THE FUNDAMENTAL SOLUTION FOR PSEUDO-DIFFERENTIAL OPERATORS OF PARABOLIC TYPE

CHISATO IWASAKI (née TSUTSUMI)

(Received October 20, 1976)

Introduction

In this paper we shall construct the fundamental solution E(t, s) for a degenerate pseudo-differential operator L of parabolic type only by symbol calculus and, as an application, we shall solve the Cauchy problem for L:

(0.1)
$$\begin{cases} Lu(t) = f(t) & \text{in } t > s, \\ u(s) = u_0. \end{cases}$$

Another application of the present fundamental solution will be done in [12] in order to construct left parametrices for degenerate operators studied by Grushin in [2].

Now let us consider the operator L of the form

$$L = \frac{\partial}{\partial t} + p(t; x, D_x),$$

where $p(t; x, D_x)$ is a pseudo-differential operator of class $S_{\lambda, \rho, \delta}^m$ with a parameter $t \ (\rho > \delta)$ (See §1). For the operator $p(t; x, D_x)$ we set the following conditions:

(0.2) Re
$$p(t; x, \xi) + c_0 \geqslant c_1 \lambda(x, \xi)^{m'}$$

$$|p_{(\beta)}^{(\alpha)}(t;x,\xi)|/(\operatorname{Re} p(t;x,\xi)+c_0)| \leq C_{\alpha,\beta}\lambda(x,\xi)^{-(\rho,\alpha)+(\delta,\beta)},$$

where $m \ge m' \ge 0$ and $\lambda = \lambda(x, \xi)$ is a basic weight function defined in §1. We note that $\lambda(x, \xi)$ in general varies even in x and increases in polynomial order.

We call E(t, s) a fundamental solution for L when E(t, s) satisfies

$$\begin{cases}
LE(t, s) = 0 & \text{in } t > s, \\
E(s, s) = I.
\end{cases}$$

The main theorem of this paper is stated as follows.

Main theorem. Under the conditions (0, 2) and (0, 3) we can construct the unique fundamental solution E(t, s) for L as a pseudo-differential operator of

class $S_{\lambda,\rho,\delta}^{0}$ with parameters t and s (For the precise statement see Theorem 3.1).

Using the fundamental solution of this theorem the solution of the Cauchy problem (0. 1) is given in the form

$$u(t) = E(t, s)u_0 + \int_s^t E(t, \sigma)f(\sigma)d\sigma$$
.

We note that Greiner [1] constructed the fundamental solution for parabolic differential operators on a compact C^{∞} -manifold by using pseudo-differential operators. But his method is different from ours and not applicable to our non-compact case R^n . We reduce the construction of the fundamental solution to solving the integral equation

(0.4)
$$\Phi(t, s) + K(t, s) + \int_{s}^{t} K(t, \sigma) \Phi(\sigma, s) d\sigma = 0$$

for a known operator $K(t, s) \in S_{\lambda, \rho, \delta}^0$.

To solve the equation (0.4) the product formula of pseudo-differential operators plays an essential role. We also note that by the same method we can construct the fundamental solution for degenerate operators which have been considered by Helffer [3] and Matsuzawa [7]. On the other hand Shinkai [9] constructed the fundamental solution E(t, s) when $p(x, \xi)$ is a system of pseudo-differential operator by our method and applied it to the proof of hypoellipticity of L.

In Section 1 we define pseudo-differential operators with symbol $S_{\lambda,\rho,\delta}^m$. In Section 2 main properties of pseudo-differential operators defined in Section 1 will be given. In Section 3 we shall construct the fundamental solution E(t, s) under the conditions (0.2) and (0.3), and in Section 4 we study the behavior of E(t, s) for large (t-s).

The results of the present paper have been announced partly in [10] and [11]. The author wishes to thank Professor H. Kumano-go for his helpful discussions and his encouragement.

1. Definitions and notations

Let R^n be the *n*-dimensional Euclidean space. $S = S(R^n)$ is the space of all rapidly decreasing functions with semi-norms

$$|f|_{l,S} = \max_{|\alpha|+|\beta| \leq l} \sup_{x \in \mathbb{R}^n} |x^{\alpha} \partial_x^{\beta} f(x)|,$$

where $\alpha = (\alpha_1, \dots, \alpha_n)$, $\beta = (\beta_1, \dots, \beta_n)$, $x^{\alpha} = x_1^{\alpha_1} \dots x_n^{\alpha_n}$ and $\partial_x^{\beta} = (\partial/\partial x_1)^{\beta_1} \dots (\partial/\partial x_n)^{\beta_n}$. S' is its dual space. $\hat{f}(\xi) = \mathcal{F}[f](\xi)$ denotes the Fourier transform of f(x) which is defined by

$$\hat{f}(\xi) = \int_{\mathbb{R}^n} e^{-\imath x \cdot \xi} f(x) dx, \quad f \in \mathcal{S}.$$

For a pair of real vectors $a=(a_1, \dots, a_n)$ and $b=(b_1, \dots, b_n)$ we denote a>b, if $a_j>b_j$ for any j and $a\geqslant b$, if $a_j\geqslant b_j$ for any j.

DEFINITION 1.1. We say that a C^{∞} -function $\lambda(x, \xi)$ defined in $R_x^n \times R_{\xi}^n$ is a basic weight function if there exists a pair of vectors $\tilde{\rho} = (\tilde{\rho}_1, \dots, \tilde{\rho}_n)$ and $\delta = (\delta_1, \dots, \delta_n)$ such that

(1.1)
$$\begin{cases} (i) & \tilde{\rho} > \delta, \quad \tilde{\rho}_{j} > 0 \ 1 \leqslant j \leqslant n \\ (ii) & 1 \leqslant \lambda(x+y, \xi) \leqslant A_{0} \leqslant y \rbrace^{\tau} \lambda(x, \xi) \quad \tau \geqslant 0, \ A_{0} \geqslant 1 \\ (iii) & |\lambda_{(\beta)}^{(\alpha)}(x, \xi)| \leqslant A_{\alpha, \beta} \lambda(x, \xi)^{1-(\tilde{\rho}, \alpha)+(\delta, \beta)} \end{cases}$$

where $\lambda_{(\beta)}^{(\alpha)}(x,\xi) = (\partial/\partial \xi_1)^{\alpha_1} \cdots (\partial/\partial \xi_n)^{\alpha_n} (-i\partial/\partial x_1)^{\beta_1} \cdots (-i\partial/\partial x_n)^{\beta_n} \lambda(x,\xi), \langle y \rangle = (1+|y|^2)^{1/2}, \ (\tilde{\rho},\alpha) = \sum_{i=1}^n \tilde{\rho}_i \alpha_i \text{ and } A_0 \text{ and } A_{\alpha,\beta} \text{ are constants.}$

For a basic weight function $\lambda(x, \xi)$ and a vector $\rho = (\rho_1, \dots, \rho_n)$ such that $\tilde{\rho} \ge \rho \ge \delta$, we define symbol class $S^m_{\lambda, \rho, \delta}$ as follows.

Definition 1.2. $S_{\lambda,\rho,\delta}^m$ is the set of all C^{∞} -functions $p(x,\xi)$ defined in $R_x^n \times R_x^n$ which satisfy for any α and β

$$|p_{(\beta)}^{(\alpha)}(x,\xi)| \leqslant C_{\alpha,\beta} \lambda(x,\xi)^{m-(\rho,\alpha)+(\delta,\beta)}$$

for some constant $C_{\alpha,\beta}$. For $p \in S_{\lambda,\rho,\delta}^m$ we define semi-norms $|p|_{l}^{(m)}$ by

$$|p|_{l}^{(m)} = \max_{|\alpha|+|\beta| \leqslant l} \sup_{(x,\xi) \in \mathbb{R}^{n} \times \mathbb{R}^{n}} \{|p_{(\beta)}^{(\alpha)}(x,\xi)| \lambda(x,\xi)^{-m+(\rho,\alpha)-(\delta,\beta)}\}.$$

Set $S_{\lambda,\rho,\delta}^{-\infty} = \bigcap_{m} S_{\lambda,\rho,\delta}^{m}$ and $S_{\lambda,\rho,\delta}^{\infty} = \bigcup_{m} S_{\lambda,\rho,\delta}^{m}$.

For $p(x, \xi) \in S_{\lambda,\rho,\delta}^m$ we define a pseudo-differential operator with the symbol $\sigma(P) = p(x, \xi)$ by

$$Pu(x) = Os - \iint e^{-iy \cdot \xi} p(x, \xi) u(x+y) dy d\xi$$

for $u \in \mathcal{S}$, where $d\xi = (2\pi)^{-n}d\xi$ and 'Os—' means the oscillatory integral defined in Definition 1.4 below.

Now let us mention the important properties about the oscillatory integral contained in [5].

DEFINITION 1.3. We say that a C^{∞} -function $q(\eta, y)$ in $R^n_{\eta} \times R^n_{y}$ belongs to a class $\mathcal{A}^m_{\delta,\tau}$ ($-\infty < m < \infty$, $\delta < 1$, $\tau = (\tau_1, \dots, \tau_k, \dots)$, $\tau_k \ge 0$) if for any multiindex α and β there exists a constant $C_{\alpha,\beta}$ such that

$$|\partial_{\eta}^{lpha}\partial_{y}^{eta}q(\eta,\,y)|\leqslant C_{lpha,eta}\langle\eta
angle^{m+\delta|eta|}\langle y
angle^{ au_{|eta|}}$$
 .

We also define the semi-norms $|q|^{\binom{m}{m}}$ by

$$\|q\|_{\eta}^{(m)}=\max_{\|lpha\|+\|eta\|\leqslant l}\sup_{(oldsymbol{\eta},y)\in R^n imes R^n}\{\|\partial_\eta^lpha\partial_y^eta q(\eta,y)\|\langle y
angle^{- au_{|oldsymbol{eta}|}}\langle \eta
angle^{-m-\delta\|eta\|}\}\;.$$

Definition 1.4. For $q(\eta, y) \in \mathcal{A}^m_{\delta, \tau}$ we define

$$Os - [e^{-iy \cdot \eta} q(\eta, y)] = Os - \iint e^{-iy \cdot \eta} q(\eta, y) dy d\eta$$
$$= \lim_{\epsilon \to 0} \iint e^{-iy \cdot \eta} \chi_{\epsilon}(\eta, y) q(\eta, y) dy d\eta,$$

where $\chi_{\epsilon}(\eta, y) = \chi(\epsilon \eta, \epsilon y)$ and $\chi(\eta, y)$ is a function such that $\chi \in \mathcal{S}(R^{2n})$ and $\chi(0, 0) = 1$.

