either
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(1.8.1) or (1.8.2) is also to be verified. But we see that (1.8.1) jointed with (1.7)
implies that 9(A(z)) is indepednent of ¢. Indeed, suppose that (1.8.1) holds.
Since (1.8.1) is equivalent to

AdAYdt A eC([0, T]; L(H)),
it would follow from
A@)dA(t) Y dt = —dA(t)*dtA(t) 2 — A(t)V2d A(2)/*|dt A(t)
that
(1.10) AdA™YdteC([0, T]; L(H)).

Then the result follows immediately from (1.10). Therefore we have to verify
(1.8.2) in the general case where 9)(A(t)) depends on ¢ (cf. [1]).

The second object is to prove that, if H=L,(Q), V=H,(Q) and a(t;-,*) is
of the form

a(t; 1, 0) = | {2 a, (t, x) O @_+ku@}dx+s W, o)uvde ,
aliij=1 ox; 0x; 20
u, veH(Q),

then the sufficient condition (1.9) is verified. We shall show by Theorem 3.1
that (1.9) is satisfied with any 1/2<p<3/4, estimating (0/0¢)a(t; u, v) by
[lullirollvlli-9 (0<0<1/2) and using the fact that D(A()*)(0<a<1) is con-
tinuously embedded in H,,(Q).

As an application we shall consider in section 4 the Cauchy problem of a
hyperbolic equation of the second order.

We here describe the notations which will be used throughout the paper.
Let E, F be two Banach spaces. L(E, F) denotes the space of all bounded
linear operators from E to F with the operator norm ||+ || L(E,F) L(E, F) denotes
the space L(E, F) equipped with the strong topology. L(E, E) (resp. -L(E, E))
will be abbreviated as L(E) (resp. L(E)). C*[a, b]; -L(E, F)) (resp. C¥([a, b];
L(E, F)) is the set of all k-times continuously differentiable mapping from the
interval [a, b] to L(E, F) (resp. L (E, F)). We shall write C([a, b]; -L(E, F))
(resp. C([a, b]; L,(E, F))) instead of C°([a, b]; L(E, F)) (resp. C%([a, b];
L(E, F))). Let QCR"be a region. H(Q) (s=0) denotes the usual Sobolev
space and ||+||, o denotes its norm. We shall abbreviate ||+||, g as ||+||, if there
is no fear of confusion. As usual we also use L,(Q) to denote the space Hy(Q).
The inner product of L,(2) is denoted by (-, *).

2. Differentiability of A(t)"? (abstract results)

Let H (resp. V) be a Hilbert space with the norm |+ | (resp. ||+|[) such that
V is densely and continuously embedded in H. Let {a(t; +, *)}osisr be a
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family of sesquilinear forms defined on V' X V. We assume that

a) a(t; u, v) = a(t; v, u), u,veV
b) la(t; u, v)| = Mllul| [1o]], u, vV
c) a(t; u, u)=9||ul?, eV

with some constants M, and §>0 independent of 7.
Then, for each 0=<¢=<T, a closed linear operator A(¢) in H is defined from
a(t; -, +) in the usual manner:

D(A(t)) = {usV; there exists f € H such that
a(t; u,v) = (f,v), vel’}
Aty = f;

owing to a) and c), A(Z) is a positive definite self-adjoint operator in H, A(t)=3.
It is also verified that

DA@)2) =V

with equivalent norms (see [7], English translation, Theorem 2.2.3).
We also assume that, for each u, vEV,a(-;u, v) is continuously differen-
tiable in ¢ and the derivative a(-; u, v) satisfies

d) la(t; u, o) | < M|lull |12l u, vV
e) lim sup | a(t; w, v)—a(s; u, v)| =0, uclV
t>s |vll=1

with some constant M, independent of ¢.
Then we have

Lemma 2.1. For each »=0

2.1) (A AA()ECHO, T1; LU(H, V))
with the following inequalities

22) 10/ AD) | apy =5 ;};8

23) ||<a/at)(x+A(t»-luI(V)g(%)"z—]‘ﬁﬁ#5.

