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Introduction

In this paper we shall construct the fundamental solution E(¢, s) for a de-
generate pseudo-differential operator L of parabolic type only by symbol calculus
and, as an application, we shall solve the Cauchy problem for L:

{ Lu(f) = f(f)  int>s,

u(s) = u, .

(0.1)

Another application of the present fundamental solution will be done in [12] in
order to construct left parametrices for degenerate operators studied by Grushin
in [2].

Now let us consider the operator L of the form
0
L= ——+p(t; x, D,),

D ptt; v D)
where p(t; x, D,) is a pseudo-differential operator of class S}, ; with a parameter
t (p>38) (See §1). For the operator p(t; x, D,) we set the following conditions:
(02) Re p(t; &, £)+60=> e, £
0.3) [Pt %, E)[(Re p(2; %, £)F-60)| < Cophx, §)~ TP,

where m>m'>0 and A=)\(x, £) is a basic weight function defined in §1. We
note that A (x, £) in general varies cven in x and increases in polynomial order.
We call E(t, s) a fundamental solution for L when E(z, s) satisfies

{ LE(t, s)=0 int>s,
E@is,s)=1.

The main theorem of this paper is stated as follows.

Main theorem. Under the conditions (0, 2) and (0, 3) we can construct the
unique fundamental solution E(t, s) for L as a pseudo-differential operator of
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class Sy , 5 with parameters t and s (For the precise statement see Theorem 3.1).

Using the fundamental solution of this theorem the solution of the Cauchy
problem (0. 1) is given in the form

() = E, s)uo—i-S: E@t, o)f(o)do .

We note that Greiner [1] constructed the fundamental solution for parabolic
differential operators on a compact C~-manifold by using pseudo-differential
operators. But his method is different from ours and not applicable to our
non-compact case R”. We reduce the construction of the fundamental solution
to solving the integral equation

0.4) ®(2, 5)+K (2, s)—{-—S: K(t, 5)®(o, $)do = 0

for a known operator K(z, s)ES? , ;.

To solve the equation (0.4) the product formula of pseudo-differential op-
erators plays an essential role. We also note that by the same method we can
construct the fundamental solution for degenerate operators which have been
considered by Helffer [3] and Matsuzawa [7]. On the other hand Shinkai [9]
constructed the fundamental solution E(z, s) when p(x, £) is a system of pseudo-
differential operator by our method and applied it to the proof of hypoellipticity
of L.

In Section 1 we define pseudo-differential operators with symbol Sy, ;.
In Section 2 main properties of pseudo-differential operators defined in Section 1
will be given. In Section 3 we shall construct the fundamental solution E(, s)
under the conditions (0.2) and (0.3), and in Section 4 we study the behavior of
E(t, s) for large (t—s).

The results of the present paper have been announced partly in [10] and [11].

The author wishes to thank Professor H. Kumano-go for his helpful dis-
cussions and his encouragement.

1. Definitions and notations

Let R* be the n-dimensional Euclidean space. S=S(R") is the space of all
rapidly decreasing functions with semi-norms

| fl1,s = max sup |x"0%f(x)] ,

l@| +|BI<I *&R"

Where az(al, ceey an), B:(Bh ey Bn)’ xa’:x'{’l...x:n and 62:(6/65”1)31...(6/630”)571_
S’ is its dual space. f(f)sz[f](!j) denotes the Fourier transform of f(x) which
is defined by

fo={ e, fes.
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For a pair of real vectors a=(a,, :*-, a,) and b=(b,, -+, b,) we denote a>b, if
a;>b; for any j and a>b, if a;>b; for any j.

DeriNiTION 1.1. We say that a C=-function A (x, £) defined in R} X R}
is a basic weight function if there exists a pair of vectors p=(p,, ---, f,) and
8=(8,, -+, 8,) such that

() p>5 p>0 1< <n
(L1) (i) 1<Ma4y, H<AHIME E) 730, 4,>1
?k (iti) (NP £)| <Aapn(x, £ DD
where (G (x, £) = (3/0F,)" --- (0/0F,)"( —20[0x, )Pr--- (—10/0x, )P\ (%, &), {y>=
(141 ¥13)"2, (p, a):zn} p;a; and A, and 4, g are constants.
i=1
For a basic weight function A(x, £) and a vector p=(p,, -+, p,) such that

p=>p=>3, we define symbol class S}, 5 as follows.

DerINITION 1.2, S}, ; is the set of all C~-functions p(x, £) defined in
R; X R} which satisfy for any « and 8

| pE(x, E)| < Cgypr(x, E)yn~ P +@R

for some constant C, 5. For p& S}, ; we define semi-norms | p| ¢ by

PP = max sup {|px E)| M, E) O 0n)

loo] +1BI<I (x, £IER" X
Set 855 s= QS,’\"',,,S and S7, ;= ’L”J S o5
For p(x, £)€ S, s we define a pseudo-differential operator with the symbol
a(P)=p(x, £) by
Pu(x) = OS_SS e p(x, Eyu(x-+y)dydE

for uc S, where d6=(2z)""d¢ and ‘Os—’ means the oscillatory integral defined
in Definition 1.4 below.
Now let us mention the important properties about the oscillatory integral

contained in [5].

DerFiNiTION 1.3.  We say that a C=-function ¢(», y) in R; X R} belongs to a
class A3, (—oo<m< oo, §<1, v=(7, +++, T}, ++*), T,2>0) if for any multiindex
a and @ there exists a constant C, g such that

10505(n, ¥)| < Co gl ¥RIy ) 8

We also define the semi-norms |¢|{™ by

gl = max * sup  {[3:05(n, y)|<y> ey 0P

fw) +iBI<I (M,9)ER"x
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DeriNITION 1.4, For ¢(n, y)€ A7, we define

Os—[e"q(n, )] = Os—{{ e7(r, y)dyatn

— lim SS e~ "X (n, y)q(n, y)dydn ,

230

where X (7, y)=X(€», £y) and X(3, ¥) is a function such that X S(R*) and
X(0, 0)=1.