Proposition 1.5. For $q(\eta, y) \in \mathcal{A}_{\delta, \tau}^m$ we can write

$$egin{aligned} Os &- \left[e^{-iy \cdot \eta} q(\eta, y)
ight] \ &= \int \int e^{-iy \cdot \eta} \langle y
angle^{-2l'} \langle D_{\eta}
angle^{-2l'} \{ \langle \eta
angle^{-2l} \langle D_{y}
angle^{2l} q(\eta, y) \} \ dy d\eta \ , \end{aligned}$$

where l and l' are positive integers such that $-2l(1-\delta) < -n$ and $-2l' + \tau_{2l} < -n$.

Proposition 1.6. Let $\{q_{\mathfrak{e}}\}_{0<\mathfrak{e}<1}$ be a subset of $\mathcal{A}^m_{\delta,\tau}$ such that $\sup_{\mathfrak{e}}|q_{\mathfrak{e}}|^{m} \leq M_{\delta}$ for any l. If there exists $q_0(\eta,y) \in \mathcal{A}^m_{\delta,\tau}$ such that $q_{\mathfrak{e}}(\eta,y) \to q_0(\eta,y)$ as $\varepsilon \to 0$ uniformly on any compact set of $R^n_{\eta} \times R^n_{\eta}$, then we have $\lim_{\varepsilon \to 0} Os - [e^{-iy^{-n}}q_{\mathfrak{e}}] = Os - [e^{-iy^{-n}}q_0]$.

DEFINITION 1.7. Let F be a Fréchet space. We define $\mathcal{E}_t^l(F)$ by

 $\mathcal{E}_t^l(F) = \{l\text{-times continuously differentiable } F\text{-valued}$ function u(t) in the interval I}.

DEFINITION 1.8([6]). We say that $\{p_{\epsilon}(x,\xi)\}_{0<\epsilon<1}$ converges to $p_0(x,\xi)$ weakly in $S_{\lambda,\rho,\delta}^m$ if $\{p_{\epsilon}(x,\xi)\}_{0<\epsilon<1}$ is a bounded set in $S_{\lambda,\rho,\delta}^m$ and if $p_{\epsilon}(x,\xi)$ converges to $p_0(x,\xi)$ as $\varepsilon\to 0$ uniformly on any compact set of $R_1^n\times R_{\epsilon}^n$. We define $\omega-\mathcal{E}_{l,s}^l(S_{\lambda,\rho,\delta}^m)$ in $0\leqslant s\leqslant t\leqslant T$ by

 $\omega - \mathcal{E}_{t,s}^{l}(S_{\lambda,\rho,\delta}^{m}) = \{S_{\lambda,\rho,\delta}^{m}\text{-valued functions } u(t,s) \text{ defined in } 0 \leq s \leq t \leq T \text{ which are } l\text{-times continuously differentiable with respect to } t \text{ and } s \text{ in the weak topology of } S_{\lambda,\rho,\delta}^{m} \}.$

2. Calculus of pseudo-differential operators in class $S_{\lambda,\rho,\delta}^m$

The main theorem of this section is the following

Theorem 2.1. Let $P_j \in S_{\lambda,\rho,\delta}^{m_j}$ $(j=1,\dots,\nu)$. Then the product operator $P=P_1\cdots P_{\nu}$ belongs to $S_{\lambda,\rho,\delta}^{m_0}$, where $m_0=\sum_{j=1}^{\nu}m_j$. Moreover for any l there exists l_0 such that

$$(2.1) \qquad |\sigma(P)|^{\binom{m_0}{}} \leq (C_0)^{\nu} \prod_{i=1}^{\nu} |p_i|^{\binom{m}{0}}$$

where l_0 and C_0 are constants depending on $\sum_{i=1}^{\nu} |m_i|$ but independent of ν .

Proof. We can write

$$Pu(x) = Os - \int \cdots \int \exp \left\{-i \sum_{j=1}^{\nu} y^{j} \cdot \xi^{j}\right\} p_{1}(x, \xi^{1}) p_{2}(x+y^{1}, \xi^{2}) \cdots \\ \cdots p_{\nu}(x+\sum_{j=1}^{\nu-1} y^{j}, \xi^{\nu}) u(x+\sum_{j=1}^{\nu} y^{j}) dy^{1} dy^{2} \cdots dy^{\nu} d\xi^{1} d\xi^{2} \cdots d\xi^{\nu}.$$

So the symbol of P is given by

(2.2)
$$p(x, \xi) = Os - \int \cdots \int \exp \left\{ -i \sum_{j=1}^{\nu-1} y^j \cdot \eta^j \right\} \prod_{j=1}^{\nu} p_j (x + \sum_{k=0}^{j-1} y^k, \xi + \eta^j) dV$$
, where $y^0 = 0$, $\eta^{\nu} = 0$ and $dV = dy^1 dy^2 \cdots dy^{\nu-1} d\eta^1 d\eta^2 \cdots d\eta^{\nu-1}$.

By (2.2) it is sufficient to prove (2.1) for l=0. For the proof we prepare the following

Lemma 2.2. Let $q(x^1, \xi^1, \dots, x^{\vee}, \xi^{\vee})$ be a C^{∞} -function on R^{2n} such that

$$(2.3) \qquad |\partial_{x^1}^{\beta^1} \partial_{x^2}^{\beta^2} \cdots \partial_{x^{\nu}}^{\beta^{\nu}} \partial_{\xi^1}^{\alpha^1} \partial_{\xi^2}^{\alpha^2} \cdots \partial_{\xi^{\nu}}^{\alpha^{\nu}} q^1(x^1, \xi^1, x^2, \xi^2, \cdots, x^{\nu}, \xi^{\nu})|$$

$$\leq M_{\alpha^1, \alpha^2, \cdots, \alpha^{\nu}, \beta^1, \beta^2, \cdots, \beta^{\nu}} \prod_{i=1}^{\nu} \lambda(x^i, \xi^i)^{m_j - (\rho, \alpha^j) + (\delta, \beta^j)}$$

for any sequence of multi-indices α^1 , α^2 , ..., α^{ν} , β^1 , β^2 , ..., β^{ν} . Set

(2.4)
$$I_{\theta} = Os - \int \cdots \int \exp \left\{-i \sum_{j=1}^{\nu-1} y^{j} \cdot \eta^{j}\right\}$$

$$\times q(x, \xi + \theta \eta^{1}, x + y^{1}, \xi + \theta \eta^{2}, \cdots, \xi + \theta \eta^{\nu-1}, x + \sum_{j=1}^{\nu-1} y^{j}, \xi) dV$$

$$(0 \leq \theta \leq 1).$$

Then we can find l_0 such that

$$|I_{\theta}| \leqslant (C_0)^{\nu} M_{I_0} \lambda(x, \xi)^{m_0},$$

where $m_0 = \sum_{j=1}^{\nu} m_j$, $M_{l_0} = \max_{|\alpha^j| + |\beta^j| \le l_0} \{M_{\alpha^1, \alpha^2, \dots, \alpha^{\nu}, \beta^1, \beta^2, \dots, \beta^{\nu}}\}$ and C_0 is a constant depending on $\sum_{j=1}^{\nu} |m_j|$ but independent of ν and θ .

Apply the above Lemma 2.2 to (2.2) setting $q(x^1, \xi^1, x^2, \xi^2, \dots, x^{\nu}, \xi^{\nu})$ = $\prod_{j=1}^{\nu} p_j(x^j, \xi^j)$ and $\theta = 1$. Then we get

$$|p|\delta^{m_0} \leq (C_0)^{\nu} \prod_{j=1}^{\nu} |p_j|\delta^{m_j}$$
.

Thus the proof is completed.

574 C. IWASAKI

For the proof of Lemma 2.2 we prepare some propositions. For simplicity we may assume $\tilde{\rho}_j = \tilde{\rho}$, $\rho_j = \rho$ and $\delta_j = \delta$ for any j. Otherwise we have only to repeat the same argument for each variable.

Set

$$F(x, \eta; y) = (1 + \lambda(x, \eta)^{2\bar{\delta}n_0} |y|^{2n_0})^{-1},$$

where $\delta = \max(\delta, 0)$ and $n_0 = \lfloor n/2 \rfloor + 1$. Then, by (1.1)-(iii) we have easily the following

Proposition 2.3. $F(x, \eta; y)$ satisfies the inequality with constants $C_{\alpha,\beta,\gamma}$

$$|\partial_x^\alpha \partial_y^\beta \partial_\eta^\gamma F(x, \eta; y)| \leqslant C_{\alpha, \beta, \gamma} F(x, \eta; y) \lambda(x, \eta)^{-\widetilde{\rho}|\gamma| + \overline{\delta}|\alpha + \beta|}$$

for all $\alpha \beta$, and γ .

Proof is omitted.

