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1. Introduction

In this paper we will give sufficient conditions for a G-map to desuspend
equivariantly. Throughout this paper G always denotes a compact Lie group.

For a G-space M let M* be the unreduced suspension defined to be the
quotient space of M x[0,1] in which M X {0} is collapsed to one point (called
the south pole) and M x {1} is collapsed to another point (called the north pole).
Giving the trivial G-action on [0,1], a G-action on M?* is naturally induced.
The unreduced suspension f*: M*—>N?= of a G-map f: M—N is also a G-map.

If H is a closed subgroup of G, then (H) and N(H) denote the conjugacy
class and the normalizer of H in G, respectively. For a point x of a G-space
M, G, denotes the isotropy subgroup of G at x. The conjugacy class of an
isotropy subgroup is called an isotropy type on M. Define J(M) to be the
set of all isotropy types on M. Define

M¥ = {xeM|HCG} .

If M is a smooth G-manifold, then M¥ is an N(H)-invariant submanifold of
M, which possibly has various dimensional components. Define dim M¥ to be
the maximum of those dimensions.

The main result of this paper is:

Theorem. Let M be a compact, smooth G-manifold, and N a G-space.
Let f: M*—N?* be a G-map such that f(z,)==z! for €=0,1, where 2, and z, are
the south pole and the north pole of M* respectively, and =4 and 2| are those of N=.
Suppose that for all (H)E (M) there are non-negative integers ny satisfying the
Jfollowing conditions:

(i) dim M#—dim N(H)/H<nz+1,

(ii) N# is ny-connected, and

(i)  if ny=0, =,(IN¥) is abelian.
Then f is G-homotopic to h* relative to {z,, 2,} for some G-map h: M—N.

S(V) denotes the unit sphere in an orthogonal representation ¥V of G. R
denotes the trivial one-dimensional representation of G. Then S(V @ R) may
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be equivariantly identified with S(7)®%.  So we obtain:

Corollary. Let U and V be orthogonal representations of G. Let f: S(UD
R)—>S(V®R) be a G-map such that f(z,)==z! for €=0,1. Suppose that

2<dim V%, and dim U?—dim N(H)/H <dim V*

for any (HY€I(S(U)). Then f is G-homotopic to h* relative to {2, z,} for some
G-map h: S(U)—-S(V).

Remarks. Let M and N be as in the Theorem.

(1) Assume N€=¢. Then any G-map f: M*—>N=* is G-homotopic to a
G-map f': M*—N? such that f'(z)==z/ for £=0,1. Thus f is G-homotopic to
h* for some G-map h: M—N.

(2) Consider the case in which the degree of a map from M to N is defined.
Then the Theorem shows that the existence of a G-map f: M*—->N=* with f(z,)
=z{ implies the existence of a G-map k: M—N with deg h=deg f. This seems
to be useful for the existence problem of G-maps with given degree.

2. Cochain groups based on a bundle of coefficients

Throughout this section M is a compact, smooth, free G-manifold, and N
is a path connected, m-simple G-space, where m=dim M/G>1. Define

M° = Mx]|0,1],
M= M|G,

M° = M°|G = M|Gx][0,1],

E(M,N)= Mx.N,

E(M°, N3 = M°x ;N* = (M x ;N*x[0, 1] .

Then we obtain the two fibre bundles

E(M, N)— M with fibre N, and
E(M’°,N%) — M’ with fibre N*.
There is a bijective correspondence between the set of cross sections s: M—E(M,

N) and the set of G-maps f: M—N. The bijective correspondence is given by
the equation

s([x]) = [», f(x)|EM X N

for any [¥]€M. Similarly there is also a bijective correspondence between
the set of cross sections M°—E(M°,N%) and the set of G-maps M°—>N3= These
correspondences will be used repeatedly in this paper.

