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Introduction. Let G be a holomorphically convex open subset of Cn and
T a closed subset of G. We say that T is totally real, if it is the zero set of a non-

negative C2 function p which is strictly plurisubharmonic on T. It is known
that a real C1 submanifold M is totally real if and only if it has no complex tan-
gents (cf. [3]). The problem of uniform approximation on totally real sub-

manifols was studied to a great extent by many authors (cf. Wells [9], Hϋrmander

and Wermer [4], Nirenberg and Wells [5], Harvey and Wells [2J, [3] and Nune-
macher [6]). The result of [6] states that if M is a totally real submanifold
then there exists a holomorphically convex open neighborhood B such that
every continuous function on M is uniformly approximated on M by functions

holomorphic in B. In [8], the author extended this result to the case of totally
real sets with C°° defining functions. (A totally real set is not necessarily a sub-
manifold. The approximation theorem for totally real sets contains one for

totally real analytic subvarieties which was conjectured by Wells [9].)
In this paper, we give a sufficient condition for T and G under which every

continuous function on T is uniformly approximated on T by functions holo-

morphic in G. The theorem we prove contains the following result which is

a straight generalization to higher dimensions of Carleman's theorem [1].
Every continuous function on R"y canonically imbedded in Cn

y is uniformly

approximated on Rn by entire functions on n complex variables.

We shall make use of the ZΛmethod due to Hϋrmander and Wermer [4]

and the swelling method similar to one used in [8J.

1. Statements. Let S be a closed subset of an open set U of Cn. We
denote by H(S) (or H(S, U)) the algebra of uniform limits of restrictions of
functions holomorphic in a neighborhood of S (or in Uy resp.).

We use an abbreviation L[uy ξ] for the Levi form of a C°° function u:

By an exhaustion function σ of G we mean a positive C°° strictly plurisubharmonic
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function which maps properly G into R. We define a form

A[<r ξ] = ±L[σ2;ξ]

Theorem. Z^ί G be a holomorphtcally convex open subset of Cn and σ be an
exhaustion function of G. If T is the zero set of a nonnegatίve C°° function p on
G satisfying

(1) L[p;ζ]ϊ>cA[σ ,ζ\, feC",

for some constant c>0, then H(T, G)=C(T).

When G is CΛ, this is a uniform approximation theorem by entire func-
tions. In this case, we can choose σ(z)=\z\2+l as an exhaustion function
of Cn and we have \ξ\2<A[σ\ ξ]<2\ξ |2, feC*. Therefore, we obtain

Corollary 1. If T is the zero set of a nonnegative C°° function p on Cn satisfy-
ing

(2) L[p ξ}>c\ξ\\

with some constant c>0, then H(T, Cn)=C(T).

If we write JR*=={*; j^ ==0, 7=!, •••,»}, then p(i)=ΣljV>l 2 ^s a defining
3

function of Rn satisfying (2). Thus we obtain the following corollary.

Corollary 2. H(R\ C") = C(Rn) .

The proof of Theorem is based on the following lemma essentially due to
[4]. (For the proof, see Proposition 1 of [7].)

Lemma 1. Let 8 be a nonnegative function defined in an open set V in Cn.
Suppose K is a compact subset of V satisfying the following condition : There exists
a constant η >0 such that for every sufficiently small £>0, we can find a holomor-
phically convex open set Vz satisfying

{z: dίst (z, K)<6} C Fεc

If F is a a C°° function on V satisfying

\dF(z)\<cδ(z)»+1,

then F \ κ belongs to H(K).

2. Construction of an exhaustion iKm} of G. Let σ and p be func-
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tions satsifying the assumption of the theorem. For every positive number r,
the open set Gr={z^Gr: σ(z)<r] is relatively compact in G.

Let λ be a C°° function: Λ-*[0, 1] such that \(ή=l(t<Q) and \(t)=0
(t>2). For every positive number m, we set

Then we have

: ξ] = -
m »z

m

with α=sup{|λ'|+2|λ"|+l}, since \m(z)=Q for z<=G\G2m.
We set PQ= p and pm= p—m\m for m>l. Since we may assume that

L[p'y ξ]>2aA[σ', ξ], ξ^Cn

y multiplying p by a constant if necessary, we have

L[Pm;ξ]>aA[σ;ξ]y ξ^Cn.