Proof. From the equality

(A@)F—AE)7S, §) = als; AW, A()7g)—alt; AD)Y, A()78), fg€H

we obtain

(2.4) (dAQ)7/dr)f, &) = —a(t; AD)S, A1)7g)»

which, together with the hypothesis €), yields
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dA~YdteC([0, T); L(H, V)),

whence (2.1) for A=0 follows. For A>>0, we shall repeat the same argument
taking the form

a)(t; u, v) = a(t; u, v)+Nu, v), u,velV
which defines A+ A4(t). (2.1) is then obtained from
@25)  (@OOAAWD)Y, &) = —alt; AAD) T, +AD) )
instead of (2.4).

Next we shall show the inequalities (2.2) and (2.3). (2.5) together with d)
yields

[1(8/8t)(AA+-A() M| _pery < Mall(vAA®) 1 i, vy -
Then (2.2) follows from

IOA®) s, V)g(%%s_))m.
(2.5) implies
(2.6)  a(t; (8/o)(A+A@) Y, v) = —a(t; W+A@) T, v), vEV.
Taking v=(8/0t)(A-+A(2))"'f and using c), d), we obtain
3lI(3/ot)(n+-A(®) Il = My||(A+A@) I -
Then (2.3) follows from

o+ ary= (%) 1

We may now state

Theorem 2.2. In addition to the hypotheses a)~e), assume that there exists
a constant 1/2<p=1 such that

£) la(t; u, o) | =Ko | AQ@) ul | @) 0], € D(AQ)), vEV

holds with some constant K, independent of t. Then AY? is a strongly continuously
differentiatle function with values in L(V, H):

AeC[0, T]; LV, H)).

Proof. We first note that the hypotheses d) and f) imply the similar in-
equality for any 1/2<v<p:

Lemma 2.3. Forany 1/2Zv=<p
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2.7) la(t; u, 0)| <K, |A@)u| | At 0|, uweD(A(2)"), vEV
with some constant K, determined by K, and v.

Proof. Because of (2.4), f) implies
A(t)°dA(2)7 [dt A(t) e L(H)

with

1A(tydA(2)dt AQR)ll_pipy =Ko -
Similarly d) implies

A(ty2dA(2)™dt A(t) > e L(H)
with

Ay dA ()t AW | ey <" = K

Therefore, according to the Heinz inequality, we conclude that
A(2)'dA() Y dt A(t) Y L(H)
with

v-1/2

/ p-v
1Aty dA@) LAY ppry <Ko~ 12Ky 102,

which conversely implies (2.7).

Generally, when A4 is a positive definite self-adjoint operator, its fractional
power is defined by means of the spectral resolution of 4. But, in view of
Lemma 2.1, the expression by the Dunford integral will often be convenient for

our purposes.
According to this A(¢)~*2 is written in the form

A1) = i S:x“’z(x—l—A(t))“dx .

Then our theorem will be equivalent to proving that 4~Y%is strongly continuously

differentiable from H to V:

A2eCN[0, T]; L(H, V)).
(2.1) jointed with (2.2) yields

ATRECY(, T1; L(H))
as well as

aA(0#de = L | N+ AWm)

(4
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Therefore, our next step of the proof will be to estimate the product
((dA@)2|dy)f, A(t)2g) by | f||g| taking fEH and gV arbitrarily.
Owing to (2.5) this product is described as

((dA(2)~"2|de)f, A(1)"*g)

= — L vite; Ay, A0+ A0)

4

From f) we have

[((dA@)~"2(dn)f, A(2)"8)]

< e ("3 40O A0) Y 1A+ A0) gl

Therefore the desired estimate will follow from

Lemma 24. For any 0<a, B<1

[ n-m ) O A AP O-HAWD) g
0

=Lslfllgl, fgsH
holds with some constant Lqog determined by o, 3 alone.