Since N is m-simple, we obtain the bundle of coefficients associated with
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the bundle E(M,N) by the m-th homotopy group, which is denoted by B(=,,).
(See Steenrod [2;30.2].) Since N is path connected, N* is simply connected,
and hence (m-1)-simple. So we also obtain the bundle of coefficients associated
with the bundle E(}M°, N*) by the (m+1)-th homotopy group, which is denoted

by Btss). ) )

Since M is a smooth manifold, M is triangulable. So M admits a cell
structure in the sense of Steenrod [2;19.1]. We fix one of cell structures on M,
and give a cell structure on M°=Mx[0,1] as in [2;19.1]. Then we obtain

the cochain groups CHM; H(r,)) and CHM’; B(r,.,)), where the former is
the group of k-cochains of M with coefficients in B(r,), and the latter is the

group of k-cochains of M with coefficients in B(z,,,,). (See [2;31.2].)
Let s, ¢: M—>E(M,N) be two cross sections, and let

K: Mm'x[0,1] - E(M, N)|M=~!
be a homotopy of cross section such that
K,=s|M", and K,=¢t|M"?,

where M™~! is the (m—1)-skeleton of M, and K; is the i-level of K. Then we
may define the deformation m-cochain d(s,K,t)eC™(M; B(x,)). (See [2;
33.4].) If s coincides with ¢ on M"! and K is the constant homotopy, we
abbreviate d(s, K, t) by d(s, ).

Let f: M—N be the G-map corresponding to s, and let 5: M°—E(M°,N¥%)
be the cross section corresponding to the G-map

pof’:M°— N’ — N*,
where f°=fxid: M°—N’ and p: N°>N?= is the projection. Then § satisfies
8([x, 7]) = [(x, 7), p(f(x), )] EM" X (N>

for [x,7]eM’ (x&M,r<[0,1]). Similarly we may define the cross section
i: M°—>EM’,N*).

Define L=x"YM"""), where =: M—M is the projection. Let F: Lx[0,1]
—N be the G-homotopy corresponding to K. Consider the G-invariant subspace
L°UMx {0,1} of M’, and define a G-homotopy

F':(LUMXx {0, 1})x [0, 1] - N*
by

F'|L°x[0,1] = poF°, and

F'(Mx {€} x[0,1]) = 2/ for €=0,1.
Note
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72" (L°UMx {0, 1}) = (M) U Mx {0, 1} = (M°)".
Let
K: (M°)" x [0, 1] — E(M°, N*) | (M°)"
be the homotopy corresponding to F’'. Then
K, = s|(M°)", and K, = F|(}M")".
So we may define the deformation (7--1)-cochain

ds, K, HyeCm \(M°; B(r,.)) -
Then

Lemma 1. There is a homomorphism
@: C"(M; B(r,,)) — C™ (M B(7 1))

such that ®(d(s,K,t))=d(5,K,?). Moreover, if N is n-connected and m<2n,
then @ is an isomorphism, and if N is n-connected and m=2n-+1, then ® is an
epimorphism.

Proof. The suspension homomorphism z,(N)—=,,,(N®) is an isomor-
phism if m<2n, and is an epimorphism if m=2n-+1. There is a bijective
correspondence between the m-cells of M and the (m+1)-cells of M°. 'This
lemma follows from the above two facts. Q.E.D.

3. Homotopy extension lemma (Free case)

In this section we prove the following lemma:

Lemma 2. Let M be a compact, smooth, free G-manifold (with or without
boundary), and N a G-space. Let f: M*—>N* be a G-map such that f(z,)=z. for
E=0,1. If OM ¢, let K: (0M)*x[0,1]—>N?= be a G-homotopy such that

(i) K({=}x[0,1])=%, for £=0,1,

(i) K,=f|(0M)* and

(i) K,=g* for some G-map g: 9M—N.

Suppose that there is a non-negative integer n satisfying the following conditions:

(i) dim M—dim G<n+1,

(ii) N is n-connected, and

(iii) if n=0, z(N) is abelian.