Proposition 1.5. For ¢(n, y)€ A}, we can write

Os—[e™**"q(n, y)]
~ 55 = y> D> (o> KD Y q(n, y)} dydn ,

where [ and I are positive integers such that —2l(1—38) < —n and —2I'+7, < —n.
Proposition 1.6. Let {q.},<.<: be a subset of Ay, such that sup|q,| ™ <M,

Sor any l. If there exists q(n, y) € Ay . such that g(n, y)—>q«(n, ¥) as E—>0 uniformly
on any compact set of R, X R}, then we have lim Os—[e™" "q,]=0Os—[e7"""q,].
€30

DEerINITION 1.7. Let F be a Fréchet space. We define E/(F) by

ENW(F) = {l-times continuously differentiable F-valued

function u(¢) in the interval I} .

DrrINITION 1.8([6]). We say that {p.(x, £)}oce<; converges to py(x, £) weakly
in S, if {pe(%, E)}oce<: is @ bounded set in S, ; and if p(x, £) converges
to po(x, £) as €—0 uniformly on any compact set of R!>R;. We define
w—E1 (S¥,5) m 0<s<t<T by

w—E (ST,s) = {S,s-valued functions u(t, s) defined in
0<s<¢< T which are I-times continuously differentiable with
respect to ¢ and s in the weak topology of S}, :} .

2. Calculus of pseudo-differential operators in class S}, ;

The main theorem of this section is the following

Theorem 2.1. Let P,=S}i,s (j=1,--,v). Then the product operator
P=P,.--P, belongs to SY", 5, where mo—:-i} m;. Moreover for any | there exists I,
such that g
(2.1) |o(B)| < (o) L1 1927
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where I, and C, are constants depending on i‘,lmjl but independent of v.
=1

Proof. We can write
Pu(@) = Os— [+ exp{—i 22y £} pi(s, B+, &) -
...pv(xﬁ—;i_‘;y", g"‘)u(x—}—gy")dyldyz e dy*dgrdgt-ay .
So the symbol of P is given by
(22) P &) = Os— |- [ exp {—i Zyir'} T p S, g+w)av,
where y°=0, =0 and dV=dy'dy*--dy*~'dn'dn*- - dn*"\.

By (2.2) it is sufficient to prove (2.1) for /=0.
For the proof we prepare the following

Lemma 2.2. Let g(x', £,--+, x*, £*) be a C=~function on K*" such that

gt B2 v ! a? aV N .

(2.3) I axl axz s 8;:‘“ 651 8‘52 ves aqul(xl, &1’ xz’ EZ, v, %Y, E/)l
<Ma‘,az,m,u",ﬂ‘.ﬂz.m.ﬂy ﬁ )\’(xj, g])m]—(P,wj)-f(s,ﬁi)

i=1
for any sequence of multi-indices o', o, -+, a”, B, B -, B". Set
(2.4) I, = os—S-.-S exp {—i 3 377}
i=1

XQ(x, g_+_67)l’ x+y1) E_*'o’?z’ A E‘i_o’?»-l’ x+§ylr ‘S)dV

0<6<1).
Then we can find I, such that
(2.5) [ o] <(Co)" MM, E)™,
where m,,=§‘_J my, M,y= max {Mgg. e 6.} and Cy is a constant
i=1 twil+1giis1,

depending on 3|m;| but independent of v and 6.
1=1
Apply the above Lemma 2.2 to (2.2) setting q(x', £, &7, £, ---, &%, £Y)
=fIPj(xj, g) and §=1. Then we get
=1

PIFO<C L1215

Thus the proof is completed.
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For the proof of Lemma 2.2 we prepare some propositions. For simplicity
we may assume p =p, p,=p and §;=3 for any j. Otherwise we have only to
repeat the same argument for each variable.

Set

F(x, 15 y) = (14X (x, 1) y|)™",

where §=max($, 0) and n,=[n/2]+1. Then, by (1.1)-(iii) we have easily the
following

Proposition 2.3. F(x, n; y) satisfies the inequality with constants C, g y
102050} F(x, 73 3)| < Cap 2 Flx, 73 y)A(x, m)FH+5le+p
for all a B, and .
Proof is omitted.

Proposition 2.4. If r,>0 and r,—278n,>0, then we get for some constant C
S F(2, £+7'; 2 —2)F (2% E+77; 22— 2" )02 (et — 2t ) e d2?
SCLP—2 2 {F(2%, E+nt; 82— )N (& E+0) ™
+F(#, g+t 2=, E47) 7%
where ry=min (r,, 7,—278n,).

Proof. We devide R" into two parts ), = {'ER"; |z'—2*| > |2*—2?|/2}
and Q,=R"\Q,. For '), we have

(2.6) F(2?, £47%; 22—2Y) <2%oF (22, E-+7%; 2*—2°) in Q,
and

2.7) e DR ¢ in Q.

For 2'€Q,, we get

(2.8) F(2?, E4-7'; ' —2°) <22 (22, E4- 1t 22—20) in Q,
and

(2.9) (=2 I 2P —2" ! in Q,.

Since 2n,>n, it is clear that

(2.10) SR” F(x, n; y)dy = e, 7).

By (1.1)-(ii) we get

(2.11) F(2Y, E+n'; 21 —2°) < (o)l 82— 2 DF P (22, E+n': 21—2Y) .
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Then by (2.6)~(2.11) we get the assertion. Q.E.D.
By (1.1)~(iii) there exists a constant ¢,>>0 such that
| M, E+m) =N, E) <M, £)[2
if |7] <cn(x, E)P.
Proposition 2.5. Set
I(K) = || "M, E4m)" {Mx, E+m)+M(x, £}
Y A e B 1)

F(x, £; y)
and set
L= {n; 2] <cMa, €},
L= {n; cM(x, EP< |n] <con(w, €)%}
and Iy= {n; |7] = e\, EF} .