Proof. It is obviously sufficient to show that
[ovlaer o+ A@) frasLal 15 feH
0

with some constant L, determined by o alone. But this inequality is easily
established with the aid of the spectral resolution (see [7], English translation,
Theorem 4.7.2).

Since we may assume 1/2<p<1 owing to Lemma 2.3, Lemma 2.4 yields

|(dA@)7dr)f, A(tyrg)| <Belewn=o | f||g|,  feH,geV;

/1

and hence we conclude that
dA@) Pldte L(H, V)
with

(2.8) (At (dt|| gz V)<I_<.‘lIiL<1/2-_P) ,

= adv
Thus our final step is to verify

dA2dteC([0, T]; L(H, V).
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But, since (2.1) together with (2.3) yields that
(dA4-7janfeC(([0, T1; V)

if f 7V, this follows from (2.8) and the density of V" in H.
Next, we further assume that, for each , v €V, a(-; u, v) is twice con-
tinuously differentiable and the second derivative &(-; , v) satisfies

2) la(t; u, o) | <Ml lloll,  u, vEV
h) lim sup |d(¢; u, v)—d(s; u, v)| =0, u, vV
S

with some constant M, independent of 2.
Then we have

Theorem 2.5. Under the hypotheses a)~h), A~'7? is a twice strongly con-
tinuously differentiable function with values in L(V):

A72eCY[0, TT; L(V)).

Proof. The assertion of the theorem is an immediate consequence of the
following lemma.

Lemma 2.6. For each .=0
(2.9) (AA() e[, T); LH, V)

with the inequality

(2.10) ||<62/6t2)<x+A<t))-1||_C(V)§(%)‘”{2(%)2#‘;&2};&5.

Proof. The first assertion (2.9) follows from h). The second inequality
(2.10) is obtained from

a(t; (°[or)(M+A(2) 7, v)
= —2a(t; (0/0t)(M+A@) 7Y, v)—d(t; (A+A())7Y, )

which follows from (2.6).
Therefore, as a corollary we conclude:

Corollary 2.7.
dA?|dt A~ 2eC\ ([0, T1; LV, H)).
Proof. Because of
dA(t)2|de A(t)™ V2 = — A(¢)V?d A(¢)"/dt , 0=<t<T,

this is a direct consequence of Theorem 2.2 and Theorem 2.5.
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3. Differentiability of A(#)V? (concrete results)

Let Q be a region in R” with the infinitely differentiable compact boundary
0Q, and let [0, T'] be a closed interval. We take H=L,(Q), V=H,(Q) and set

ou 05

Ox; 0x;

a(t; u, v) = SQ {j;,:la,-,-(t, x) —l—kuﬁ}dx—i—sm h(t, o)uvdo ,

u, veH(Q),

where a;; is a real-valued funciton defined on [0, T']XxQ, & is a real-valued
function defined on [0, 7] X 3}, and % is a real number.

We would like to prove that a(t; -, -) satisfies all the conditions a)~h)
mentioned in section 2, assuming that
1) a;€P([0, T1xXQ)
2) a;i(t, x)=a;(t, x)
3) there exists a constant 8 >0 such that

Staylt, DEEZYIES, R

4) heF([0, T1x0Q),
where B[0, T]x Q) (resp. BX([0, T]x 0Q)) is the set of all twice continuously
differentiable functions defined on [0, T']Xx Q (resp. [0, T]x 0Q) with bounded
derivatives up to the second order.

Then it is easy to see that, if % is sufficiently large, the hypotheses 1)~4)
imply a)~h) except f). Thus the only thing to verify is that:

Theorem 3.1. For any 1/2<p<<3/4
la(t; u, o) | <K llA@) ullollA@) lly,  w€D(A(2)), vEH(Q)
holds with some constant K, independent of t.