For each nonnegative integer m, we define the compact set Km = \
It is easy to show that KmdKm+1 and \]Km=G.

3. Approximation on Km. In this section, we fix a nonnegative integer
m. We shall prove the following lemma.

Lemma 2. Iff is a C°° function, then f \ Ko<=H(K0, G). I f / i s a C°° function
which is holomorphic in an open neighborhood of G2my w>0, then f\Km^H(Km> G).

Proof. Since pm is strictly plurisubharmonic in G and since Km=\pm<
n{<r<2w+3}, Km is (?G-convex and therefore we have H(Km)=H(Km,G).
It suffices to prove thatf\Km^H(Km).

Let -ψ be a C°° function satsfying ι|r=l in an open neighborhood of G2m and

Λ/r=0 in G\G2m+ι. We consider the function

If ^^G2wί, we have L[δw; 1] = ̂ .: f], fΦO. If z^T\G2m then pw-p=0
and dp=Q. Hence we have

L[Sm't f]^ψL[p; |]+(l-ψ)L[P; ?]|||-2>0, ^Φθ.

Therefore we can find an open neighborhood Ωm of K^w so that δm is strictly
plurisubharmonic in Ωm. There exists a constant -η > 0 such that 8m(z) <
97 dist(*, Km) and σ(.s:)<2m+3+77 dist(^, G2m+3). If we set δ(^)—max {0, 8m(z)}
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and V9={z&Ωm: δm(z)<£η} nG2w+3+ε, then, for sufficiently small £>0, Vt

is holomorphically convex and satisfies

{*: dist (*, Km)<ε} C Fεc {z: S

We can now find a C°° extension Foff\τ on G which satisfies

for an open neighborhood V of .ίΓm and for some positive constant c. The
way of construction of .F is the same as one in Lemma 6 of [7]. We note that,
i f/ is holomorphic in an open neighborhood U of G2w, then F is holomorphic

in U. By Lemma 1, we have f\Km=F\Km^H(Km)9 which proves the lemma.

4. Global approximation. Let / be an arbitrary function in C°°(G) and
let £ be any positive number. We shall construct a sequence {/w} of functions
holomorphic in G and satisfying

l/m-/m-ιl<2 m 1B on Km

and

!/*-/!< |]2-v£ on ΓnG2m+3

We define the function/ε=lim/m. A standard argument shows that/ε is holo-

morphic in G and that |/ε—/1 <£ on T.
The construction of {/m} is as follows. By Lemma 2, we can find a function

/o holomorphic in G such that

I/0-/K2-* on K0=TΓ\G3

Suppose fjy j=l> •• ,m—l are already defined. Let i/r be a C°° function:
G-»[0, 1] satisfying ι|r=l in an open neighborhood U of G2w and i/r=0 in
G\G2m+ι. Set^r=ψ'/wί_1+(l—Λ/T)/. Then ^ is holomorphic in U. By Lemma
2, we can find a function /m holomorphic in G so that

-1ε on Km.

Since g=fm-\ in C7 and Kmc:U9 we have

-1f on *„.

Since |^-/|=^|/m-1-/|<^2-v£on ΓnG2 m + 1and since g=f on Γ\G2M+1,
1_ V = 1

we nave

-1+Σ2-vθ on

This completes the proof of the theorem.
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REMARK 1. The question arises whether the same conclusion as Theorem

can be obtained under the condition that p is C°° strictly plurisubharmonic in

G. (There is a simple example of T such that every defining function of T is not

strictly 'plurisubharmonic in1. G and such that H(T, G)ΦC(Γ).) When T is

compact this condition is sufficient. This follows at once from Theorem 2 of

[7] and the fact that T is then (?G-convex. We do not know whether it is true

even when T is not assumed to be compact.

REMARK 2. It is reasonable to conjecture that the theorem will be valid

even when a defining function p of T is of class C2. In fact, when T is a sub-

manifold, C2-diίfrentiability of p is sufficient to derive the approximation by

functions holomorphic in a neighborhood of T (c.f. Harvey-Wells [2] and Nune-

macher [6]). The C°° differentiability assumption in this paper was necessary

because of the /Λmethod we employed.
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