Then we have for a constant ¢
(2.12) S IK)dn<en(x £y (j=1,2,3),
g

if K,=0, K,>n[2 and K;>(|m|+28n,+np)[/2(p—3).
Proof. If 5 belongs to I, or I,, then we have for some constant ¢,
I(K)<cy|n| " N(x, E)eE-mEm - K>0.
Hence (2.12) is proved for j=1 and 2. If » belongs to I; we have
(2.13) I(K)< ¢y|m| ~2K+m+2K+20mg)/7 m = max(m, 0),
since it holds that

f M, E40)<e|n|, nel,

F(x, E+7; y) -n Bnyh
I N

for some constant ¢,. By (2.13) we get (2.12) for j=3 if Kj is chosen as above.

Q.E.D.
Proposition 2.6. Set

Ji=1n] 2K {0(2, E+m)+A (2 E)}FEN(2Y, E+n)(ai—2" "
XF(Zl, £+,]1; 21_20K32_21>—72F(22’ f; zz-—z") ,
(1=1,2,3).
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Then we have for 1=1, 2, 3

S ggﬂjldzldnl<B<zz—zo>-’3X(zZ’ E)mF(zza E’ Zz—zo)

I

with B=Cc(A4,)'™" and ry=min(r,, r,—276n,—7|m|) if K, and I, are defined as in
Proposition 2.5 and ny=[n[2]+1, r,>>0 and r,—278n,—7|m| >0.

Proof. By means of Proposition 2.4 for »'=2», 7*=0 and (1.1)—(ii) we get

(214 SR"Jldzl<C(Ao)""‘]7;]"2"1{7\.(22, E-Fn)+ (=2, E)}zs'x,

— 2 e 02 __ o0 -
R e LD

X {22—2" 022, E-+n)"F (2% E; 22—20), 1=1,2,3.
Now by Proposition 2.5 and we gct the assertion. Q.E.D.
Proof of Lemma 2.2. Set m=[n/2]4+1, M=) |m,|, K=[M+25n,+
1=1

np[2(p—38)]+1, N=[7(38n,+38K+2M)]+1 and functions K;=K; (7, 7’*, 2’ ")
(j=1, ---,v—1) as follow: K;=0on I;;, K;=n, on I; ,and K,=K on I, ;, where
I;, = {W ER"; |v—n* | <M, E+67)}

J

I, = (W ERY e (2™, E+077) < [9/—0i* | <Mz, E+0n71)}

7
and

I3= {PER"; [ni—n" | > M=, E+077 ) (2" =, 7" = 0).
By integration by parts we obtain
I, = OS_S...S exp {_igyj.,]:} ;j[:[:<yi>—ZN
X {1+(—Aﬂj)”°7t(x+gy", E+ 077y} {1+7~(x+gy", L )
X | Y710} (= Ay g(x, E4-07, -, x+1§;‘1y‘, E+0m, x+2y" £av,
where y°=0. Then by change of variables x+gy”=z" (=1, -+, v—1) we get

Io= || exp (=i B &=} T 1= | 25— Airal
where
r="T (A r@, 407 T o
J>< F(77), E+0n7; 2/ =227 ) A DN g(2° E+07', e, E4-O7770, 2270, E),

L=xandn*=0.
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Then from Proposition 2.3 and (2.3) we have with a constant C,
(215) 1T (=857 <(CF Matwsrap T =272
X {277, EHOn7)+0(2, E—i—enof*‘)}ZF";F(zf", E+07i; 27—27Y)
X ,Ii M2IY, E4-Oniyi

<CiMykonang 1L ME, E+OW) N, B0}

X<zi_zj—l>—2M+RF(zj’ E“{‘eﬂj; zj—zj‘l))\,(zf, E_*_g,;i)»z,
X <z"~z”‘1>R'7\,(z", gy,

where 2°=2"=x, 7°=0, R=7(28ny+48K+ M), R'=71(28K+M) and C,=
Cy(24,)M+BK+n)  We used (1.1)—(iii) and

{47 (3, E+0nA(, E+7) 7} <A Ka—aF
(=1, v=1)

in the last step. From (2.15) and Proposition 2.6 we get for I=1,2, 3
[ i T (—Auyeoridatdn
Ll P
<(C™ CoMatganany T M, EH07) 4N, E-+077 )%
X:IJ:F(z’, E+0n7; 27— 2T ol — 27 INER) (27, E4-On)"

XF(zZ, E407; zz_zO)<zz__zO>—2N+R”7\'(22’ E+97)2);;z
X <z"—z"“>R')\.(z“, gy,

where Cy=C,Cc(A4,)™, M,=m,+m,, and R""=R+7(28n,+M). Since —2N+R
+7(28n,+ M)<0, we can repeat the same argument. Hence we obtain

S S Vﬁ ,ﬂj__']jﬂ | —2KI(_AZI)K/rdzldzz,_,dzu-—zdnld-nz_,_ d.ﬂv—z
S(CHCa)  Mytgsning | 77 —n" 7 7HEv-1{\(2", E+O77Y)
+X(z’, E_,r_gnv)}z‘éx,,_lp(zv—l’ £+0,7v—1; zv-l__z())
X <z""1—-z°>"2N+R”),(z“'l, E+67’v—1);\,_l<z‘.r___zv—l>R’x(zv’ g)m
(=2"=ux7=0),
where 1, ;=3 m;. Noting —2N+ R+ R/-2r8n,+M = —2N+7(65n,+ 65K
+4M)<0, we get, by (1.1)-(i1), (2.10), (2.11) and Proposition 2.5,
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j’s :I_f | —n 1| =25 ] (— A, YKi7 | AV < Cy(Cs)* Moyt n-sng) Mty EY™.
Take l,=2(K+N-+mn,) and C,=C;. Thus we get (2.5). Q.E.D.
We denote the symbol o(P,P,-:-P.) by
(P\Py:+-P,) = prop,o---op,

as used in [9].
Now for an operator P=p(x, D,)E S}, ; we define the adjoint operator P*
by the relation

(Pu, v) = (u, P*v) for u, veS§.