Proposition 2.4. If $r_1 \ge 0$ and $r_2 - 2\tau \delta n_0 \ge 0$, then we get for some constant C

$$\begin{split} &\int F(z^{\scriptscriptstyle 1},\,\xi+\eta^{\scriptscriptstyle 1};\,z^{\scriptscriptstyle 1}-z^{\scriptscriptstyle 0})F(z^{\scriptscriptstyle 2},\,\xi+\eta^{\scriptscriptstyle 2};\,z^{\scriptscriptstyle 2}-z^{\scriptscriptstyle 1})\!\! \langle z^{\scriptscriptstyle 0}-z^{\scriptscriptstyle 1}\rangle^{-r_{\scriptscriptstyle 1}}\!\! \langle z^{\scriptscriptstyle 2}-z^{\scriptscriptstyle 1}\rangle^{-r_{\scriptscriptstyle 2}}dz^{\scriptscriptstyle 1}\\ &\leqslant C\langle z^{\scriptscriptstyle 2}-z^{\scriptscriptstyle 0}\rangle^{-r_{\scriptscriptstyle 2}}\{F(z^{\scriptscriptstyle 2},\,\xi+\eta^{\scriptscriptstyle 2};\,z^{\scriptscriptstyle 2}-z^{\scriptscriptstyle 0})\lambda(z^{\scriptscriptstyle 2},\,\xi+\eta^{\scriptscriptstyle 1})^{-n\overline{\delta}}\\ &\quad +F(z^{\scriptscriptstyle 2},\,\xi+\eta^{\scriptscriptstyle 1};\,z^{\scriptscriptstyle 2}-z^{\scriptscriptstyle 0})\lambda(z^{\scriptscriptstyle 2},\,\xi+\eta^{\scriptscriptstyle 2})^{-n\overline{\delta}}\}\;. \end{split}$$

where $r_3 = \min(r_1, r_2 - 2\tau \delta n_0)$.

Proof. We devide R^n into two parts $\Omega_1 = \{z^1 \in R^n; |z^1 - z^2| \ge |z^0 - z^2|/2\}$ and $\Omega_2 = R^n \setminus \Omega_1$. For $z^1 \in \Omega_1$ we have

(2.6)
$$F(z^2, \xi + \eta^2; z^2 - z^1) \leq 2^{2n_0} F(z^2, \xi + \eta^2; z^2 - z^0)$$
 in Ω_1

and

$$(2.7) \langle z^1 - z^2 \rangle^{-1} \leqslant 2 \langle z^2 - z^0 \rangle^{-1} \text{in } \Omega_1.$$

For $z^1 \in \Omega_2$, we get

(2.8)
$$F(z^2, \xi + \eta^1; z^1 - z^0) \le 2^{2n_0} F(z^2, \xi + \eta^1; z^2 - z^0)$$
 in Ω_2

and

$$(2.9) \langle z^1-z^0\rangle^{-1} \leqslant 2\langle z^2-z^0\rangle^{-1} \text{in } \Omega_2.$$

Since $2n_0 > n$, it is clear that

(2.10)
$$\int_{\mathbb{P}^n} F(x, \eta; y) dy = c_1 \lambda(x, \eta)^{-n\overline{\delta}}.$$

By (1.1)-(ii) we get

$$(2.11) \qquad F(z^{1}, \, \xi + \eta^{1}; \, z^{1} - z^{0}) \leq (A_{0})^{2\bar{\delta}n_{0}} \langle z^{2} - z^{1} \rangle^{2\bar{\delta}n_{0}} F(z^{2}, \, \xi + \eta^{1}; \, z^{1} - z^{0}) \,.$$

Then by $(2.6)\sim(2.11)$ we get the assertion.

Q.E.D.

By (1.1)~(iii) there exists a constant $c_0 > 0$ such that

$$|\lambda(x, \xi+\eta)-\lambda(x, \xi)| \leq \lambda(x, \xi)/2$$

if $|\eta| \leq c_0 \lambda(x, \xi)^{\tilde{\rho}}$.

Proposition 2.5. Set

$$I(K) = |\eta|^{-2K} \lambda(x, \xi+\eta)^m \{\lambda(x, \xi+\eta)+\lambda(x, \xi)\}^{2K\overline{\delta}}$$

$$\times \left\{ \lambda(x, \xi+\eta)^{-n\overline{\delta}} + \frac{F(x, \xi+\eta; y)}{F(x, \xi; y)} \lambda(x, \xi)^{-n\overline{\delta}} \right\} \qquad (K \geqslant 0)$$

and set

$$egin{aligned} I_1 &= \{\eta; \ |\eta| \leqslant c_0 \lambda(x, \, \xi)^{ar{\delta}} \} \ , \ I_2 &= \{\eta; \ c_0 \lambda(x, \, \xi)^{ar{\delta}} \leqslant |\eta| \leqslant c_0 \lambda(x, \, \xi)^{ar{
ho}} \} \ I_2 &= \{\eta; \ |\eta| \geqslant c_0 \lambda(x, \, \xi)^{ar{
ho}} \} \ . \end{aligned}$$

and

Then we have for a constant c

(2.12)
$$\int_{I_i} I(K_j) d\eta \leqslant c\lambda(x, \xi)^m \qquad (j = 1, 2, 3),$$

if $K_1=0$, $K_2>n/2$ and $K_3>(|m|+2\delta n_0+n\tilde{\rho})/2(\tilde{\rho}-\delta)$.

Proof. If η belongs to I_1 or I_2 , then we have for some constant c_2

$$I(K) \leqslant c_2 |\eta|^{-2K} \lambda(x, \xi)^{(2K-n)\overline{\delta}+m}, \qquad K \geqslant 0.$$

Hence (2.12) is proved for j=1 and 2. If η belongs to I_3 we have

$$(2.13) I(K) \leqslant c_3 |\eta|^{-2K+(\overline{m}+2\overline{\delta}K+2\overline{\delta}n_0)/\widetilde{\rho}}, \overline{m} = \max(m, 0),$$

since it holds that

$$\begin{cases} \lambda(x, \xi+\eta) \leqslant c_4 |\eta|^{1/\widetilde{\rho}}, & \eta \in I_3, \\ \left| \frac{F(x, \xi+\eta; y)}{F(x, \xi; y)} \lambda(x, \xi)^{-n\overline{\delta}} \right| \leqslant c_4 |\eta|^{2\overline{\delta}n_0/\widetilde{\rho}} \end{cases}$$

for some constant c_4 . By (2.13) we get (2.12) for j=3 if K_3 is chosen as above. Q.E.D.

Proposition 2.6. Set

$$J_l = |\eta|^{-2K_l} \{ \lambda(z^2, \xi + \eta) + \lambda(z^2, \xi) \}^{2\overline{\delta}K_l} \lambda(z^1, \xi + \eta)^m \langle z^1 - z^0 \rangle^{-r_1} \ imes F(z^1, \xi + \eta^1; z^1 - z^0) \langle z^2 - z^1 \rangle^{-r_2} F(z^2, \xi; z^2 - z^0) , \ (l = 1, 2, 3) .$$

Then we have for l=1, 2, 3

$$\int_{I_{I}} \int_{\mathbb{R}^{n}} J_{I} dz^{1} d\eta^{1} \leqslant B \langle z^{2} - z^{0} \rangle^{-r_{3}} \lambda(z^{2}, \xi)^{m} F(z^{2}, \xi; z^{2} - z^{0})$$

with $B=Cc(A_0)^{|m|}$ and $r_3=\min(r_1, r_2-2\tau \delta n_0-\tau |m|)$ if K_l and I_l are defined as in Proposition 2.5 and $n_0=[n/2]+1$, $r_1\geqslant 0$ and $r_2-2\tau \delta n_0-\tau |m|\geqslant 0$.

Proof. By means of Proposition 2.4 for $\eta^1 = \eta$, $\eta^2 = 0$ and (1.1)-(ii) we get

(2.14)
$$\int_{\mathbb{R}^{n}} J_{l} dz^{1} \leq C(A_{0})^{|m|} |\eta|^{-2K_{l}} \{\lambda(z^{2}, \xi+\eta) + \lambda(z^{2}, \xi)\}^{2\bar{\delta}K_{l}}$$

$$\times \left\{\lambda(z^{2}, \xi+\eta)^{-\bar{\delta}n} + \frac{F(z^{2}, \xi+\eta; z^{2}-z^{0})}{F(z^{2}, \xi, z^{2}-z^{0})} \lambda(z^{2}, \xi)^{-\bar{\delta}n}\right\}$$

$$\times \langle z^{2}-z^{0}\rangle^{-r_{3}} \lambda(z^{2}, \xi+\eta)^{m} F(z^{2}, \xi; z^{2}-z^{0}), \qquad l=1, 2, 3.$$

Now by Proposition 2.5 and we get the assertion.

Q.E.D.

Proof of Lemma 2.2. Set $n_0 = [n/2] + 1$, $M = \sum_{j=1}^{\nu} |m_j|$, $K = [M + 2\delta n_0 + n\tilde{\rho}/2(\tilde{\rho} - \delta)] + 1$, $N = [\tau(3\delta n_0 + 3\delta K + 2M)] + 1$ and functions $K_j = K_j$ $(\eta^j, \eta^{j+1}, z^{j+1})$ $(j=1, \dots, \nu-1)$ as follow: $K_j = 0$ on $I_{j,1}$, $K_j = n_0$ on $I_{j,2}$ and $K_j = K$ on $I_{j,3}$, where

$$I_{j,1} = \{ \eta^j {\in} R^{\it m}; \, |\eta^j {-} \eta^{\jmath+1}| \, {\leqslant} \, c_0 \lambda (z^{j+1}, \, \xi {+} \theta \eta^{\jmath+1})^{\overline{\delta}} \} \; ,$$

$$I_{j,2} = \{\eta^{j} \in R^{n}; c_{0}\lambda(z^{j+1}, \xi + \theta\eta^{j+1})^{\overline{k}} < |\eta^{j} - \eta^{j+1}| \leq c_{0}\lambda(z^{j+1}, \xi + \theta\eta^{j+1})^{\widetilde{p}}\}$$

and

$$I_{j,3} = \{ \eta^{j} \in \mathbb{R}^{n}; \, |\eta^{j} - \eta^{j+1}| > c_{0} \lambda(z^{j+1}, \, \xi + \theta \eta^{j+1})^{\tilde{p}} \} \qquad (z^{\vee} = x, \, \eta^{\vee} = 0) \, .$$

