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Introduction

Let (X, A, P,: 6=0) be an experiment and B a sub o-algebra of 4. It
is known and can be proved easily [9], that if {P,: 08} is dominated by a
o-finite measure then pairwise sufficiency of B implies its sufficiency. There
has been attempts to generalise this result and show that even in the undominated
case paiwise sufficiency is related to sufficiency. Pitcher [11] introduced com-
pact statistical structures, Basu and Ghosh [1] discrete statitiscal structures and
finally Hasegawa and Perlman [6] coherent experiments. It is now known
that [4] coherence is equivalent to compactness and the discrete structure a
special case of both. That these concepts are natural generalisation of domina-
tion was established by Dipenbrock [3], who showed that compactness and
coherence are both equivalent to domination by a localizable measure. Their
theorems connecting pairwise sufficiency with sufficiency is of the form “if B is

pairwise sufficient then (] BV N, ,, is sufficient”.
0,,0, ’

While experiments dominated by a o-finite measure are coherent, Rogge
[13] showed that if A is countably generated then any coherent experiment is
necessarily dominated by a o-finite measure. Thus in countably generated
situations’ in particular in the Standard Borel Case, compactness is not more
general than domination by a o-finite measure. However it is proved in [12]
that, in the Standard Borel case if P,’s are discrete then pairwise sufficiency is
equivalent to sufficiency. Since P,(x) can be thought of as density with respect
to the counting measure, a similar generalisation seems possible. This paper
centres on such a generalisation.

This paper is motivated by the work of Hasegawa.—Perlman and the
theorem of Dipenbrock. We define the notion of weak coherence, Borel locali-
zable and Borel decomposable measures—all standard Borel adaptations of known
concepts. It is then shown that experiments dominated by a Borel localizable
measure satisfying an additional measurability condition are weakly coherent.
For weakly coherent experinents we show that if B is countably generated and
pairwise sufficient then 6{1 B\ N,, ,, is sufficient.
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1. Ib this section we fix the notations and state some set theoretic results
used in the sequel.

The pair (S, S) where S is a set and S a g-algebra of subsets of S is called
Standard Borel if S is a Borel subset of a complete separable metric space and
S is the relativized Borel o-algebra on S. Suppose (S, S) and (7, T') are two
standard Borel spaces then (S'x 7, 8 X T') will denote the product space equipped
with the product o-algebra. For subsets E of SX T, E* will stand for the -
section {s: (s,2)€E} of E. We need the following facts about standard Borel
spaces, details of which can be found in [8].

(i) Let (S, S) be a standard Borel space. A subset 4 of S is Analytic if
it is the projection of a Borel set in SX T for some standard Borel
space T. Further 4 is Borel in S iff both 4 and 4° are Analytic.

(ii) Suppose E is a Borel set in SX T such that E® is countable for all s
in S then the projection of E on S is Borel in S.

(iii) Suppose E is a Borel set in SX T with E* countable for all s in S then
there are measurable functions g,, g, -+ defined on S taking values

in T such that E= ] {(s, gi(s)): s&€S}.

2. An experiment consists of a set (X, A) and a family of probatility
measures {P,: 00} on (X, A). Throughout this paper we assume that ©
is also equipped with a o-algebra C and further

(i) (X, A) and (8, C) are standard Borel.

(ii) For all 4 in A, Py(A) is measurable in 6.

Such experiments will be called standard Borel experiments.

DeriniTION 2.1. Let (X, A, P,: 6=0) be an experiment. A sub o-
algebra B of A is said to be sufficient for (X, A, P,: = 0) if given any bounded
A measurable function f, there is a B measurable function f* such that

f¥*=Ey(f|B) forallfin®

B is pairwise sufficient if B is sufficient for (X, A, Py, P,,) for every pair 6,, 6,
in ©.

DerFINITION 2.2. A family of functions fy(x) jointly measurable in 6 and x
is weakly pairwise coherent if given 6, and @,, there is an A measurable function
fo,.0.(%) such that

Jor,0,(%) = fo,(x) [Po]
f 61,02(x) = f. 05(%) [P AR

DrrINITION 2.3. fy(x) is weakly coherent if there is an A-measurable
function f(x) such that
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f(x) =fo(x)[P] forallfin®.

DEerINITION 2.4. An experiment (X, 4, P,: 0=0) is weakly coherent if
every family of weakly pairwise coherent functions is weakly coherent.
Our interest in weakly coherent experiments is due to the following theorem.

Let N,={A<€ A: P(4)=0}.