Proof. We first note that in the present case A(t) can be precisely described
as a differential operator with the domain in H,(Q). Actually we have

Lemma 3.2. Let

A(t, x; D) = — Méq g (a,-j(t, x) £0—>+k ,

ox; j
and let

B(t, o; D) = 3} ayi(t, o) v,.(o)%—i—h(t, ),

6,j=1

where v(a)=(vy(c), -+, v,(c)) denotes the outer normal vector at c<08Q. Then
A(t) coincides with:
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D(A(t)) = {usHAQ); B(t, o; D)u =0 on 00}
{ A(t)yu = A2, x; D)u .

For the proof see, for example, [6].
From this fact we derive the following inequality.

Proposition 3.3. For any 0<0<1/2

(3.1) la(t; u, v)—(d()A(2)u, v)| = Collulliro,0llv|li-0,0 5
uc P(A(t)), veH,(Q) .

holds with some constant Cy independent of t and with some real-valued function
d(t)e B(Q) such that

(32) ogtlélf;, ld(t) |_t31(g)< o0,
where | - | gq) denotes the norm of the space B'(Q2).
Proof. a(t; u, v) is written in the form

a(t; u, v) = .é:ll Sndij(t, x) gu

8i’dx+§ it, oyivdo ,
i a i 9Q
where

. ; 0
ity )= D ai(t, ), it )= hit, ).

According to the trace theorem, the inequality

(3'3) ”'“5—1/2,00§Cl||'”s,0

holds for any s>1/2, hence we obtain

} Sanim@do‘ 'é Cillullo,a0ll?llo,00

§03||”||1+o,n“7)”1—o,n

with any —1/2<§<1/2. In this section C,, C,, -+ denote constants determined
by a;;, k, Q and 0, and hence they are independent of %, v and ¢.
Next, we would like to estimate the integral

. Ou v ..
34 | a2l Pa, 1sijsn.
(34) o o, o, b=
But the right hand side of (3.1) suggests that integration by parts in a certain
sense is required. Therefore it may be convenient to change (3.4) to a sum of

integrals in the space R" or R’ introducing a system of local neighborhoods and
a partition of unity on Q.
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Let {U,}<i<; be a finite open covering of Q such that U,CQ and that, for each
1=k=<], there exists an infinitely differentiable mapping =, from U, to

Vi={yy=0") 1y 1<, —1<y,<1}

such that z;! is also an infinitely differentiable mapping from V), to U,, 7, map-
ping U,NQ to V,N R} and U,N0Q to V,N {y,=0} with the condition that

(3.5) (8y,/0%,, +++, 0y,/08,)1-e = —1(c), o€U,NBQ.

Let {p:}o<i<: be a partition of unity such that, for each 0=<k=/, ¢, is an
infinitely differentiable non-negative function with the support in U, and that

Néix)=1 on 0.
k=0
Then we can write (3.4) in the form

. Ou 0v j 2 Ou 00
(3.6) Sa,,a % d_hg it g g

:gs ud)kﬁl‘i(‘bk‘v)dx ES ud’k gu g¢k vdx .

It is clear that for any 0<k=</

[ g gvods|<Cllelhallolloa.-

We shall first consider the case where £=0 in (3.6). According to Parseval’s

theorem we have
ou 9 = H [ u¢’o ]"’EJ

ox; ox, ——(po0)dx

[ o

therefore with any 0<d<1

<{1 el ]

Slagolt |, Noslhonne,

d*f} {Sm |£,120-9| Fl o] | 2dE }1/2

whence
§05||u||1+o,o|]7)”1—0,0 .
When 1=k=], 7, yields

o D pitvde =3 [ bt o O (9i0My

S U¢ka 0x; Yy 0¥,
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where

. 63’ 6y a(x ) xn)
bpq = a;; Jx axp 6xq s Ji= m .