By integration by parts we obtain

$$\begin{split} I_{\theta} &= Os - \int \cdots \int \exp \left\{ -i \sum_{j=1}^{\gamma-1} y^j \cdot \eta^j \right\} \prod_{j=1}^{\gamma-1} \langle y^j \rangle^{-2N} \\ &\quad \times \{ 1 + (-\Delta_{\eta j})^{n_0} \lambda (x + \sum_{k=0}^{j-1} y^k, \, \xi + \theta \eta^j)^{2\overline{\delta}n_0} \} \left\{ 1 + \lambda (x + \sum_{k=0}^{j-1} y^k, \, \xi + \theta \eta^j)^{2\overline{\delta}n_0} \right. \\ &\quad \times |y^j|^{2n_0} \}^{-1} (-\Delta_{\eta j})^N \, q(x, \, \xi + \theta \eta^1, \, \cdots, \, x + \sum_{k=1}^{j-1} y^k, \, \xi + \theta \eta^j, \, \cdots, \, x + \sum_{k=1}^{\gamma-1} y^k, \, \xi) dV \,, \end{split}$$

where $y^0=0$. Then by change of variables $x+\sum_{i=1}^{j}y^i=z^i$ $(j=1,\dots,\nu-1)$ we get

$$I_{\theta} = \int \cdots \int \exp \left\{-i \sum_{i=1}^{\nu-1} z^{j} \cdot (\eta^{j} - \eta^{j+1})\right\} \prod_{i=1}^{\nu-1} |\eta^{j} - \eta^{j+1}|^{-2K_{j}} (-\Delta_{z^{j}})^{K_{j}} r dV,$$

where

$$egin{aligned} r &= \prod_{j=1}^{\nu-1} \; \{1 + (-\Delta_{\eta^j})^{n_0} \cdot \lambda(z^{j-1}, \; \xi + \theta \eta^j)^{2ar{\epsilon}} n_0 \} \; \prod_{j=1}^{\nu-1} \langle z^j - z^{j-1}
angle^{-2N} \ & imes F(z^{j-1}, \; \xi + \theta \eta^j; \; z^j - z^{j-1}) \langle \Delta_{\eta^j}
angle^N q(z^0, \; \xi + \theta \eta^1, \; z^1, \cdots, \; \xi + \theta \eta^{\nu-1}, \; z^{\nu-1}, \; \xi) \; , \ z^0 &= x \; ext{and} \; \eta^{\nu} \; = 0 \; . \end{aligned}$$

Then from Proposition 2.3 and (2.3) we have with a constant C_1

$$(2.15) \quad |\prod_{j=1}^{\nu-1} (-\Delta_{z^{j}})^{K_{j}} r| \leq (C_{1})^{\nu} M_{2(K+N+n_{0})} \prod_{j=1}^{\nu-1} \langle z^{j} - z^{j-1} \rangle^{-2N} \\ \times \{\lambda(z^{j-1}, \xi + \theta \eta^{j}) + \lambda(z^{j}, \xi + \theta \eta_{0}^{j+1})\}^{2\overline{\epsilon}K_{j}} F(z^{j-1}, \xi + \theta \eta^{j}; z^{j} - z^{j-1}) \\ \times \prod_{j=1}^{\nu} \lambda(z^{j-1}, \xi + \theta \eta^{j})^{m_{j}} \\ \leq C_{2}^{\nu} M_{2(K+N+n_{0})} \prod_{j=1}^{\nu-1} \{\lambda(z^{j+1}, \xi + \theta \eta^{j}) + \lambda(z^{j+1}, \xi + \theta \eta^{j+1})\}^{2\overline{\epsilon}K_{j}} \\ \times \langle z^{j} - z^{j-1} \rangle^{-2M+R} F(z^{j}, \xi + \theta \eta^{j}; z^{j} - z^{j-1}) \lambda(z^{j}, \xi + \theta \eta^{j})^{m_{j}} \\ \times \langle z^{\nu} - z^{\nu-1} \rangle^{R'} \lambda(z^{\nu}, \xi)^{m_{\nu}},$$

where $z^0 = z^{\nu} = x$, $\eta^{\nu} = 0$, $R = \tau (2\delta n_0 + 4\delta K + M)$, $R' = \tau (2\delta K + M)$ and $C_2 = C_1(2A_0)^{M+2\bar{\delta}(K+n_0)}$. We used (1.1)-(iii) and

$$\begin{aligned} \{1+\lambda(z^{j},\,\xi+\theta\eta^{j})^{\overline{b}}\lambda(z^{j-1},\,\xi+\eta^{j})^{-\widetilde{\rho}}\} \leqslant &(2A_{0})^{\overline{b}}\langle z^{j}-z^{j-1}\rangle^{\overline{b}}\\ (j=1,\,\cdots,\,\nu-1) \end{aligned}$$

in the last step. From (2.15) and Proposition 2.6 we get for l=1, 2, 3

$$\begin{split} \int_{I_{1,I}} |\eta^1 - \eta^2|^{-2K_1} |\prod_{j=1}^{\nu-1} (-\Delta_{z^j})^{K_j} r | dz^1 d\eta^1 \\ &\leqslant (C_2)^{\nu-1} C_3 M_{2(K+N+n_0)} \prod_{j=2}^{\nu-1} \left\{ \lambda(z^{j+1}, \, \xi + \theta \eta^j) + \lambda(z^{j+1}, \, \xi + \theta \eta^{j+1}) \right\}^{2\bar{\nu}K_j} \\ &\times \prod_{j=3}^{\nu-1} F(z^j, \, \xi + \theta \eta^j; \, z^j - z^{j-1}) \langle z^j - z^{j-1} \rangle^{-2N+R} \lambda(z^j, \, \xi + \theta \eta^j)^{m_j} \\ &\times F(z^2, \, \xi + \theta \eta^2; \, z^2 - z^0) \langle z^2 - z^0 \rangle^{-2N+R''} \lambda(z^2, \, \xi + \theta \eta^2)^{\widetilde{m}_2} \\ &\times \langle z^{\nu} - z^{\nu-1} \rangle^{R'} \lambda(z^{\nu}, \, \xi)^{m_{\nu}} \,, \end{split}$$

where $C_3 = C_2 Cc(A_0)^M$, $\tilde{m}_2 = m_1 + m_2$, and $R'' = R + \tau(2\delta n_0 + M)$. Since $-2N + R + \tau(2\delta n_0 + M) \leq 0$, we can repeat the same argument. Hence we obtain

$$\begin{split} &\int \cdots \int \prod_{j=1}^{\nu-1} |\eta^{j} - \eta^{j+1}|^{-2K_{J}} (-\Delta_{z^{j}})^{K_{j}} r \, dz^{1} \, dz^{2} \cdots dz^{\nu-2} \, d\eta^{1} \, d\eta^{2} \cdots \, d\eta^{\nu-2} \\ & \leq & (C_{2})^{2} (C_{3})^{\nu-1} M_{2(K+N+n_{0})} |\eta^{\nu} - \eta^{\nu-1}|^{-2K_{\nu-1}} \{\lambda(z^{\nu}, \, \xi + \theta \eta^{\nu-1}) \\ & + \lambda(z^{\nu}, \, \xi + \theta \eta^{\nu})\}^{2\overline{\delta}K_{\nu-1}} F(z^{\nu-1}, \, \xi + \theta \eta^{\nu-1}; \, z^{\nu-1} - z^{0}) \\ & \times \langle z^{\nu-1} - z^{0} \rangle^{-2N+R''} \lambda(z^{\nu-1}, \, \xi + \theta \eta^{\nu-1})^{\widetilde{m}_{\nu-1}} \langle z^{\nu} - z^{\nu-1} \rangle^{R'} \lambda(z^{\nu}, \, \xi)^{m_{\nu}} \\ & (z^{0} = z^{\nu} = x, \, \eta^{\nu} = 0) \,, \end{split}$$

where $\tilde{m}_{\nu-1} = \sum_{j=1}^{\nu-1} m_j$. Noting $-2N + R'' + R' + 2\tau \delta n_0 + M = -2N + \tau (6\delta n_0 + 6\delta K + 4M) \le 0$, we get, by (1.1)-(ii), (2.10), (2.11) and Proposition 2.5,

$$\int \cdots \int \prod_{j=1}^{\nu-1} |\eta^{j} - \eta^{j+1}|^{-2K_{j}} |(-\Delta_{z^{j}})^{K_{j}} r| dV \leqslant C_{2}(C_{3})^{\nu-1} M_{2(K+N+n_{0})} \lambda(x, \xi)^{m_{0}}.$$

Take $l_0 = 2(K+N+n_0)$ and $C_0 = C_3$. Thus we get (2.5). Q.E.D.

We denote the symbol $\sigma(P_1P_2\cdots P_{\gamma})$ by

$$\sigma(P_1P_2\cdots P_{\nu})=p_1\circ p_2\circ\cdots\circ p_{\nu}$$

as used in [9].

Now for an operator $P=p(x, D_x) \in S_{\lambda, \rho, \delta}^m$ we define the adjoint operator P^* by the relation

$$(Pu, v) = (u, P*v)$$
 for $u, v \in S$.

Then we have

$$P^*u(x) = \int \int e^{i(x-y)\cdot\xi} p(y,\xi)u(y)dy d\xi$$

= $\int \cdots \int e^{-(y^1\cdot\xi^1+y^2\cdot\xi^2)} p(x+y^1,\xi^1)u(x+y^1+y^2)dy^1d\xi^1dy^2d\xi^2$.

It is clear that P^* is also a pseudo-differential operator with symbol

$$\sigma(P^*)(x,\,\xi) = Os - \iint e^{-iy\cdot\eta} p(x+y,\,\xi+\eta) dy d\eta.$$

Theorem 2.7. If P belongs to $S_{\lambda,\rho,\delta}^m$, then P^* belongs to $S_{\lambda,\rho,\delta}^m$. Moreover for any l there exists l' such that

$$|\sigma(P^*)|_{l'}^{(m)} \leqslant C |\sigma(P)|_{l'}^{(m)}$$

with some constant C.