Then there is a G-homotopy L: M*X[0,11->N= such that

(i) L({z}x[0,1]) ==, for £=0,1,

(ii) L s an extension of K,

(iii) L,=f, and
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(iv) L,=h* for some G-map h: M—N.
Proof. Define
f'=fop:M° - M*— N3 and
K' = Ko(pxid): (0M)"x [0, 1] - (dM)* x [0, 1] — N=>.
Let A be the G-invariant subspace (0M)"UM x {0,1} of M°. Define a G-
homotopy K”: 4 x [0,1]—N?= by
K”|(0M)*x[0,1] = K’, and
K"(Mx {€} xX[0,1]) = =/ for £€=0,1.
Let s: M°—E(M°,N*) be the cross section corresponding to f’, and let
P: 4Ax[0,1] - E(4, N*) = E(M°,N*|4

be the homotopy corresponding to K”. Then Py=s| 4, and P, |(8M) =¥, where
7 is defined from ¢: 0M—E(0M,N) as in section 2 and ¢ is the cross section
corresponding to g. ¢ extends to a cross section u: M—E(M,N), since dim M<
n+1 and the fibre N of E(M,N) is n-connected. Note that the (n+ 1)-skeleton
(M°y*+* of M’ contains 4. Since the fibre N* of E(M°,N3) is (n-+1)-connected,
P extends to a homotopy of cross section

Q: (M°y*+1x [0, 1] — E(M°, N*) | (M°)***,

such that Qy=s|(M°)"*! and Q,=u|(M")*+.
If dim M°<n+1, then M°=(M°)**', and Q corresponds to a G-homotopy
R: M’ x[0,1]—N=* which satisfies
R(Mx {€} x[0, 1]) = K" (M x {€} x[0, 1]) = 2}

for &=0,1. Thus R induces the desired G-homotopy L: M*x[0,1]—>N3=.

Since dim M”<n+2 by the assumption, it only remains to show the case
dim M°=n+2. Let m=dim M, then m=n-+1. In this case M and N satisfy
the conditions in section 2. So we can apply Lemma 1. Let

d=d(s, Q,0)€C™ (M’ ; B( i) -

Since @ is epic, there is &' C™(M; B(x,)) with ®(d')=d. From [2;33.9]
there is a cross section v: M—>E(M, N) such that « coincides with » on M"~* and
d(u,v)=—d’. @ coincides with ? on (M°)". So

d(@, 9)EC™ (M5 D))
is defined. By Lemma 1,
d(, 0) = B(d(, v)) = —d.



530 K. Komiva anp M. MoRIMOTO

Define a homotopy
R: (M°)"x[0, 1] — E(M", N*)|(M°)"

by
R; = Q,; for 0<i<1/2, and
R, = a|(M°)" = o|(M°)" for 1)2<i<1.
By [2; 33.7],
d(s, R, 0) = d(s, Q, #)+d(u, 0)
=d—d
=0.

d(s,Q,0)=d(s,R,?) follows from the definition of deformation cochain. Hence
d(s,0,?)=0. By [2;33.8] O extends to a homotopy of cross section,

S: M°x[0, 1] — E(M°, N*)

such that S;=s and S;=9. S corresponds to a G-homotopy 7': M’ X [0,1]—-N*
which satisfies

T(Mx {€} x[0, 1]) = K" (M x {€} x[0, 1]) = =2
for €&=0,1. Thus T induces the desired G-homotopy L: M*x [0,1]-N*. Q.E.D.

4. Homotopy extension lemma (General case)

In this section we generalize Lemma 2 to a general smooth G-action on M
as follows:

Lemma 3. Let M be a compact, smooth G-manifold (with or without boun-
dary), and N a G-space. Let f: M*—>N?> be a G-map such that f(z)==z{ for E=
0,1. If 0M ¢, let K: (0M)*x [0,11—N?* be a G-homotopy such that

(i) K({ze} X[0,1]) = = for €=0,1,

(ii) Ko=f|(0M)3? and

(i) K,=g* for some G-map g: 9M—N.