Then we have

Pru(w) = ([ erpy, Oy a
= [ f oot rparss, ety oy apayae.
It is clear that P* is also a pseudo-differential operator with symbol
o(P¥)(x, £) = Os— ([ e ptaty, E-m)dyan .

Theorem 2.7. If P belongs to S}, s, then P* belongs to S},,. Moreover
for any [ there exists I such that

la(P*) | <C|a(P)| P
with some constant C.

Proof. Set m,=[n/2]+1. By integration by parts we obtain

o(P(x, £) = 05— [ ey {1, gy~
X ALTFN(x, EY(— A, o} — A Y p(x+y, E+n)dydn .
Choose K as follows: K=0 on I, K=n, on I, and K=[(|m|-+28n,+np)/
2(p—38)]+1 on I;, where
I, = (nER*; || <o, E)E} y
L= {neR"; oM, £F< 0] <e\(x, £)}
and
I; = R\(I,Ul,).
Then we have
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o(P¥)(x, £) = “ e~ | | “K(—A)Erdy d7
where 7 satisfies
[(— A7 | SC | P18 snsng{yD N+ TUmI+B0)
% )u(x, g—f—n)"'“_g"{l—}—)\,(x, E)zEnolylzno} -1

Choose 2N>7(|m|+238K). Noting the above estimate, we get the assertion if
we repeat the same argument as in the proof of Lemma 2.2. Q.E.D.

From Theorems 2.1 and 2.7 we get the L*-boundedness theorem by the
same argument in [5].

Theorem 2.8. Let PES) ,;. Then P is a bounded operator in LA(R") and
there exist I, and C such that

Pul| <CpIMull,  uELAR").

For pseudo-differential operators of this class we get the following expan-
sion theorem.

Theorem 2.9. If p (x, £) belongs to S)"i , (=1, 2), we can write for any N

A,p,8

(D10 P2)(x, E) = M 'ljpgw)(x, EYua (%, E)+7n(x, £),

<V oy

where 1(x, E) belongs to S35 " and &=min (p;—3).
1<j<n

Proof. By the Taylor expansion we can write

(b2 8) = Os—[[ e7p (o, E-+n)porty, E)dyan
= 05— ([ e 53 L pois, gyropun-ty, B)dyan
i<y !

+0s= | e 53 TN (=) 1pi0(s, £-4+0m)d0 pi(+, E)dy dn

wi=a oyl

:! Z C%Pgw)(x) E)Pz(a)(x, E)+r(x1 ‘E) s

<N
where r(x, £)=N > SIQLG_)IX;‘ { OS_SS e pM(x, E-+0n)
wi=xdo oyl
X Pa( %+, E)dydn}dc‘). Apply Lemma 2.2 for r(x, £) setting g(x', &', ¥%, £%)=

SV p(x, E)pan(a?, £). Then it is clear that r(x, £) belongs to Syi%"2 %",
A QE.D.
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In what follows we assume that &=min(p,—§;) is positive. Let
1€j<
p(x, E)E ST, s satisfy the following conditions (H.E)

(2.16) (H.E){ IPE:, £)| = en(, £) m>m,>£ -
(B)(x ‘E)/P(x E)I <C¢ ﬁk(x, g) (P,®)+(8,8) (p> 8).

Then we get the following theorems in the same way as in [6].

Theorem 2.10 (cf. [4], [6]). If p(w, ) satisfies Condztzon (H.E), then
p(x, D,) has a parametrix q(x, D,), which belongs to S} ,,5, in the sense
p(*, D,)q(%, D,)=g(x, D,)p(x, D,)=1 (mod S57y).

Theorem 2.11 (cf. [6], [8]). If p(x, ) satisfies (H.E) and arg p(x, £) is well
defined, then we can construct the complex power {p,(x, D,)}.cc of p(x, D,) such
that P,P, =P, ,,, P)=I, P,=P, P, S??¢(Re 2>0) and P, S} (Rez<0).

Let A(x, D,) be a pseudo-differential operator with a symbol A(x, £). For
any s>0 we define H,= {ucs L{R*); A(x, D,Jus L*(R™)} with the norm

llealls = APl ? .
Let 0<s,<s, and let A (x, £) satisfy that for any £€>0 there exists C, such that
(2.17) M, E)i<ENMx, E)2+C, .
Proposition 2.12. If \(x, §) satisfies (2.17), then we have for any €>0
Iloell, < Ellael |, Cel |

with a constant C,.
Proposition 2.13. Let p(x, £)E S, s satisfy (H.E) and let q(x, £) satisfy
lg@(x, £)/p(%, £)| < Capn(x, £+ EP

with a constant k. Then there exists r(x, )€ S} ,s such that q(x, D,)=
r(x, D,)p(x, D,)+k(x, D,), with k(x, £)E S5 s.

Proof. Let r,(x, £)=q(x, &)/p(x, £)€ S} ,5. Then we have for any N
(riop)(x, &) = q(x, E)+tn(x, E)+hn(x £),
where #y(x, £)= 2 r{"‘)(x, E)pi(x, £) and ky(x, £)eSy5%". We note that

[Ex{@(®, E)/p(x, E)| <Cqpn(, B2+ Cp),
Set r,(x, E)=tx(, £)/p(x, E)(ESx,4). Then we have
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o(3 7 DJpls, D) = g, E)F-th(x, £)+hb(, ©),

N~
where #5,(x, ,S)::'Ej O%ré"”(x, Epw(x, ) and ki(x, ) SPii— M. If we repeat
the same calculus, we get the assertion. Q.E.D.