Proof. Set $n_0 = \lfloor n/2 \rfloor + 1$. By integration by parts we obtain

$$\sigma(P^*)(x, \xi) = Os - \iint e^{-iy \cdot \eta} \langle y \rangle^{-2N} \{1 + \lambda(x, \xi)^{2\overline{\delta}n_0} | y |^{2n_0} \}^{-1}$$

$$\times \{1 + \lambda(x, \xi)^{2\overline{\delta}} (-\Delta_{\eta})^{n_0} \} \langle -\Delta_{\eta} \rangle^{N} p(x+y, \xi+\eta) dy d\eta.$$

Choose K as follows: K=0 on I_1 , $K=n_0$ on I_2 and $K=[(|m|+2\delta n_0+n\tilde{\rho})/2(\tilde{\rho}-\delta)]+1$ on I_3 , where

$$I_1 = \{ \eta \in R^n; \ |\eta| \leqslant c_0 \lambda(x, \, \xi)^{\overline{\delta}} \} ,$$

 $I_2 = \{ \eta \in R^n; \ c_0 \lambda(x, \, \xi)^{\overline{\delta}} < |\eta| \leqslant c_0 \lambda(x, \, \xi)^{\widetilde{\rho}} \} .$

and

$$I_3 = R^n \setminus (I_1 \cup I_2)$$
.

Then we have

$$\sigma(P^*)(x,\,\xi) = \iint e^{-iy\cdot\eta} |\eta|^{-2K} (-\Delta_y)^K r dy d\eta,$$

where r satisfies

$$|(-\Delta_{y})^{K}r| \leq C |p|_{2(K+N+n_{0})}^{(m)} \langle y \rangle^{-2N+\tau(|m|+2\bar{\delta}K)} \times \lambda(x, \xi+\eta)^{m+2\bar{\delta}K} \{1+\lambda(x, \xi)^{2\bar{\delta}n_{0}}|y|^{2n_{0}}\}^{-1}.$$

Choose $2N \geqslant \tau(|m| + 2\delta K)$. Noting the above estimate, we get the assertion if we repeat the same argument as in the proof of Lemma 2.2. Q.E.D.

From Theorems 2.1 and 2.7 we get the L^2 -boundedness theorem by the same argument in [5].

Theorem 2.8. Let $P \in S^0_{\lambda,\rho,\delta}$. Then P is a bounded operator in $L^2(\mathbb{R}^n)$ and there exist l_0 and C such that

$$||Pu|| \leq C |p|_0^{(0)} ||u||, \quad u \in L^2(\mathbb{R}^n).$$

For pseudo-differential operators of this class we get the following expansion theorem.

Theorem 2.9. If $p_j(x, \xi)$ belongs to $S_{\lambda, \rho, \delta}^{m_j}$ (j=1, 2), we can write for any N

$$(p_1 \circ p_2)(x, \, \xi) = \sum_{|\alpha| < N} \frac{1}{|\alpha|} p_1^{(\alpha)}(x, \, \xi) p_{2(\alpha)}(x, \, \xi) + r_N(x, \, \xi),$$

where $r_N(x, \xi)$ belongs to $S_{\lambda, \rho, \delta}^{m_1+m_2-\epsilon_0 N}$ and $\varepsilon_0 = \min_{1 \leq i \leq n} (\rho_i - \delta_i)$.

Proof. By the Taylor expansion we can write

$$\begin{split} (p_{1} \circ p_{2})(x, \, \xi) &= Os - \iint e^{-iy \cdot \eta} p_{1}(x, \, \xi + \eta) p_{2}(x + y, \, \xi) dy d\eta \\ &= Os - \iint e^{-iy \cdot \eta} \sum_{|\alpha| < N} \frac{1}{\alpha!} p_{1}^{(\alpha)}(x, \, \xi) \eta^{\alpha} p_{2}(x + y, \, \xi) dy d\eta \\ &+ Os - \iint e^{-iy \cdot \eta} \sum_{|\gamma| = N} \frac{\eta^{\gamma}}{\gamma!} \int_{0}^{1} (1 - \theta)^{N-1} p_{1}^{(\gamma)}(x, \, \xi + \theta \eta) d\theta \, p_{2}(x + y, \, \xi) dy d\eta \\ &= \sum_{|\alpha| < N} \frac{1}{\alpha!} p_{1}^{(\alpha)}(x, \, \xi) p_{2(\alpha)}(x, \, \xi) + r(x, \, \xi) \,, \end{split}$$

where
$$r(x, \xi) = N \sum_{|\gamma|=N} \int_0^1 \frac{(1-\theta)^{N-1}}{\gamma!} \left\{ Os - \iint e^{-iy\cdot\eta} p_1^{(\gamma)}(x, \xi+\theta\eta) \right\}$$

 $\times p_{2(\gamma)}(x+y, \xi) dy d\eta d\theta$. Apply Lemma 2.2 for $r(x, \xi)$ setting $q(x^1, \xi^1, x^2, \xi^2) = \sum_{|\gamma|=N} p_1^{(\gamma)}(x^1, \xi^1) p_{2(\gamma)}(x^2, \xi^2)$. Then it is clear that $r(x, \xi)$ belongs to $S_{\lambda, \rho, \delta}^{m_1+m_2-\varepsilon_0 N}$. O.E.D.

In what follows we assume that $\mathcal{E}_0 = \min_{1 \le j \le n} (\rho_j - \delta_j)$ is positive. Let $p(x, \xi) \in S_{\lambda, \rho, \delta}^m$ satisfy the following conditions (H.E)

$$(2.16) \quad (\text{H.E}) \left\{ \begin{array}{ll} |p(x,\xi)| \geqslant c\lambda(x,\xi)^{m'} & m \geqslant m' \geqslant 0, \\ |p_{(\beta)}^{(\alpha)}(x,\xi)/p(x,\xi)| \leqslant C_{\alpha,\beta}\lambda(x,\xi)^{-(\rho,\alpha)+(\delta,\beta)} & (\rho > \delta). \end{array} \right.$$

Then we get the following theorems in the same way as in [6].

Theorem 2.10 (cf. [4], [6]). If $p(x, \xi)$ satisfies Condition (H.E), then $p(x, D_x)$ has a parametrix $q(x, D_x)$, which belongs to $S_{\lambda, \rho, \delta}^{-m'}$, in the sense $p(x, D_x)q(x, D_x)\equiv q(x, D_x)p(x, D_x)\equiv I \pmod{S_{\lambda, \rho, \delta}^{-\infty}}$.

Theorem 2.11 (cf. [6], [8]). If $p(x, \xi)$ satisfies (H.E) and arg $p(x, \xi)$ is well defined, then we can construct the complex power $\{p_z(x, D_x)\}_{z \in C}$ of $p(x, D_x)$ such that $P_{z_1}P_{z_2} \equiv P_{z_1+z_2}$, $P_0 = I$, $P_1 \equiv P$, $P_z \in S_{\lambda,\rho,\delta}^{mRez}(\text{Re } z \ge 0)$ and $P_z \in S_{\lambda,\rho,\delta}^{m'Rez}(\text{Re } z < 0)$.

Let $\Lambda(x, D_x)$ be a pseudo-differential operator with a symbol $\lambda(x, \xi)$. For any $s \ge 0$ we define $H_s = \{u \in L^2(\mathbb{R}^n); \Lambda_s(x, D_x)u \in L^2(\mathbb{R}^m)\}$ with the norm

$$||u||_s^2 = ||\Lambda_s u||^2 + ||u||^2$$
.

Let $0 \le s_1 < s_2$ and let $\lambda(x, \xi)$ satisfy that for any $\varepsilon > 0$ there exists C_{ε} such that $(2.17) \qquad \qquad \lambda(x, \xi)^{s_1} \le \varepsilon \lambda(x, \xi)^{s_2} + C_{\varepsilon}.$

Proposition 2.12. If $\lambda(x, \xi)$ satisfies (2.17), then we have for any $\varepsilon > 0$ $||u||_{s_1} \leqslant \varepsilon ||u||_{s_2} + C_{\varepsilon} ||u||$

with a constant C_{\bullet} .

Proposition 2.13. Let $p(x, \xi) \in S_{\lambda, \rho, \delta}^m$ satisfy (H.E) and let $q(x, \xi)$ satisfy $|q_{(\beta)}^{(\alpha)}(x, \xi)/p(x, \xi)| \leq C_{\alpha, \beta} \lambda(x, \xi)^{k-(\rho, \alpha)+(\delta, \beta)}$

with a constant k. Then there exists $r(x, \xi) \in S_{\lambda, \rho, \delta}^k$ such that $q(x, D_x) = r(x, D_x)p(x, D_x) + k(x, D_x)$, with $k(x, \xi) \in S_{\lambda, \rho, \delta}^{-\infty}$.

Proof. Let $r_1(x, \xi) = q(x, \xi)/p(x, \xi) \in S_{\lambda, \rho, \delta}^k$. Then we have for any N

$$(r_1 \circ p)(x, \xi) = q(x, \xi) + t_N(x, \xi) + k_N(x, \xi),$$

where $t_N(x, \xi) = \sum_{|\alpha| \ge 1}^{N-1} \frac{1}{\alpha!} r_1^{(\alpha)}(x, \xi) p_{(\alpha)}(x, \xi)$ and $k_N(x, \xi) \in S_{\lambda, \rho, \delta}^{m+k-\epsilon_0 N}$. We note that

$$|t_{N(\beta)}^{(\alpha)}(x,\,\xi)/p(x,\,\xi)| \leqslant C'_{\alpha,\,\beta}\lambda(x,\,\xi)^{k-\varepsilon_0-(\rho,\,\alpha)+(\delta,\,\beta)}.$$

Set $r_2(x, \xi) = t_N(x, \xi)/p(x, \xi) (\in S_{\lambda, \rho, \delta}^{k-\epsilon_0})$. Then we have

$$\sigma(\sum_{j=1}^{2} r_{j}(x, D_{x})p(x, D_{x})) = q(x, \xi) + t'_{N}(x, \xi) + k'_{N}(x, \xi),$$

where $t'_N(x, \xi) = \sum_{|\alpha|>1}^{N-2} \frac{1}{\alpha!} r_2^{(\alpha)}(x, \xi) p_{(\alpha)}(x, \xi)$ and $k'_N(x, \xi) \in S_{\lambda, \rho, \delta}^{m+k-\epsilon_0 N}$. If we repeat the same calculus, we get the assertion. Q.E.D.