Theorem 2.1. Let (X, A, Py: 0=0) be a weakly coherent experiment. If a
countably generated sub o-algebra B of A is pairwise sufficient then B= ] B\/ N,
is sufficient. ¢

Proof. Let f be any bounded measurable function. Get f,(x) a jointly
measurable version of Ey(f | B) (see proposition 2.3 in [14]). Since B is pairwise
sufficient, f,(x) is weakly pairwise coherent. Now since (X, A4, P,: 0€0) is
weakly coherent there is an A measurable function f* such that

F¥(x) = fo(x) [Po] for all @ in ©.
Since for each 6, f,(x) is B-measurable, f*(x) is B N, measurable for each 6.
RemARk. Since B is pairwise sufficient

ﬂ B\ N, = ﬂ BVNo,,ez .
0 0,,0,

Therefore in the above theorem one can assert that (| BV N, ,, is itself suffi-
. 61,6, !
cient.

3. In this section we introduce Borel localizable and Borel decomposable
measures. These notions correspond to the well known (see for enstance [15])
localizable and strictly localizable measures, and unlike them Borel localizability
turns out to be equivalent to Borel decomposability.

DrrINITION 3.1. Let (X, A) be a standard Borel space. A measure 7 on
(X, A) is Borel localizable if there is a standard Borel space (7, T') and a Borel
subset E of T'x X satisfying

(1) O<m(E)<oo

(ii) ¢+t then m(E"NE*?) =0

(iii) for all 4in A, m(A)= 2 m(ANE?)

ter
(iv) If Bisa Borel subset of E, then {B’: t& T} has an m essential supremum
in A.

DEFINTION 3.2. A Borel localizable measure m on a standard Borel space
is Borel decomposable if there is an E satisfying (i), (ii) and (iii) of Definition
3.1 and also
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(ii)" #,%t, then E"1NE"2=(.
Any set E satisfying (i), (ii)” and (iii) will be referred to as a Borel decomposition
of (X, A, m).

We note that in case of Borel decomposability condition (iv) of Definition
3.1 is automatically satisfied. For if £ is a Borel decomposition of (X, A, m) then

for any Borel set BCE, (B! is itself Borel and acts as an essential supremum of
{B': teT}. ‘

Theorem 3.1. If (X, A, m) is Borel localizable then it is Borel decomposable.

Proof. Since m is Borel localizable there is an E satisfying

(i) O<m(E*)<oo

(ii) #,¥t, then m(E' N E%2)=0

(i) m(4)= gm(A NE?)

(iv) for every Borel set BCE, {B': t&T} has an essential supremum in A.
We will construct an E*, Borel subset of 7'X X, such that

(i) for all teT, E'=E*[m]

(ii) E*1nE*:=(.
It is easy to see then that E* will serve as a Borel decomposition of (X, 4, m).
Let {C,, C,, ---} be a countable algebra generating 7. For each 7 define F;=
ess sup E'. We now define E* by

teo;
E¥= (] F;— | F;

3
tE0; te&EC;

Then E* is Borel in T'X X and satisfies the required properties.

ExXAMPLES of Borel decomposable measures.

(i) (X, A) standard Borel and m a o-finite measure an (X, 4). Choose
T=N and {E": n N} any decomposition of (X, A) into sets of
positive finite measure.

(i) (X, A) standard Borel; m counting measure. Choose T—=X and E
to be the diagonal in X x X.

(i) X=[0,1]x[0,1], A Borel o-algebra on X. (T, T)=([0, 1], Borel
a-algebra) m(4)= Z} M(4’) where \ is the Lebsgue measure on [0, 1].

Let m be a Borel decomposable measure on (X, A) and E be a Borel decom-
position of (X, A,m). For each ¢, let m, be the measure m restricted to E*.

DeriNITION 3.3. We say that m is strongly Borel decomposable if there
is a Borel decomposition E of (X, A, m), such that for all B in A.

t > m,(B) = m(BNE") is measurable in ¢.

Note that examples (i), (ii) and (iii) above are indeed strongly decomposable.
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Example (ii) can be modified to get a decomposable but not strongly decom-
posable measure. For this choose a non measurable positive function ¢ and

set m(x)=p(x).

DrerFINITION 3.4.  An experiment (X, 4, P,: 0 €0O) where (X, 4) and (6, C)
are standard Borel is dominated by a strongly Borel decomposable measure m if
dpP,
d

(i) For each 6 in ® P, is dominated by 7 and exists.

(ii) {P,: €8} =m i.e. Py(A)=0 for all § in © iff m(4)=0.

We have assumed “strong” Borel decomposability rather than Borel de-
composability to ensure the measurability of certain functions. This is ex-
emplified by the following lemma.