Proposition 2.14. If p.(x, £) converges to py(x, &) weakly in Sy, s as €—0,
then (peoq)(x, £) converges to (pooq)(x, £) weakly in S}tk for any q(x, £)ES3 , 5.
Moreover Pyu converges to P in H,_,, for ueH.,.

Proof. For large / and I" we can write

(Peoq)(x, &)
= SS ey D L >THCD, O po(x, E+n)g(x+3,E)} dydn .

Then the first part of the Proposition is clear. Set Q,=A_,_,,P,A,. Then O,
belongs to S} , 5 and ¢.(x, £) converges to g(x, £) weakly in S} , ;. It is sufficient
to show that if g.(x, £) converges to 0 weakly in S} , 5, then Q.u converges to 0
for uL¥R"). Define u(x)=@(x)p(D,)u where @ (x)=@(Ex) and ¢ is a
C7(R")-function such that p(x)=1 (|x]| <1) and @ (x)=0 (|x| >2). We have

NQ-ull < 1Q:(u.— )|+ 1| Q.|
<C”us"u”+“QSua” ’

where we use Theorem 2.8. It is clear that u, converges to « in LAR"). We
can write

qus == gs(xv D,)u )
where

2. &) = e DS (> g, E-+7))

Jx+yl<ee—?
X <D, Yele(-+y)p\eENydn

Then g (x, £) converges to 0 in S} ,;. So we get lim [|Q.u.]|=0 by Theorem
28. . Q.E.D.

3. Fundamental solution of degenerate pseudo-differential operator
of parabolic type and the Cauchy problem

In this section we consider the Cauchy problem for a pseudo-differential
operator of parabolic type as follows.

| Lu(t)= (%—}—p(t;x, D)u(t) =f1)  in0<t<T

3.1)
I w(0) = u,
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where p(t; x, D,) is an operator in the class £9(S},;) (§<p) on [0, T'] which
satisfies the following conditions
(i) There exist constants ¢, >0 and ¢,>0 such that
Re p(t; x, E)+c;=conx, E)” in [0, T m=>m'>0.
(3.2) (it) For any multi-index a=(ay, -+, a,) and B=(B,, -, B,)

there exists a constant C, g such that
[ PB(; %, E)/(Re p(t; &, £)+6)| < Co pn(x, §)~ 07O
in [0, T'].
We call E(#, 5) the fundamental solution of L if E(t, s) satisfies
{ LE(t,s)=0 in 0<s<t< T,
E@s,5)=1

Theorem 3.1. Under the assumptions (3.2)-(1) and (3.2)-(i1) there exists a
fundamental solution E(t, s) in the class w—E7 (S) ,5)in 0<s<t<T. Moreover

for any N such that m—&N <0 (E°:;mi3 (p,—8,)) E(t, s) has the following ex-
pansion =

(3.3)

elt, ) = e (t, )Hu(t, ),

where
(1) et )€w—E) (ST%), =0
(ii) et, )= 1 as t— s weakly in S , 5,
(iil) e (2, 5)—>0 as t—s weakly in S5 23,
e | ) et s e 55 Bl % 6 20) s

@)l 3 3, )] < Cu (s, §) 0" Co0)
@i~ Bz, ¢ k
S {Reg o % E)do-—‘,—cl(t—s)}
k=2 s

(V) fult, )Ew—E? (Sy,3") and satisfies
{ngg(t’ 3 X, E)| <C(t-s)kx(x, g)k:»z—SON—(Pvﬂ')+(5'ﬂ)
(k=1, 2).

Proof. We may assume (3.2) for ¢,=0. In fact let £, (¢, s) be the funda-
mental solution for L-+c,. Then E(t, s)=e1¢"2E_(t,s) is the fundamental
solution for L.

As in [10], [11] we construct e(t, s; x, £) (0<s<t<T) as the serics of
solutions of the following equations

{ <%+P(t; X, E))eo(t, s;x,8)=10 int>s,

L es, 530 8) =1

(3.5)



Pseupo-DiIFFERENTIAL OPERATORS OF PARaBOLIC TYPE 583
and for j >1

<%+P(t; X, E))ej(t, s %, £) = —q;(t, 5; %, £) int>s)
e,(s7 $5 xi E) == 0 y

(3.6)

where g (¢, s; x, £) is defined by

(37) qj(t, $5 X, ‘E) = ;‘i_;: w[;}:j C%P(a)(t; X, E)ek(m)(t» $5 X, E) .
Set
(3.8) bj,a,'p(t, s; %, ) = q]gg;(t, s; %, E)feft, s; x, &) j=1.

Then, by (3.5)~(3.7) and (3.2)-(ii) we have the following proposition, which
derives (3.4)-(i)~(3.4)-(iv).

Proposition 3.2. For any o and (3 there exists a constant C; , g such that

(9), 18,48t 55 % E)<C, aplw, £ OOy, 5 (j20),
(3.10);  [b;.a.6(t, 53 %, £)| <C, ap Rep(t; &, EN(x, £) 070 CP L g
(7=1),
where w, 4p and w) , p are defined by
0,0 = 1, Wg, 4,8 = MaAX {o, C"IwH—w} |+ 8] =0
®, 48 = Max {w?, w?Ti®iFIRlY (=0,

) 4 5 = Max {o, TR (1)

aMw:YMﬂm&@%.
Proof. By (3.7) we have

j-a —
l]]%;(t, $5 % f) = Z Z_ E Cj,w,fi,VPE;:)wk)(t)ekgﬂ‘gi)ﬁk\(t) S)
k=0 1V Tk=; oy<a
Br<B

with some positive constants Cy ,s. Then it follows that

J -1
(3.11) b, 4 (8, 5) = ,ZZ:;) W;_] 2 Coapbiy P (Oasa; 8t 9) -
1Tk=; @y ta =a

Br By =B
From (3.6) we can write
t
et s; x, &)= 5 —eft, o; x, £)q;(o, ; x, E)do .