Suppose that for all (H)E J(M) there are nom-negative integers my satisfying the
Sfollowing conditions:

(i) dim M#*—dim N(H)/H<ny+1,

(ii) N¥is ny-connected, and

(i) if ny=0, = (N¥) is abelian.

Then there is a G-homotopy L: M*X[0,1]—N=* such that

(i) L({=} X [0, 1])=#! for £=0,1,

(ii) L is an extension of K,

(iii) Ly=f, and
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(iv) L,=h* for some G-map h: M—N.

Proof. We proceed by induction on #J(M), the number of isotropy
types on M.

First assume #J(M)=1. Let (H) be the isotropy type on M, then M#*
is a compact, smooth, free N(H)/H-manifold. Since M# and N¥ are nonempty,
it follows (M*)#=(M*#)* and (N*#=(N#)% So f induces an N(H)/H-map

JH=FI(ME)Z: (MF)* — (NF)*.
Similarly K induces an N(H)/H-homotopy
K% = K |(0M#)*x [0, 1]: (0M*)*x [0, 1] — (N#)*.

Applying Lemma 2 to f# and K¥, we obtain an N(H)/H-homotopy P: (M*)*
X [0, 1]—(N#)* such that

(i) P({z} x[0,1])==! for €=0,1,

(ii) P is an extension of K%,

(i) P,=f*#, and

(iv) P,=u* for some N(H)/H-map u: M#—-NX.
Since M=G(M?¥), we may extend P to a G-homotopy L: M*x[0,1]—>N?%, and
this is the desired G-homotopy.

Now assume that Lemma 3 is true for the case in which the number of
isotropy types is equal to or less than @, and assume #J(M)=a+1. Let (H)
be a maximal isotropy type on M. Then

My = {xeM|(G,) = (H)}

is a compact, smooth, G-invariant submanifold of M with 0M ;=M NOM.
By Rubinsztein [1; Lemma 1.1] there are compact, smooth, G-invariant submani-
folds A, B of M such that

(1) M=AUB,

(2) 04A=ANB, 0B=0AU0M, 0ANIM=¢,

(3) BDOM UM, and

(4) B is a mapping cylinder of some G-map 04—M ) UoM.
Since #9(Mp)=1, there is a G-homotopy E: (My)*x[0,1]-NZ* such that

(i) E({s} x[0, )= for £=0,1,

(ii) E coincides with K on (0M)*x[0,1],

(i) E,=f|(Mum)*?, and

(iv) E,=k?* for some G-map k: M;,,—N.
K and E give a G-homotopy on (M) U0M)3%, and by (3), (4) this G-homotopy
extends to a G-homotopy F: B*x [0,1]->N= such that

(1) F({z¢} x[0,1])=2! for €=0,1,

(ii) F is an extension of K,
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(ii) F,=f|B, and
(iv) F,=v* for some G-map v: B—N.
Since #9(A4)=a, there is a G-homotopy J: A*x[0,1]—>N= such that
(i) J coincides with F on (84)*x [0, 1],
(ii) Ju=f4, and
(i) J,=w=* for some G-map w: A—N.
F and ] give the desired G-homotopy on M= Q.E.D.

5. Proof of the Theorem

Let f: M*—N?* be the G-map in the Theorem. Applying Lemma 3 to
the G-map f|(0M)*: (0M)*—N=, we obtain a G-homotopy K: (0M)*x[0,1]—
NZ* such that

(i) K({z:} x[0,1])=%{ for €=0,1,

(ii) Koy=f|(0M)* and

(i) K,=g* for some G-map g: 0M —N.

Again applying Lemma 3 to f and K, we obtain a G-homotopy L: M*x[0,1]—
NZ* such that

(1) L({ze} x[0,1])==%{ for €=0,1,

(ii) L,=f, and

(iii) L,=h* for some G-map h: M—N.

This shows that f is G-homotopic to 4* relative to {2, 2,}.
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