Proposition 2.14. If $p_{\mathfrak{e}}(x, \xi)$ converges to $p_{0}(x, \xi)$ weakly in $S_{\lambda,\rho,\delta}^{m}$ as $\varepsilon \to 0$, then $(p_{\mathfrak{e}} \circ q)(x, \xi)$ converges to $(p_{0} \circ q)(x, \xi)$ weakly in $S_{\lambda,\rho,\delta}^{m+k}$ for any $q(x, \xi) \in S_{\lambda,\rho,\delta}^{k}$. Moreover $P_{\mathfrak{e}}u$ converges to $P_{0}u$ in H_{s-m} for $u \in H_{s}$.

Proof. For large l and l' we can write

$$(p_{\mathbf{e}} \circ q)(x, \xi)$$

$$= \int \cdots \int e^{-iy \cdot \eta} \langle y \rangle^{-2l'} \langle D_{\eta} \rangle^{2l'} \{ \langle \eta \rangle^{-2l} \langle D_{\eta} \rangle^{2l} p_{\mathbf{e}}(x, \xi + \eta) q(x + y, \xi) \} dy d\eta.$$

Then the first part of the Proposition is clear. Set $Q_{\epsilon} = \Lambda_{-s-m} P_{\epsilon} \Lambda_s$. Then Q_{ϵ} belongs to $S^0_{\lambda,\rho,\delta}$ and $q_{\epsilon}(x,\xi)$ converges to $q(x,\xi)$ weakly in $S^0_{\lambda,\rho,\delta}$. It is sufficient to show that if $q_{\epsilon}(x,\xi)$ converges to 0 weakly in $S^0_{\lambda,\rho,\delta}$, then $Q_{\epsilon}u$ converges to 0 for $u \in L^2(\mathbb{R}^n)$. Define $u_{\epsilon}(x) = \varphi_{\epsilon}(x) \varphi_{\epsilon}(D_x)u$ where $\varphi_{\epsilon}(x) = \varphi(\mathcal{E}x)$ and φ is a $C^{\infty}_{0}(\mathbb{R}^n)$ -function such that $\varphi(x) = 1$ ($|x| \leq 1$) and $\varphi(x) = 0$ ($|x| \geq 2$). We have

$$||Q_{\varepsilon}u|| \leq ||Q_{\varepsilon}(u_{\varepsilon}-u)|| + ||Q_{\varepsilon}u_{\varepsilon}||$$

$$\leq C||u_{\varepsilon}-u|| + ||Q_{\varepsilon}u_{\varepsilon}||,$$

where we use Theorem 2.8. It is clear that u_{ε} converges to u in $L^{2}(\mathbb{R}^{n})$. We can write

$$O_s u_s = \tilde{q}_s(x, D_s)u$$

where

Then $\tilde{q}_{\varepsilon}(x, \xi)$ converges to 0 in $S^0_{\lambda, \rho, \delta}$. So we get $\lim_{\varepsilon \to 0} ||Q_{\varepsilon}u_{\varepsilon}|| = 0$ by Theorem 2.8. Q.E.D.

3. Fundamental solution of degenerate pseudo-differential operator of parabolic type and the Cauchy problem

In this section we consider the Cauchy problem for a pseudo-differential operator of parabolic type as follows.

(3.1)
$$\int Lu(t) = \left(\frac{d}{dt} + p(t; x, D_x)\right) u(t) = f(t) \quad \text{in } 0 < t < T$$

$$u(0) = u_0$$

582 C. IWASAKI

where $p(t; x, D_x)$ is an operator in the class $\mathcal{C}_t^0(S_{\lambda, \rho, \delta}^m)$ $(\delta < \rho)$ on [0, T] which satisfies the following conditions

here exist constants $c_1 \ge 0$ and $c_0 > 0$ such that (3.2) $\begin{cases} Re \ p(t; x, \xi) + c_1 \geqslant c_0 \lambda(x, \xi)^{m'} \text{ in } [0, T] \ m \geqslant m' \geqslant 0 \ . \\ (ii) \quad \text{For any multi-index } \alpha = (\alpha_1, \dots, \alpha_n) \text{ and } \beta = (\beta_1, \dots, \beta_n) \\ \text{there exists a constant } C_{\alpha,\beta} \text{ such that} \\ |p_{(\beta)}^{(\alpha)}(t; x, \xi)|/(Re \ p(t; x, \xi) + c_1)| \leqslant C_{\alpha,\beta} \lambda(x, \xi)^{-(\rho,\alpha) + (\delta,\beta)} \\ \text{in } [0, T]. \end{cases}$

We call E(t, s) the fundamental solution of L if E(t, s) satisfies

(3.3)
$$\begin{cases} LE(t, s) = 0 & \text{in } 0 \leq s < t \leq T, \\ E(s, s) = I \end{cases}$$

Theorem 3.1. Under the assumptions (3.2)-(i) and (3.2)-(ii) there exists a fundamental solution E(t, s) in the class $\omega - \mathcal{E}_{t,s}^0(S_{\lambda,\rho,\delta}^0)$ in $0 \leqslant s \leqslant t \leqslant T$. Moreover for any N such that $m-\varepsilon_0 N \leq 0$ $(\varepsilon_0 = \min_{1 \leq j \leq n} (\rho_j - \delta_j)) E(t, s)$ has the following expansion

$$e(t, s) = \sum_{j=0}^{N-1} e_j(t, s) + f_N(t, s),$$

where

(3.4)
$$\begin{cases} (i) & e_{j}(t, s) \in \omega - \mathcal{E}_{t, s}^{0}(S_{\lambda, \rho, \delta}^{-\epsilon_{0} j}), \quad j \geqslant 0 \\ (ii) & e_{0}(t, s) \rightarrow 1 \text{ as } t \rightarrow s \text{ weakly in } S_{\lambda, \rho, \delta}^{0}, \\ (iii) & e_{j}(t, s) \rightarrow 0 \text{ as } t \rightarrow s \text{ weakly in } S_{\lambda, \rho, \delta}^{-\epsilon_{0} j}, \\ (iv) & a_{j, \alpha}(t, s; x, \xi) = e_{j(\beta)}^{(\alpha)}(t, s; x, \xi) |e_{0}(t, s; x, \xi) (j \geqslant 0) \text{ satisfies } \\ & |a_{j, \alpha, \beta}(t, s; x, \xi)| \leqslant C_{\alpha, \beta} \lambda(x, \xi)^{-\epsilon_{0} j - (\rho, \alpha) + (\delta, \beta)} \\ & \times \sum_{k=2}^{\lceil \alpha \rceil + \lceil \beta \rceil + 2j} \left\{ Re \int_{s}^{t} p(\sigma; x, \xi) d\sigma + c_{1}(t-s) \right\}^{k} \\ (v) & f_{N}(t, s) \in \omega - \mathcal{E}_{t, s}^{0}(S_{\lambda, \rho, \delta}^{m - \epsilon_{0} N}) \text{ and satisfies } \\ & |f_{N}(\beta)(t, s; x, \xi)| \leqslant C(t-s)^{k} \lambda(x, \xi)^{km - \epsilon_{0} N - (\rho, \alpha) + (\delta, \beta)} \\ & (k=1, 2). \end{cases}$$

Proof. We may assume (3.2) for $c_1=0$. In fact let $E_{c_1}(t,s)$ be the fundamental solution for $L+c_1$. Then $E(t, s) = e^{c_1(t-s)}E_{c_1}(t, s)$ is the fundamental solution for L.

As in [10], [11] we construct $e_i(t, s; x, \xi)$ $(0 \le s \le t \le T)$ as the series of solutions of the following equations

(3.5)
$$\left\{ \frac{d}{dt} + p(t; x, \xi) \right\} e_0(t, s; x, \xi) = 0 \quad \text{in } t > s, \\ e_0(s, s; x, \xi) = 1$$

and for $i \ge 1$

(3.6)
$$\begin{cases} \left(\frac{d}{dt} + p(t; x, \xi)\right) e_j(t, s; x, \xi) = -q_j(t, s; x, \xi) & \text{in } t > s, \\ e_j(s, s; x, \xi) = 0, \end{cases}$$

where $q_i(t, s; x, \xi)$ is defined by

$$(3.7) q_j(t, s; x, \xi) = \sum_{k=0}^{j-1} \sum_{|\alpha|+k=j} \frac{1}{\alpha!} p^{(\alpha)}(t; x, \xi) e_{k(\alpha)}(t, s; x, \xi).$$

Set

(3.8)
$$b_{j,\alpha,\beta}(t, s; x, \xi) = q_{j,\beta}(t, s; x, \xi)/e_0(t, s; x, \xi) \qquad j \geqslant 1.$$

Then, by $(3.5)\sim(3.7)$ and (3.2)-(ii) we have the following proposition, which derives (3.4)-(i) $\sim(3.4)$ -(iv).

