
Gordon, C.
Osaka J. Math.
19 (1982), 283-286

SEMISIMPLE NORMAL SUBGROUPS OF TRANSITIVE
RIEMANNIAN ISOMETRY GROUPS

CAROLYN GORDON15

(Received August 1, 1980)

1. Introduction. In this paper we prove the following:

Theorem. Suppose the connected Lie group A is a product A — GL of a
connected subgroup G and a compact subgroup L. Let H be a connected semisimple
normal subgroup of G. Then
(a) if H is of noncompact type, H is normal in A ;
(b) if H is compact, then H is contained in a compact semisimple normal subgroup
of A.

Here H "of noncompact type" means all simple connected normal subgroups of
H are noncompact.

This theorem is related to the problem of describing the group of all isome-
tries of a connected homogeneous Riemannian manifold M in terms of a given
transitive connected subgroup G. Indeed if A is the connected component of
the identity in the full isometry group of M, then A—GL where L, the isotropy
subgroup of A at a point of M9 is compact.

Part (a) of the theorem generalizes and provides a new proof of a result of
[1] in which the normality of G in A is established when G itself is semisimple of
noncompact type. Following the proof of the theorem, we will note a sufficient
condition for equality of the noncompact parts of Levi factors of G and A,
generalizing a further result of [1].

2. Recall that all maximal compact subgroups of a connected Lie group
A are conjugate under an inner automorphism of A. If A=GL with L compact
and if U is a maximal compact subgroup of A, then a conjugate of L lies in U.
It is then easily verified that A=GU. Thus we are free to replace L by any
convenient maximal compact subgroup of A.

A maximal connected semisimple subgroup Ass of A will as usual be called
a Levi factor of A. Being semisimple, Ass is a product Ass=AncAc of con-
nected normal semisimple subgroups Anc and Ac of noncompact and compact
type, respectively. Anc and Ac will be called the noncompact and compact
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parts of Ass. Similar notation will be used for the corresponding Lie algebras.

Proof of the theorem. Choose Levi factors Gss and Ass of G and A with
HaGssc:Ass. Denote by a, g, ass, Qssy and ^ the Lie algebras of A, G, Assy

Gss, and Hy respectively, and by ar and gr the radicals of a and g. As above we
write ass=anc+ac and g5S=gw,+g,. Let nnc\a->anc and nc\ a->ac be the pro-
jections relative to the vector space direct sum a=anc-\-ac-{-ar. Note that
7^(8^)= {0} since ac contains no noncompact semisimple subalgebras, so Qncaanc.

Let Qnc=t+P be a Cartan decomposition of g, i.e., I is a maximal com-
pactly imbedded subalgebra of Qnc, [!, p]—p and [p, £]=?. By a theorem of
Mostow (see [2], pp. 277 and 569), anc has a Cartan decomposition anc=t'+pf

with

(1) l+7rnc(Qc)cztf and p e p ' .

Note that l '+a c is a maximal compact subalgebra of ctss. Hence, letting u be
any maximal compactly imbedded subalgebra of a containing f+ctc, it follows
easily that

(2) u = (

U PI ar is a solvable ideal of u and hence is central in u. Thus

(3) [u, u ] c a M .

The connected subgroup U of A with Lie algebra u contains a maximal compact
subgroup of A, so A—GU and

(4) a = 8+u .

We first show that [§, a r]= {0}. We may assume that ^ is simple. If § is
of noncompact type, then t) is a gMC-ideal and therefore has a Cartan decomposi-
tion §=to-\-po with f o =!n^ and pQ=pC[§. If f) is compact, then f)cg ccu by
(1) and (2). Thus in either case, r) fl u + {0}. In view of (3) and (4) we have

(5) [§nu, a]a$, g]+[u, u]ct)+(una s s)ca s s .

Hence [^fiu, a r]={0}. Since the annihilator in g of ar is a g-ideal, it follows
that

(6) ft ar] = {0} .

Suppose now that ^ is of noncompact type and write t)=Io+£o as in the
paragraph above. By (5),

[l0, o j e f t + u ) n anc =

In particular,

(7) [Jo, t>']c(
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[», t>J=P', Po] by (2) and (6), so (4) implies

K, ftjcfe, ftJ+P', WcHK •
Therefore

(8) [^ftjc($+p')ni' = v

(7) and (8) together yield [p',Ij]c:Ij. Since awc=[:p',£']+£', § is an a«c-ideal.
(i) now follows from (6).

Next suppose His compact. Then ^czu f\ass and [§, a] Cu by (5). Noting
that [un ass, p']=[t, p']=p', we have [$, p']anfl|)'= {0}. Hence [tj, 0^]= {0}
and §ca c . Let 5' be the minimal ac-ideal containing f). By (6), [§', ar]={0}
so §' is an a-ideal. The corresponding connected subgroup H' of A is a
compact semisimple normal subgroup containing H.

REMARK. Examples are easily constructed indicating that part (b) of the
theorem cannot in general be strengthened. Even when G itself is a semisimple,
compact, simply transitive group of isometries of a Riemannian manifold M.
Ozeki has shown in [3] that G need not be normal in the full connected isometry
group A of M.

Corollary. Given Lie groups A=GL with A and G connected and L compact,
suppose that the noncompact part Gnc of a Levi factor of G is normal in G. If no
homomorphic image of the radical of G is isomorphic to a transitive group of isome-
tries of a Riemannian symmetric space of the noncompact type, then Gnc is the non-
compact part of every Levi factor of A {and is normal in A).

Proof. By the theorem, Gnc is normal in A. Since all Levi factors of a
connected Lie group are conjugate, Gnc lies in every Levi factor of G and A.
Let Gss=GncGc and Ass=AncAc be any Levi factors and let Gr and Ar denote
the radicals of G and A, Let

n: A

be the projection. Note that n{A) is semisimple of noncompact type and is
trivial if and only if Gnc=Anc. Modding out the discrete center if necessary,
we assume 7t(A) has finite center. Now

n{A) = n{G)u{L) = n{Gc)n{Gr)7z(L).

As noted previously, we may replace 7t{L) by a maximal compact subgroup U
of n{A) containing 7t(Gc)y so that n{A) = n{Gr)U. Under any left-invariant
Riemannian metric, n(A)\U is a symmetric space of the noncompact type (see
[2], pp. 252-253) on which 7t(Gr) acts transitively by isometries. The corollary
follows.
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