Thus we have for any o 3, and j >1



584 C. Iwasakl

t
(3.12),  a,48(t 5) = — ! 2_ alB!(cnla! B! ByY) s ao.al.ﬂl(t’ 0)b;,0,,8,(0 $)do .
ﬂtl+m2—ﬁ s
B1+B2=B

We shall prove (3.9); and (3.10); inductively. By (3.5) we get

(3.13) eft, 55 x, £) = exp(—S:p(o—; x, £)do).

Then aq , g(t, 5) is a linear summation of
NCHYER Eo@p .
Peblo; x, E)do -+ sPua,)(tfy x, E)do

with o+ +a,=a, B+ +B8,=0B. Hence we get (3.9), from the assumption
(3.2)-(i1). By (3.11), (3.9), and (3.2)-(ii) we get (3.10),. Now assume (3.9); for
Jj<k-—1and (3.10); for j<k. Then we get (3.9), and (3.10),,, in the following
way. From (3.9),, (3.10), and (3.12) it follows that

/ ~& k= (P,@)+(8, 4
@105ty )| S Chagh ™D CD0 3Tl o, 500,005
2 %2

B +B2=B
< Ck_m,g X—Eok—(p’aH'(s’ﬂ) Wk,a,p -

By (3.11) and (3.9); for j <&, it is clear that

k
{b“ 1,m,3(t, s) | < C/',,a,g)»"20(“1)-(”’“)“8'& Re p(t) Z 2 O a;,8;+7
=0 lyIFi=rtl dj<e
Bj<B

with some constant C kg Alsoitis easy to show

’
max  w, o/ g7 Opr1,a,8 -
o/ <o, B'<B
o<j<k
IR

Then (3.10),, is proved. Q.E.D.
Now by Theorem 2.9, we can write for any N >1

(3.14)  o(POELL, s; %, D)), §) = p(t; %, E)es(t, 55 %, &)

[
+ Z '7! P( )(t; x’ g)e]’(m)(t, S; 'xv E)+VA',,(t$ s;x, E) .

0<IBISN =51 ¢y

Taking a summation in j, it is clear by (3.5)~(3.7) that

N-1

315) (L+P0) (S Et 9) =Z((L+p0)e)t, 53 D)

N -1 N-1 N1
+Z; q,(t, s; x, Dr)-l-JZ0 rx, (8 83 %, D,) = ;)TN'J(t’ s;a, D).



Pseupo-DiIrFFeERENTIAL OPERATORS OF ParaBoLic T'yPe 585

Proposition 3.3. We have ry (t,5;%,E)Ew—E7 (ST ~VY and for any a, 8
(3.16) Ir”(jé:g(t’ 5 x, f)l <C¢.p(t-s)"7\,(x, E)(k+1)m—eoN-—(P.¢)+(8.B) s k= (), 1.

Proof. From (3.4)-(i) and (3.14) we have 7y (¢, s; %, £)€Ew—E? (S o,
From (3.9); and o<C(t—s)A(x, £)", we get (3.16). Q.E.D.

N
Put rN'j(t, $; %, E)=ry(2, 5; %, E) and f‘: e(t, s; x, E)=ky(t, s; x,&). Then
YED) j=0
we can write by (3.15)

[ LKy(2, 5) = Ry(t, 5) int>s (0<s<t<T)

(3:17) [ Ku(s,s)=1.

Now we construct e(?, s; x, £) in the form
e(t, s; x, D)=Fky(t, s; x, D,)+ S:kN(t, a; %, D)p(o, s; %, D,)do .
Then @(t, s; x, D,)=3d(t, s) must satisfy a Volterra’s integral equation
(3.18) Ry(t, )+ (8, 5)+ S' Ry(t, 0)®(c, s)do = 0 .
Set @,(2, s)=—Ry(¢, 5s) and define ®/(¢, s) for j >2

(3.19) @, 5) = S‘ ®(t, )P, (o, S)do

s

= StS:‘...S:”chl(t, $)Py(S1, 85) +++ Dy(S;-1, ),y -+ sy .
Then we have
(3.20) 2 D2, 5) = Dyt s)+?;,‘2 @, 5)
— —Ry(t, )| Rult, ) 5} @ (o )do

For o(® (¢, 5))=@;(2, s; x, £) we have the following estimates.

Proposition 3.4. We have some constants B,p and B g independent of j
such that

G2 1§65 3 B SBup) - f h o pymiarmooes

=1
(322) 19t 5 % O Bl V(o gproremran,
J

Proof. Note that 7(¢, s; x, £) = —\(¢, §; x, £) satisfies (3.16). Take N
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such that m—&N<0. Then we can apply Theorem 2.1 to ®(s,_,, s;). For
any /, « and B there exists /, such that

|, @, 53 E) 1"~
t s,
<C gl (| 0y [ oo {7 s oty

(t—s)y~!
G—nt-

If we use (3.16) for k=1 instead of (3.16) for k=0, we get
|p, B2, 55 x, £)| 7"V

3 - s ~2
<Clgil (g 97 | 770, 0)ds, 1o

t
s

< (Ba,ﬂ)J

<(B;,p)"(‘77,i)’ Q.E.D.

Set (2, s; x, 5):2 @,(t, 55 x, ). In view of (3.21) @(¢, s; x, £) belongs to
w—E9 (Sy53") and satisfies (3.18) and
(3.23) @@L, s; x, E)| <A(w, E)FFIm-SN-C0FEB) exp {B, o(t—s)} (k=0 1).