If g==n, using the partial Fourier transform &' in the variables y’, we have

u 0 ,, | _ I _all_ i \dv’

s: S -1 [ pq‘i’k ]E F'[v]dE'dy,

’

therefore with any 0 <6<1

=

M‘i)k‘—‘(yn) _1“¢kv(yn)|ll—9,lt"“dyn

||<}5k‘1)|]L2(o,m P Hy_o(R*1) 5

pq¢’ A

112200, 5 Hg(R"™1)
applying the inequality

“ * “Lz(o,oo H HS(R"‘l))éu * Hs,R’jL

which is valid for any s=0, we obtain

=Cs

0
b g, 100t

0. R
whence

= Collullyro,0ll2ll-0,0 -
When g=n, by integration by parts in the variable y,, we have

ou 3 0 ou , _
S " pn<I>k v)dy = S ! @(bpn%)é}‘fl’kvdy

?

Pivdy

o%u
3.7 —\1 b
( ) SR'_; pn¢k ay” 8

b4

8“ s ’
(3.8) —Sm_lb,,@,,gy_p(p,,v(y , 0)dy’ .
It is easy to observe that for any 1< p=<n

Hn+ ay"( ’”¢k)—¢k”dy’<08”“”1 allvllo,a -

Let us estimate (3.7) and (3.8). If p=n in (3.7), we shall repeat the same
argument as in the case where ¢=#, and hence we conclude that
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%u - ‘
b, ady|<C, _
o 5 03| S Colllslolh-v

with any 0<d<1. If p=n in (3.8), we have

Sm-ll’»n‘l’k %up $i0(y’, 0)dy" = — SR,. Opn iu<;l>,,'vd}’
(3.9) + Sm_lb,,,,a () piody’ .
b
Since
' SRn 1y qb,, <n 8¢k |Ibpn¢k7)”0,R""1

=Gyl lul |1+o,91 || |1-o,n

with any —1/2<<6<1/2, it suffices to estimate (3.9). According to Parseval’s
theorem it follows that

\SR.. g

therefore with any 0<<<<1/2

]SRu-lgﬁ’[@u]de, \ ’

1/2 /2
S IREARIE L [ i AR B OV (4]
= I|¢ku||1/2+9,R"—lllbpnd)k'v“l/z_e,}g"—l ,

the trace theorem (3.3) then yields

=Gy |¢ku| |1+o,R’; | |b,¢m<;’>/z'v|lx—e,lsc','r
écm”“”uo,n”v”l-o,o .

Thus we have obtained the desired estimates of (3.7) and (3.8) in the case where
p*n.
There remain two integrals now:

S ¢k ¢k7’dy S b ¢k§2£¢k77dy-
R e TR T gy

Since u€ 9(A(t)), Lemma 3.2 implies

* 0 0 .
B i,i2=1 %(dii 8_u>+ku = A(t)u n Q,

Xj

i a;v; — 6 O =0 on 0Q,
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therefore in the local coordinates 8%/dy; is written in the form

0%u - 5 0%u

3.10 = _Ou
G100 T a0y,

+Ayt, y; Dyu+d,A(t)u  in V,NRY,

where

N, 0y Oy
Bargl D) )Fmm),

— (N, s 6y,.>
d = (-'21 ”6x ox;/ ’

and 4, is a differential operator of the first order; and in view of (3.5) du/dy, in
the form

(3.11) Ou S35, % g on Vin{y, =0},
Oy, #=1 "0y,

where
b :(éa;-vi—a&)dk, 1=p=n—1.
» 225 =p=

(3.11) yields

then, as was already verified,
= Cyllulliro,all?ll1-0,0

with any 0<<6<1/2. On the other hand (3.10) yields
S b ¢k§2*u¢k"7dy = 2 S bpobr—— o — psTdy
RN oyl w55 mm Jrn " Z ay 6y
+ SR,, bnbe( Asti)prody-- Lﬂ boudis(A(2y0)biTdy .
But it is now easy to see that