Proposition 3.2. For any α and β there exists a constant $C_{i,\alpha,\beta}$ such that

$$(3.9)_{j} \qquad |a_{j,\alpha,\beta}(t,s;x,\xi)| \leqslant C_{j,\alpha,\beta} \lambda(x,\xi)^{-\epsilon_{0}j-(\rho,\alpha)+(\delta,\beta)} \omega_{j,\alpha,\beta} \qquad (j \geqslant 0),$$

$$(3.10)_{j} \quad |b_{j,\alpha,\beta}(t,s;x,\xi)| \leqslant C_{j,\alpha,\beta} \operatorname{Re} p(t;x,\xi) \lambda(x,\xi)^{-\varepsilon_{0}^{j-(\rho,\alpha)+(\delta,\beta)}} \omega_{j,\alpha,\beta}^{\prime\prime},$$

$$(j \geqslant 1),$$

where $\omega_{j,\alpha,\beta}$ and $\omega'_{j,\alpha,\beta}$ are defined by

$$\begin{split} &\omega_{0,0,0}=1\;,\qquad \omega_{0,\pmb{\alpha},\pmb{\beta}}=\max\left\{\omega,\;\omega^{|\pmb{\alpha}|+|\pmb{\beta}|}\right\} \qquad |\pmb{\alpha}|+|\pmb{\beta}|\neq 0\\ &\omega_{j,\pmb{\alpha},\pmb{\beta}}=\max\left\{\omega^2,\;\omega^{2+|\pmb{\alpha}|+|\pmb{\beta}|}\right\} \qquad (j\geqslant 1)\;,\\ &\omega'_{j,\pmb{\alpha},\pmb{\beta}}=\max\left\{\omega,\;\omega^{2j-1+|\pmb{\alpha}|+|\pmb{\beta}|}\right\} \qquad (j\geqslant 1)\\ &\textit{and}\;\;\omega=\int_{-1}^{t}\operatorname{Re}\;p(\sigma\,;x,\,\xi)\,d\sigma\;. \end{split}$$

Proof. By (3.7) we have

$$q_{j(\beta)}^{(\alpha)}(t, s; x, \xi) = \sum_{k=0}^{j-1} \sum_{\substack{|\gamma|+k=j \\ \beta_k \leqslant \beta}} C_{j,\alpha,\beta,\gamma} p_{(\beta_k)}^{(\gamma+\alpha_k)}(t) e_{k(\gamma+\beta-\beta_k)}^{(\alpha-\alpha_k)}(t, s)$$

with some positive constants $C_{\gamma,\alpha,\beta}$. Then it follows that

$$(3.11) b_{j,\alpha,\beta}(t,s) = \sum_{k=0}^{j-1} \sum_{\substack{|\gamma|+k=j \\ \beta_k+\beta_{k'}=\beta}} C_{\gamma,\alpha,\beta} p_{(\beta_k)}^{(\gamma+\alpha_k)}(t) a_{k,\alpha'_k,\gamma+\beta'_k}(t,s).$$

From (3.6) we can write

$$e_j(t, s; x, \xi) = \int_s^t -e_0(t, \sigma; x, \xi)q_j(\sigma, s; x, \xi)d\sigma.$$

Thus we have for any $\alpha \beta$, and $j \ge 1$

$$(3.12)_{s} \quad a_{j,\alpha,\beta}(t,s) = -\sum_{\substack{\alpha_1+\alpha_2=\alpha\\\beta_1+\beta_2=\beta}} \alpha!\beta!/(\alpha_1!\alpha_2!\beta_1!\beta_2!) \int_{s}^{t} a_{0,\alpha_1,\beta_1}(t,\sigma)b_{j,\alpha_2,\beta_2}(\sigma,s)d\sigma.$$

We shall prove $(3.9)_i$ and $(3.10)_j$ inductively. By (3.5) we get

(3.13)
$$e_0(t, s; x, \xi) = \exp\left(-\int_t^t p(\sigma; x, \xi) d\sigma\right).$$

Then $a_{0,\alpha,\beta}(t, s)$ is a linear summation of

$$\int_{s}^{t} p_{(\beta_{1})}^{(\alpha_{1})}(\sigma; x, \xi) d\sigma \cdots \int_{s}^{t} p_{(\beta_{l})}^{(\alpha_{l})}(\sigma; x, \xi) d\sigma$$

with $\alpha_1 + \cdots + \alpha_l = \alpha$, $\beta_l + \cdots + \beta_l = \beta$. Hence we get $(3.9)_0$ from the assumption (3.2)-(ii). By (3.11), $(3.9)_0$ and (3.2)-(ii) we get $(3.10)_1$. Now assume $(3.9)_j$ for $j \le k-1$ and $(3.10)_j$ for $j \le k$. Then we get $(3.9)_k$ and $(3.10)_{k+1}$ in the following way. From $(3.9)_0$, $(3.10)_k$ and (3.12) it follows that

$$\begin{split} |\,a_{k,\alpha,\beta}(t,\,s)\,| \leqslant &\,C_{k,\alpha,\beta}^{\,\prime}\lambda^{-\varepsilon_0k-(\rho,\alpha)+(\delta,\beta)}\omega\sum_{\substack{\alpha_2+\alpha_2=\alpha\\\beta_1+\beta_2=\beta}}\omega_{k,\alpha_1,\beta_1}^{\,\prime}\omega_{0,\alpha_2,\beta_2} \\ \leqslant &\,C_{k,\alpha,\beta}\,\lambda^{-\varepsilon_0k-(\rho,\alpha)+(\delta,\beta)}\,\omega_{k,\alpha,\beta}\,\,. \end{split}$$

By (3.11) and (3.9), for $j \le k$, it is clear that

$$|b_{k+1,\alpha,\beta}(t,s)| \leqslant C'_{k,\alpha,\beta} \lambda^{-\varepsilon_0(k+1)-(\rho,\alpha)+(\delta,\beta)} \operatorname{Re} p(t) \sum_{j=0}^k \sum_{|\gamma|+j=k+1} \sum_{\substack{\alpha_j < \alpha \\ \beta_j < \beta}} \omega_{j,\alpha_j,\beta_j+\gamma}$$

with some constant $C'_{k,\alpha,\beta}$. Also it is easy to show

$$\max_{\substack{\alpha' < \alpha, \beta' < \beta \\ 0 \le j \le k \\ |\gamma| + j = k + 1}} \omega_{j,\alpha',\beta' + \gamma} \leqslant \omega'_{k+1,\alpha,\beta} \; .$$

Then $(3.10)_{k+1}$ is proved.

Q.E.D.

Now by Theorem 2.9, we can write for any $N \ge 1$

(3.14)
$$\sigma(P(t)E_{j}(t, s; x, D_{x}))(x, \xi) = p(t; x, \xi)e_{j}(t, s; x, \xi) + \sum_{0 < |\alpha| \leq N^{-j-1}} \frac{1}{\alpha!} p^{(\alpha)}(t; x, \xi)e_{j(\alpha)}(t, s; x, \xi) + r_{N,j}(t, s; x, \xi).$$

Taking a summation in j, it is clear by $(3.5)\sim(3.7)$ that

(3.15)
$$\left(\frac{d}{dt} + P(t)\right) \left(\sum_{j=0}^{N-1} E_j(t, s)\right) = \sum_{j=0}^{N-1} \left(\left(\frac{d}{dt} + p(t)\right) e_j\right) (t, s; x, D_x)$$

$$+ \sum_{j=0}^{N-1} q_j(t, s; x, D_x) + \sum_{j=0}^{N-1} r_{N,j}(t, s; x, D_x) = \sum_{j=0}^{N-1} r_{N,j}(t, s; x, D_x) .$$

Proposition 3.3. We have $r_{N,j}(t,s;x,\xi) \in \omega - \mathcal{E}_{t,s}^0(S_{\lambda,p,\delta}^{m-\epsilon_0 N})$ and for any α,β

$$(3.16) |r_{N,j}(\beta)(t,s;x,\xi)| \leq C_{\alpha,\beta}(t-s)^k \lambda(x,\xi)^{(k+1)m-\epsilon_0 N-(\rho,\alpha)+(\delta,\beta)}, \quad k=0,1.$$

Proof. From (3.4)-(i) and (3.14) we have $r_{N,j}(t,s;x,\xi) \in \omega - \mathcal{E}_{t,s}^0(S_{\lambda,\rho,\delta}^{m-s_0N})$. From (3.9)_j and $\omega \leq C(t-s)\lambda(x,\xi)^m$, we get (3.16). Q.E.D.

Put $\sum_{j=0}^{N} r_{N,j}(t, s; x, \xi) = r_N(t, s; x, \xi)$ and $\sum_{j=0}^{N} e_j(t, s; x, \xi) = k_N(t, s; x, \xi)$. Then we can write by (3.15)

(3.17)
$$\int_{-\infty}^{\infty} LK_{N}(t, s) = R_{N}(t, s) \quad \text{in } t > s \ (0 \leqslant s < t \leqslant T)$$

$$\langle K_{N}(s, s) = I \rangle.$$

Now we construct $e(t, s; x, \xi)$ in the form

$$e(t, s; x, D_x) = k_N(t, s; x, D_x) + \int_s^t k_N(t, \sigma; x, D_x) \varphi(\sigma, s; x, D_x) d\sigma$$

Then $\varphi(t, s; x, D_x) = \Phi(t, s)$ must satisfy a Volterra's integral equation

(3.18)
$$R_N(t,s) + \Phi(t,s) + \int_t^t R_N(t,\sigma) \Phi(\sigma,s) d\sigma = 0.$$

Set $\Phi_1(t, s) = -R_N(t, s)$ and define $\Phi_j(t, s)$ for $j \ge 2$

(3.19)
$$\Phi_{j}(t, s) = \int_{s}^{t} \Phi_{1}(t, \sigma) \Phi_{j-1}(\sigma, s) d\sigma$$

$$= \int_{s}^{t} \int_{s}^{s_{j-2}} \Phi_{1}(t, s_{1}) \Phi_{1}(s_{1}, s_{2}) \cdots \Phi_{1}(s_{j-1}, s) ds_{j-1} \cdots ds_{1} ds_{1} ds_{2} ds_{2} ds_{3} ds_{$$

Then we have

(3.20)
$$\sum_{j=1}^{l} \Phi_{j}(t, s) = \Phi_{1}(t, s) + \sum_{j=2}^{l} \Phi_{j}(t, s)$$
$$= -R_{N}(t, s) - \int_{s}^{l} R_{N}(t, \sigma) \sum_{j=1}^{l-1} \Phi_{j}(\sigma, s) d\sigma.$$

For $\sigma(\Phi_j(t, s)) = \varphi_j(t, s; x, \xi)$ we have the following estimates.