Note that K (¢, s) belongs to «—&7 (S} ,5). Then by (3.23) we get (3.4)-(v).
Q.E.D.
ReMARK. 1. By the same method we can construct the fundamental solu-
tion for Lza—at——!—p(t; x, D,)+q(t; x, D,) under the following conditions:
(1) p(t; x, &) satisfies (3.2).
(i1) There exist € >0 and £>0 such that

i(t | t k
[ @i n e [<CLon rremren o v, o)

In this case et s; x, ) is defined by (3.5) and ¢,(¢, s; x, £) is defined by (3.6)
setting
1

q]'(t’ S; x) ‘E) = ;V‘_t ’*'P(“)(t; x’ g)ek(a)(t) S; x) EH—q(t, x’ g)ejﬂ(t) S; x) E) .

k=0 @l k=j ¢

-

Remark. 2. If p(¢; x, £) belongs to £F(SY,s), the fundamental solution
e(t, s; x, ) belongs to F]é’i(S,’f"f,,a )
1=0

We note that P*(¢) also satisfies the assumptions of Theorem 3.1. So we
can construct V(t, s)Ew—EF (S}, ;) which satisfies



PsSEUDO-DIFFERENTIAL OPERATORS OF PARABOLIC TYPE 587

(3.24) s ﬁa‘a;V(t’ $)+p*(s; %, DYV(E, ) =0 0<s<t<T

( Ve, 1) =1

Theorem 3.5. Let V(t, s) and E(t, s) satisfy (3.24) and (3.3) respectively.
Then we get

(3.25) E*(t, )= V(t,s) O<s<t<T

and

(3.26) —aﬁE(t, O+ E(, s)p(s; %, D) = 0 .
1)

Proof. Let f and g be any function of S(R”). For any r such that s<r<¢
it is easy to see that

62(E(r, O, V(t, r)g)
s

= —(PWE(r, 9, V(t, g)+E, s)f, PV, r)g)
=0.

If we use that E(t, s)—I, V(t, s)—>I in L¥R") as t—>s, we get (3.25). Conside-
ring the adjoint of (3.24), we get (3.26) if we use (3.25). Q.E.D.

Corollary. If p(t; x, D,) is independent of t and self-adjoint then E(t, s)=
E(t—s) is also self-adjoint.

Theorem 3.6. Under the condition (3.2) the fundamental solution E(t, s) is
uniquely determined in the class w—E&} (S, 5).

In order to prove the above theorem we prepare the following

Proposition 3.7. Under the condition (3.2) there exists a constant ¢>0 such
that

Re (p(#; %, D, u, w)+c(u, u) >0 e S(RY).

Proof of Theorem 3.6. Let E(t, s Ew—EF ((Sx,s)) satisfy LE(¢, s)=0 in
t>s and E(s, s)=0. Then e “E(t, s)=E (¢, s) satisfies

(L4)E[t, s) =0 int>s,

(3.27) Es,5) =0

For any u< S(R") we get by the above proposition

%(E,(t, oy, Et, s)u)
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— 2Re (% E.(t, syu, E.(1, s)u)

= —2 Re (P(t)+c)E[t, s)u, E(t, s)u)<0.
Then we have

HEL, syull<I|ELs, syull = 0.
This means for any x&R” and ¢ R*
e(t,s;x, 8)=0 int>s.

Hence we get e(t, s; x, £)=0. Q.E.D.

Theorem 3.8. Let p(t; x, £) belong to E7(Sy,s) and satisfy (3.2). Then
for any f(t)yeENH,) and uy= H, the solution u(t)eE5(H,_,,,) of (3.1) is given by
(3.28) u(ty = E¢, 0)u0+g' E(t, )f(s)ds .

0

This is the unique solution of (3.1) and u(t)—u, in H, as t—0. Moreover we get
1%
| dtt

Proof. It is easy to show that u(¢) given by (3.28) is a solution of (3.1).
Let u(?) satisfy (3.1). Then

E(t, ) P(syu(s) = B(t, ) — = Juls)+E(t, )fcs)

(3.29) u)| < Clugl+ | 17@)lldo

s=km

Integrating with respect to s, we get

S;E(t, §)P(s)u(s)ds — S:E(t, 9 f(s)ds+§:d—‘i Et, syu(s)ds—[E(t, syu(s)]s -
By (3.28) we have
w(t) = S;E(t, S)f(s)ds+E(2, 0)u(0) .

The inequality (3.29) is clear if we note that E(¢, s) belongs to w—&; (S s
(lzl) 21 "ty )

Proof of Proposition 3.7. Set O(#)=(P(¢)+P*())/2. Then g(¢; x, &)
satisfies
Re Q(t, xs g)+cl>co)"(x) E)m”
lg@(t; %, £)/(Re q(t; %, £)-+6)| < Cuph(x, £)” I+ ER

with constants ¢, and ¢;. Apply Theorem 2.11. Then we can construct the

complex power {Q,(t)} for Q(#)+¢c,. Note that Q(2) is self-adjoint. Then we
have @¥(t)=Q(¢) for real s (See Lemma 4.2 in [6]). We obtain
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Re ((P(t)+e))u, u) = (Q(t), u) = (Qia(t)u, Quu(tyu)+(K(t)u, u),
for some K()e£%(Sx5s). Then we have
Re ((P(t)+cr)u, u)=11QyulP—cyllul[? -

Take C=c,+-¢,. Then we get the assertion. Q.E.D.

4. Behavior of E(t, s) as (£—s)—>oo

In this section we assume for the basic weight function A (x, £) to satisfy
(1) Mz, £)= A1+ |2+ |E])

with a positive constant o and for p(¢; x, £)€E (ST, 5) to satisfy (3.2) with a
positive constant m’ and assume that there exist a positive constant ¢, and #,>0
such that

4.2) Re (P(tyu, u)=cllulf  t,<t<oo
for ue S(R").