Lemma 1. Assume that (X, A, Py: 0€0©) is dominated by a ‘‘strongly”
Borel decomposable measure m and let E be a strong Borel decomposition of (X, A, m).
Then for each Borel subset B of ® X T X X, the following functions are measurable
in (0, 2).

(i) (0, t)—>Py(B®") where B®*={x: (0, t, x)EB}.

(i1) (6, H)—»m(B**NE?).

Proof. (i) Let M={BCOX T x X: Py(B®*) is measurable in (4, t)}.

M contains all rectangles, is closed under finite disjoint unions and is further
a monotone class. Consequently M contains all Borel sets in © X T'x X.

(i1) Let M'={BCOXTxX:m(B%' N E") is measurable in (d, #)}.

That M’ contains all rectangles follows from ‘strong’ decomposability of .
M’ is closed under finite disjoint unions. Further, since for all ¢, m(E*)<<co, M’
is also a monotone class.

Lemma 2. Let D={(0,t, x): P(E")>0 and x€ E'} and D, be the projection
of D to the ® X X space. Then the function 6—m(D}N A) is meausrable in 6 for
every Borel subset A of X.

Proof. D is Borel in @ X T'X X. (by lemma 1). Further, for each (6, x)
there is at most one ¢ such that (6, ¢, x)eD. Therefore D, is Borel in © X X,

Let D,={(6, t): P,(E*)>0}.

D, is a Borel set in © X T such that each @ section of D, is at most countable.
Therefore (see section 1) there are measurable functions g, g;, +-+ defined on 8,
taking values in 7" such that

D,= | {(6,5/9)); 6=6}
Fix any 4 in A. Define a sequence of functions ¢y(6), ¢(0), -+ by
¢1(0) = m(Egl(O) nA)
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$(0) = mE=ONA) if g(0) * £(0)
=0 if £,(0) = £(9)

¢.(0) = m(E#ONA) if g,(0)Fg(0) for i=1, -, n—1

=0 otherwise.

Then m(ANDY)= ﬁ ¢.(0) which is measurable in 6.

Theorem 3.2. If (X, A, P,: 0 €©) is dominated by a strongly Borel

decomposable measure m, then there is a version of %(x) which is jointly measurable
m
in 0 and x.

Proof. Let D={(0, ¢, x): Py(E*)>0 and x<E'} and D, be the projection
of D to the ® X X space. Then D, has the following properties.

(i) Py(D9)=1 forall §in ®

(i1) m(DY) is o-finite for all 4 in B.
To see (ii) note that D{= (] E* and {t: P,(E*)>0} is at most countable.

t
Py(E*)>0

Now fix finite algebras A,, generating A and denote the atoms by 4, 42, -+,
A Define
K e PAf E$7(6)
fim =33 3 Py(4. NE?)

’ 2 I i $/o(x) .
(1 () EP0) A4 N EY (x)

J

where ¢/(6) are obtained from g,(0), g,(6), -++ of lemma 2 as follows. Fix some
£ outside T and declare Ef=¢.

$1(0) = £.(0)
$2(0) = £:(0) if g(0) *+ £.(6)
=£ if g,(0) = g.(9)
() = g.0) if g,(0) *+gi(0) for i=1,2,-,n—1

=E£ otherwise.

Then by a well known theorem (see [10]), since m is finite on E%0), f4x) con-
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verges] to %. Since, for each 7, fj(x) is jointly measurable in (6, x), fo(x)
m

defined by
folx) = !'im fo(x) if it exists
=0 otherwise

is a required version.
We use the next lemma in the proof of the theorem that follows it.

Lemma 3. Let D be a Borel subset of © X T whose projection on T is whole
of T Suppose g is measurable function defined on D which is constant on each t
section of D, then

£%(t) = supg(9, 1)
is measurable in t.
Proof. {t: g*(t)>a} = P,[{(6, ?): g(8, t)>a} N D]
{t: g*(t)<a} = P;[{(6, 1): g(6, )<a} N D].

where P, is the projection on the T-space. Thus being projections of Borel
sets {¢: g*(t)>a} and {¢: g*(f)<a} are both Analytic and consequently Borel,
[See section 1]. Hence g* is T measurable.

Theorem 3.3. If (X, A, P,: 0 =®) is dominated by a strongly Borel decom-
posable measure then it is weakly coherent.

Proof. Let m be the dominating measure and E be a strong Borel decom-
dP

position. By theorem 1, we choose a jointly measurable version of d—".
m
Denote by S, {(0, x): @>O}
dm .