[ B Auyody | <Cullulalielos

and that

3 0%u sy <
" by paPr ¢kvdy =CISHu”1+O,Q”v||1—9,Q
9y,0y,

R,

with any 0<<6<1 because of (p, g)#(n, n). Finally, since the last integral is
equal to
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(Gudipi e (A(t)u), v)
we shall take d(z) as

(1) = }'3(2 s Gy,,)d ST

k=1 j=1 a 6
s 00 ay,,)( QLQ)‘ 2
ZJ(MZ:la,, dx; Ox 'E_Iau 0x; Ox; P

Then it is obvious that d(z) belongs to B'(Q) and satisfies (3.2).
Thus we have demonstrated Proposition 3.3.
From (3.1) we have

la(t; u, v)| < [(d()A(t), ) [ +Collullsollollie  uED(A(F)), vEH ().
But, according to the Heinz inequality, the inequality
1Aty 2d(@)ollo=Ciell A(2)?0ll,  vED(A(2)")
which follows from (3.2) implies
1A~ d(@)oll=CullA@®) "l vEDAE))
for any 1/2<p=<1, hence it follows that
|(d(®)A()u, v) | = |(A(&)'u, A(2)""d(2)2)]
= CullA@2) ullol | A(2)'~ "]l

for any 1)2<p=<1.
Therefore, we complete the proof of the theorem with p=(140)/2, if we
show

Lemma 34. For any 0= a =1, D(A(t)") is continuously embedded in

Hy,(Q):
(3.12) lulle<CallA@®)*ull,  #=D(A(®)"),
with some constant C, independent of t.

Proof. Lemma 3.2 jointed with the a priori estimates of elliptic operators
yields
D(A(H) CHYQ)
with the inequality
llull.= Cysl| A()ull » us (A1),

which shows that (3.12) is valid when a=1. (3.12) is trivial when a=0;
D(A(t)°) = Ly(Q)=HyQ). Then, since D(A(t)%) (resp. Hu(Q)) is obtained as
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the intermediate space between 9D(A(?)) and D(A(t)°) (resp. H,(Q) and Hy(Q)),
(3.12) will follow for any 0 <a <1 from the interpolation theorem applied to the
identity mapping on L,(Q) (see [6]).

4. Application

Let us consider the Cauchy problem of a hyperbolic equation

0%u o%u
=Bt 9 Tt a9 O

+c(t, )u+f(t, x)  in (0, T)xQ
@) { St (o) Ethit, ou =0 on [0, T]x 002

u(0, x) = uy(x) in Q

g_;‘(o, x)=wu(x) inQ

(cf. [2]), where a; is a real-valued function defined on [0, 71X Q and ay;, k are
real-valued functions satisfying the hypotheses 1)~4). We also assume that
a;, b; and c satisfy

5) a,eB([0, T]xQ)

6) ga,.(r, Fwi@)=0  on [0, T]x 00

7) b, ceBY([0, T1X Q).
The equation (4.1) is rewritten in the form
u_ (& (]
R (Brattn 2

i_kl )gltl—!_ 21 ox; < aislt x) >

R AR CURE I O) F S (O RS SEIOR)

ox

with some constant &, such that

(4.2) 1_—1/22 0a; “hx (0, TIx0

and with some sufficiently large constant &,.
Therefore, if we define operators A(t), B(t) and C(z) as follows:

D(A®) = {ueHz(Q); St a)v;(a)%+h(t, =0 on an}

| A= — 3 ( at, 1) 2 )—{—kzu
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D(B(t)) = H(Q)
B(tju = Pajt,

{ 2CW) = Hi©)
Cloys = 538 931 526 9) 3

U

then the problem (4.1) may be interpreted as the Cauchy problem of the evolu-
tion equation

‘fﬁ’; B(t)——A(t) +k1 “iCutf),  0St<T
(4.3) 1 w(0) = u,

@(0) =1U

dt
in L().