Theorem 4.1. Let u(t)eE7(S(R")) satisfy Lu(t)=g(t) in t>t,. Then for
b>0 and any ¢;<c, there exists a constant B independent of t such that

Ol < B (e~ |, es=2lgo)uds)

For the proof of the above theorem we prepare the following

Lemma 4.2. Let v and w belong to S(R"). Then we have with a constant C
(4.3) [(Av, Bw)| <C|lv]| ||lwl| if AeS;5hsand BESY,,,
(4.4) |(Av, Bw)—(4, Bw)| <Clloll |||

if A, A,, B, B_ESS,5, A=A, and B=B,,

(45)  Re(P()Ao, A0)>1/2[|Q1pAplP—Cllol?
and
(4.6) [([As P(D)]v, A0)| <EI|Q1pADIP+Collo]P for any >0

where {Q,(t)} is the complex power of O(t)=(P(t)+P*(t))/2-+c,

Proof. Set R=(A-+A%*)/2+4d for large number d such that o(R) satisfies
(H.E) (see (2.16)). Let {R} be the complex power for R constructed in §2. We
can write R_,R,+K,=1, where K, belongs to S7s. Then we have

(Av, Bw) = (R,Av, R_,Bw)+(K,4v, Bw)
= (R,A4v, R_,Bw)+(R,K,Av, R_,Bw)+(K,Av, K ¥Bw) .
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Noting that R,4, R_,B, R, K,A, KA and K¥B belong to S} ,;, we get (4.3).
The estimate (4.4) is clear by (4.3).
For (4.5) we write

Re (P(t)Asv’ AS{U) = (Ql/z(t)Asv’ Ql/z(t)Asv)_f—(KZ(t)Ast) AS'U)—CI(ASW, Asi’) ’
where
(4.7) 0N (0a()+Ko(t) = O@t), K, EE7(SK55) -

We can write by Proposition 2.13 ¢, = G\(£)0,,(¢) where G,(t) belongs to
E7(SKm{?). Then we get

Re (P(t)A 0, A0)=[|01,t)A0|*— |G () Qva()Ao|P—C||v]]* .
by (4.4). Now applying Proposition 2.12, we get
Re (P(t)Aw, Aw)=1/2||0n(0)A 2|2 —C"||v]]? .

By Proposition 2.13 we can write [A,, P(#)]=G,0(t), where Gy(t)EET(S12s).
By (4.7) and 0,,G¥=G,Q,,, with G,EE7T(S52;s) we get for any £>0 the
estimate (4.6). Q.E.D.

Proof of Theorem 4.1. Note that Au(t) satisfies
(%—&—P(i))Abu(t) — Ag()—[A, P@)u(z)  for 6>0.
Then we have
%(Abu(t), Agi(#) = —2Re (P(E)Agu(t), Au(?))
12Re (A,g(t), Ag(t))+2Re ([Ay P(8)]Ju(t), Agu(t)) -
By Lemma 4.2 and (4.2) we get for any ¢;<c,
(49 LUAuOIF< 26l Au(OIP+ 2l Asg O 1A,(O]I+C (o)
with some constant C. Integrating (4.9) from ¢, to ¢, we get

(4.10)  [IAu)l <e s liAum)+ || e 1A+ Clluls)lh s
On the other hand it is clear that
(4.11) Il“(t)H<e"2"“°)llu(to)ll+st e~ 29| g(s)||ds .

Then from (4.10) and (4.11) we get the assertion. Q.E.D.
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Lemma 4.3. For any b such that cb—(n+1)/2>0 we have
Citlul,, o<|ull,<Cyluls, g, b = [cb—(n+1)/2], b, =#(b+1)+(n+1)/2
for ue S(R*), where ¥=max (1/p,, 7).
Proof. For />0 we have
lul, <Cllully, k=lo+(n+1)/20.
Note that A(x, &)<(|x|+ || +1)". Then we get Lemma 4.4. Q.E.D.

Theorem 4.4. Let E(t, s) be the fundamental solution which is constructed
in §3. Then for any fixed t,>5,>0 and any integers l; (j=1, 2, 3) there exists a
constant C independent of t such that

|0tie(, )| 577 <Cexp {—cit—1,)} 1>t
where ¢, is any constant such that ¢;<c,.
Proof. Let f(¢, s; x, £)=e*te(t, s; x, £). Then we get
o(POE, 5))(x, £) = et p(t; 2, D)f(t, 55 , E).

From the above equation we get the following equations for f

D1t 53 30 )+l 1 DIt 51, ) =0 in 1>
f(s, s; %, E) = e'=&.

(4.12)

Then f(t, s; x, £) is a solution of (0.1) with the intial data ¢*f., We see that
S(t, 555 %, E) for t>5, belongs to S(RY) from Theorem 3.1 and the assumption
(4.1) for A(x, £). Apply Theorem 4.1 for g=0 and u=f. Then we get

1S (2 05 <5 ENls<Be™ " || f(to, o5 «» E)lls -

Lemma 4.3 means that for any / there exists /” such that

Lf(t 505 +5 E)i g <SBe™ 0| f(E, 85+, E) g -

From (4.12) we get

0 (3f\y . ) Kl ' _
ot (@)(t, 5 x, E)+p(t; x, D’)ijf(t’ s;%,E)=0

9 _ ,
@f(‘»s; X, E)=zxje""f. j=1,2,-,n.
J

and
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0 ) . a9 . __ 90 .. .
—a?f(t, 53 x, £)+p(t; x, D,)at f(t, s; x, &) 5 p(t; %, D)f(2, s; x, E)

E?t—f(S, s; %, £) = —p(s; x, D,)et .
By the same argument we get

0
t, o5 * <Bl “eali=to)
g 5 8, <Be

and ‘

l%ﬂhw-f)

0 ..
@f(to: So5 *» E),I'.S

< Ble~cstt-ty)

0 )
LS 5£f(t0) So5 *» g)

rs

0t1e(ty, o3 X, £)E S5 s for £,>s, means that 8;1f(%,, 5,; x, £) belongs to S(R* X Ry)
for t,>s, by the assumption (4.1) for A(x, £). Hence we get the assertion.
Q.E.D.
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