Suppose fy(x) is weakly pairwise coherent, then by letting fy(x) to be zero
outside S, it is possible to extend f,(x) as a weakly pairwise coherent family of
functions on (X, 4, P;: 6(8)

where 0= {4,>0:2)a; =1} XOXO----++
and Py=>)aP,.
1

Therefore we will assume without loss of generality that {Py: § =8} is closed
under countable convex combinations. We will also assume for simplicity

that fy(x)=1p,(x).
We will briefly describe the idea of the proof. On each EY, P, is a family
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of measures dominated by, in fact, eqaivalent to the finite measure m,. There-
fore there is some 6’ such that Py=m, Also since I, (x)I.«(x) is coherent,
I,(x)1z+(x) will be a P, equivalent version of I, for all §. Our proof shows
that B, on E* can be defined independently of 6’ and also can be done me-
easurably in ¢z. Having got B”s we piece them together to get a B.

We now give the details of the proof. Define 2 on D,= {(6, #): Py(E?)>0}
by

Ko, 1) = ™MENSY)
m(E?)

It is then measurable in (0, ) and therefore, D,{(0, t): k(6, 1)=1} is Borel in
exT.

Note that (0, t)eD, iff P, is equivalent to m on E’. By a theorem of
Halmos-Savage [5], for every ¢ there is at least one 8 such that (6, t)€D,. It
can be easily seen that Ip:le=1I el [Py] if (07, £)ED,:

As before choose A, finite algebras generating A and let A4;, A2, -+, A®
denote the atoms of A,. For fixed (6, ?) in D, '

E(n) i t
L) po(@) = lim 3 ”%%%@Im 4i®)[Pd].
m(A;N B,NE?)
m(A;NE?)
and is further a measurable function of £. Towards this first note that, since 1o
is paiirwise coherent

We will show that for each 7 and #, is independent of @

(61, t), (02, t)EDo = IBOIIE' = IBGZIEt . [m]
and hence

m(A;NBNEY) _ m(AiNB%NEY)
m(A,N E) m(AiNE)

On D, look at the function g(, t)=%. Then g(0, 1) is
m(A;

measurable in (6, ) and is constant on each t-section of D,. By lemma 3
g = sup £(0, t) is measurable in t.  Since g*(#)=g(6, t) for (8, t)E D, our claim

is estabhshed

Therefore for each (z, n), "M(—;-?:ELt)EI)

tion of only £ and x. Hence the function f,(x) defined by

AinEf(*) is a measurable func-

fi(x) = 11m kZ ”% L4inE(x) if the limit exists

=0 Otherwise
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is also measuwiable in (¢, x). Further since for each #, there is some 6, such
that (6,, t,) €D,

fi(x) = Igoo(x)I e = Ipo(x)Ipe(x)[P,]  for all 0.
We can now define f(x)= 2}] fi(%)Iz(x) and then

S(x) = Ipo(x)[Po] for all 8 in 8.

This completes the proof of the theorem.
Combining Theorem 2.1 and 3.3 we get

Theorem 3.4. If (X, A, P,: 0 @) is dominated by a strongly Borel
decomposable measure, then for any countably gemerated o-algebra B which is
pairwise sufficient, the completion B= () B\/ Ny, 4, is sufficient.

058,

REMARK. Suppose B is countably generated and pairwise sufficient and
further if m admits a decomposition E such that for each ¢, E* is B measurable,
then B is itself sufficient. This follows from the construction of f,(x) and a
theorem of Blackwell [2]. In fact this is precisely what happens in the discrete
case. For in the discrete case given a countably generated pairwise sufficient
o-algebra B, it is easy to see that the atoms of B are countable. Hence for T
one can take the Quotient space of atoms of B, and for each ¢ take E* to be the
t-atom. T is in general Analytic. However Theorem 3.3 goes through even
when T is Analytic.

We will now give an example to show that Theorem 3.4 cannot be im-

proved in the sense that while B is sufficient B itself may not be.
ExampLe. X=[0, 1]X[O0, 1] A: Borel o-algebra on X
e=[0, 1]uU {2} C: Borel o-algebra on ©
for 60, 1]: P,=Lebesgue measure on {6} X[0, 1]
P,=Lebesgue measure on the diagonal in X.

To construct m, take T=][0, 1]U {2}.

For t=[0,1] define E‘'={#} x[0,1]—{(z, ?)}
t=2 FE*=diagonal in [0, 1] X [0, 1]

We now define m by m(4)= %lx(A‘)-}—x'(AﬂD) where A is the Lebesgue

measure on [0, 1] and A’ the Lebesgue measure on the diagonal.
In this example, the o-algebra of vertical Borel sets, i.e. sets of the. form
Bx[0, 1], is pairwise sufficient but not sufficient.
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