Before proceeding to the problem (4.3), we verify some properties of the
operators A(t), B(¢) and C(¢). According to Lemma 3.2, A(f) is associated with
the form

au 0v

a(t; u, v) = S {2 a;; —i—kzu'v}dx—}—s h(t, o)uvdo

on H\(Q)x H,(Q). Hence the results obtained in sections 2,3 are applicable
to A(t); in paticular, Theorem 2.2, Corollary 2.7 and Theorem 3.1 yield that

Lemma 4.1.
A2, (dAV]dt) A2 CY([0, T1; L(H(Q), L(Q))).
We next have
Lemma 4.2.
(44) Re(B()u, )<0, ucH(Q).

Proof. By integration by parts we obtain

2 Re(B(t)u, u)=2Re{ggna 2;‘ adv—h|_ |u|2dx}

i

= (Zem)luldo—| (& gz‘+2k)lu|2dx,

hence the lemma follows from 6) and (4.2).
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Finally, we easily verify

Lemma 4.3.
B, CeC\([0, T]; L{H(Q), L))
Now, in view of Lemma 4.1, we set
v, = 1A(t)u
du

1= —.

dt
Then (4.3) is reduced to the Cauchy problem of the evolution equation

£5)-w0()e () (). omist

(4.3) 0)
(vj(0)> - (u:)
L)
in the product space >z ),where
Ly(Q

[0 iA@w __ ((dA(2y"dn)A()~" 0
A(t) = (iA(t)l/z B(?) ) » B = —iC(t)A(t)* )

It is obvious from Lemma 4.1 and Lemma 4.3 that

H(Q) L(Q)
DA = x ., Bel(0, T; L| x ).
H\(Q) L(Q)
We are now able to apply Theorem 1.1 to solve (4.5) with
L) Hl('Q')
= x , F=
L(Q) HI(Q)

Indeed Lemma 4.1 and Lemma 4.3 also imply that

AeC[0, T]; L(F, E))
BeC[0, T]; LAF, E)).
Thus the only thing to verify is that, for each 0<¢<T, (¢) generates a con-

traction semi-group on E. But, as may be well known, this assertion is equi-
valent to:

Proposttion 4.4. For each 0<t<T, A(t) is a maximal dissipative operator
in E.
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Proof. For any ( u )EF, we have
v

(II(t)( : ) , (: )) = i(A(t)u, v)-+i(A(t)"*0, u)+(B(2)v, v)
= 2i Re (A(t)"?u, v)+(B(¢)v, v) .

Hence it follows from (4.4) that
Re)(), (“)=0, (*)=o0),

which shows that (¢) is dissipative. We verify that (#) is maximal from
the fact that 2(¢) has the bounded inverse

1 (A@®)VEB@)A@R): —iA(t)v2
%[(t) - ( _iA(t)_l/Z 0 )
on E.

We conclude this section with noting that Theorem 1.1 is established by
making use of the theorem of Kato and Kobayasi. For this theorem see [4] or
[5]. We shall here follow the notations in [5].

Proof of Theorem 1.1. It is sufficient to prove that {—(A(#)+B(#))}osi<r
satisfies three hypotheses of the above theorem stated in [5]. By an elementary
calculation, (I) is verified from the hypothesis that 2(#) is the generator of a
contraction semi-group and from (1.4). (II) is obvious from (1.4) and (1.5).
In the case where the conditoin (1.6.1) holds, we shall take

S(t) = 14+A(F), 0=<t<T.

Then (III) follows from (1.5) and (1.6.1). In the case where (1.6.2) holds, we
shall take

S(t) = B+A@)+B(2), 0=t<T
with some constant &> sup ||B(2)|| LBy Then (IIT) follows from (1.5) and
0<I<T
(1.6.2). Thus we have completed the proof of the theorem.
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