Proposition 3.4. We have some constants $B_{\alpha,\beta}$ and $B'_{\alpha,\beta}$ independent of j such that

$$(3.21) \qquad |\varphi_{j(\beta)}(t,s;x,\xi)| \leq (B_{\alpha,\beta})^{j} \frac{(t-s)^{j-1}}{(j-1)!} \lambda(x,\xi)^{m-\varepsilon_0 N-(\rho,\alpha)+(\delta,\beta)}$$

$$(3.22) |\varphi_{j(\beta)}^{(\alpha)}(t, s; x, \xi)| \leq (B'_{\alpha, \beta})^{j} \frac{(t-s)^{j-1}}{j!} (t-s) \lambda(x, \xi)^{2m-\varepsilon_0 N-(\rho, \alpha)+(\delta, \beta)}.$$

Proof. Note that $r(t, s; x, \xi) = -\varphi_1(t, s; x, \xi)$ satisfies (3.16). Take N

such that $m-\varepsilon_0 N \le 0$. Then we can apply Theorem 2.1 to $\Phi_1(s_{j-1}, s_j)$. For any l, α and β there exists l_0 such that

$$\begin{aligned} &|\varphi_{j}(\boldsymbol{\beta})(t,\,s;\,x,\,\xi)|^{m-\varepsilon_{0}N} \\ &\leqslant C^{j}|\varphi_{1}|^{m-\varepsilon_{0}N}(|\varphi_{1}|^{(0)}_{l_{0}})^{j-1}\int_{s}^{t}\cdots\int_{s}^{s_{j-2}}ds_{j-1}\cdots ds_{1} \\ &\leqslant (B_{\boldsymbol{\alpha},\boldsymbol{\beta}})^{j}\frac{(t-s)^{j-1}}{(j-1)!}. \end{aligned}$$

If we use (3.16) for k=1 instead of (3.16) for k=0, we get

$$\begin{split} &|\varphi_{j(\beta)}^{(\alpha)}(t,\,s;\,x,\,\xi)||_{l^{2m-\varepsilon_{0}N)}}^{2m-\varepsilon_{0}N)} \\ &\leqslant C^{j}|\varphi_{1}||_{l^{2m-\varepsilon_{0}N)}}^{2m-\varepsilon_{0}N)}(|\varphi_{1}||_{l^{0}}^{(0)})^{j-1}\int_{s}^{t}\cdots\int_{s}^{s_{j-2}}(s_{j-1}-s)ds_{j-1}\cdots ds_{1} \\ &\leqslant (B'_{\alpha,\beta})^{j}\frac{(t-s)^{j}}{j!} \end{split} \qquad \qquad Q.E.D.$$

Set $\varphi(t, s; x, \xi) = \sum_{j=1}^{\infty} \varphi_j(t, s; x, \xi)$. In view of (3.21) $\varphi(t, s; x, \xi)$ belongs to $\omega - \mathcal{E}_{t,s}^0(S_{\lambda,\rho,\delta}^{m-\epsilon_0 N})$ and satisfies (3.18) and

$$(3.23) |\varphi_{\beta}^{(\alpha)}(t,s;x,\xi)| \leq \lambda(x,\xi)^{(k+1)m-\epsilon_0N-(\beta,\alpha)+(\delta,\beta)} \exp \{B_{\alpha,\beta}(t-s)\} \quad (k=0,1).$$

Note that $K_N(t, s)$ belongs to $\omega - \mathcal{E}_{t,s}^0(S_{\lambda,\rho,\delta}^0)$. Then by (3.23) we get (3.4)-(v). Q.E.D.

REMARK. 1. By the same method we can construct the fundamental solution for $L = \frac{\partial}{\partial t} + p(t; x, D_x) + q(t; x, D_x)$ under the following conditions:

- (i) $p(t; x, \xi)$ satisfies (3.2).
- (ii) There exist $\varepsilon_1 > 0$ and $k \ge 0$ such that

$$\left|\int_{s}^{t} q_{(\beta)}^{(\alpha)}(\sigma; x, \xi) d\sigma\right| \leqslant C_{\alpha, \beta}' \lambda(x, \xi)^{-\varepsilon_{1} - (\rho, \alpha) + (\delta, \beta)} \left\{\int_{s}^{t} |p(\sigma; x, \xi)| d\sigma\right\}^{k}$$

In this case $e_0(t, s; x, \xi)$ is defined by (3.5) and $e_j(t, s; x, \xi)$ is defined by (3.6) setting

$$q_{j}(t, s; x, \xi) = \sum_{k=0}^{j-1} \sum_{|\alpha|+k=j} \frac{1}{\alpha!} p^{(\alpha)}(t; x, \xi) e_{k(\alpha)}(t, s; x, \xi) + q(t; x, \xi) e_{j-1}(t, s; x, \xi).$$

REMARK. 2. If $p(t; x, \xi)$ belongs to $\mathcal{E}_t^{\infty}(S_{\lambda, \rho, \delta}^m)$, the fundamental solution $e(t, s; x, \xi)$ belongs to $\bigcap_{t=0}^{\infty} \mathcal{E}_t^t(S_{\lambda, \rho, \delta}^{mt})$.

We note that $P^*(t)$ also satisfies the assumptions of Theorem 3.1. So we can construct $V(t, s) \in \omega - \mathcal{E}^0_{t,s}(S^0_{\lambda,\rho,\delta})$ which satisfies

(3.24)
$$\begin{cases} -\frac{\partial}{\partial s} V(t, s) + p^*(s; x, D_x) V(t, s) = 0 & 0 \leq s < t \leq T \\ V(t, t) = I \end{cases}$$

Theorem 3.5. Let V(t, s) and E(t, s) satisfy (3.24) and (3.3) respectively. Then we get

$$(3.25) E^*(t, s) = V(t, s) 0 \leqslant s \leqslant t \leqslant T$$

and

$$(3.26) -\frac{\partial}{\partial s}E(t,s)+E(t,s)p(s;x,D_x)=0.$$

Proof. Let f and g be any function of $S(\mathbb{R}^n)$. For any r such that s < r < t it is easy to see that

$$\frac{\partial}{\partial r}(E(r, s)f, V(t, r)g)$$

$$= -(P(r)E(r, s)f, V(t, r)g) + (E(r, s)f, P*(r)V(t, r)g)$$

$$= 0.$$

If we use that $E(t, s) \rightarrow I$, $V(t, s) \rightarrow I$ in $L^2(\mathbb{R}^n)$ as $t \rightarrow s$, we get (3.25). Considering the adjoint of (3.24), we get (3.26) if we use (3.25). Q.E.D.

Corollary. If $p(t; x, D_x)$ is independent of t and self-adjoint then E(t, s) = E(t-s) is also self-adjoint.

Theorem 3.6. Under the condition (3.2) the fundamental solution E(t, s) is uniquely determined in the class $\omega - \mathcal{E}_{t,s}^0(S_{\lambda,\rho,\delta}^\infty)$.

In order to prove the above theorem we prepare the following

Proposition 3.7. Under the condition (3.2) there exists a constant c>0 such that

Re
$$(p(t; x, D_x)u, u)+c(u, u)\geqslant 0$$
 $u\in \mathcal{S}(\mathbb{R}^n)$.

Proof of Theorem 3.6. Let $E(t, s) (\in \omega - \mathcal{E}_{t, s}^{0}(S_{\lambda, \rho, \delta}^{\infty}))$ satisfy LE(t, s) = 0 in t > s and E(s, s) = 0. Then $e^{-ct}E(t, s) = E_{c}(t, s)$ satisfies

$$\begin{cases}
(L+c)E_c(t, s) = 0 & \text{in } t > s, \\
E_c(s, s) = 0
\end{cases}$$

For any $u \in S(\mathbb{R}^n)$ we get by the above proposition

$$\frac{d}{dt}(E_c(t, s)u, E_c(t, s)u)$$

$$= 2 \operatorname{Re} \left(\frac{d}{dt} E_c(t, s) u, E_c(t, s) u \right)$$

$$= -2 \operatorname{Re} \left((P(t) + c) E_c(t, s) u, E_c(t, s) u \right) \leq 0.$$

Then we have

$$||E_c(t, s)u|| \leq ||E_c(s, s)u|| = 0$$
.

This means for any $x \in \mathbb{R}^n$ and $\xi \in \mathbb{R}^n$

$$e_c(t, s; x, \xi) = 0$$
 in $t \geqslant s$.

Hence we get $e(t, s; x, \xi) = 0$.

Q.E.D.

Theorem 3.8. Let $p(t; x, \xi)$ belong to $\mathcal{E}_t^{\infty}(S_{\lambda, \rho, \delta}^m)$ and satisfy (3.2). Then for any $f(t) \in \mathcal{E}_t^0(H_s)$ and $u_0 \in H_s$ the solution $u(t) \in \mathcal{E}_t^k(H_{s-km})$ of (3.1) is given by

(3.28)
$$u(t) = E(t, 0)u_0 + \int_0^t E(t, s)f(s)ds.$$

This is the unique solution of (3.1) and $u(t) \rightarrow u_0$ in H_s as $t \rightarrow 0$. Moreover we get

$$\left\|\frac{d^k}{dt^k}u(t)\right\|_{s-km} \leqslant C||u_0||_s + \int_0^t ||f(\sigma)||_s d\sigma.$$

Proof. It is easy to show that u(t) given by (3.28) is a solution of (3.1). Let u(t) satisfy (3.1). Then

$$E(t, s)P(s)u(s) = E(t, s)\left(-\frac{\partial}{\partial s}\right)u(s) + E(t, s)f(s).$$

Integrating with respect to s, we get

$$\int_0^t E(t, s)P(s)u(s)ds = \int_0^t E(t, s)f(s)ds + \int_0^t \frac{d}{ds}E(t, s)u(s)ds - [E(t, s)u(s)]_0^t.$$

By (3.28) we have

$$u(t) = \int_0^t E(t, s)f(s)ds + E(t, 0)u(0)$$
.

The inequality (3.29) is clear if we note that E(t, s) belongs to $\omega - \mathcal{E}_{t,s}^{l}(S_{\lambda,\rho,\delta}^{ml})$ $(l=1, 2, \dots,)$.

Proof of Proposition 3.7. Set $Q(t) = (P(t) + P^*(t))/2$. Then $q(t; x, \xi)$ satisfies

Re
$$q(t; x, \xi)+c_1 \geqslant c_0 \lambda(x, \xi)^{m'}$$
,
 $|q_{(\beta)}^{(\alpha)}(t; x, \xi)|/(\operatorname{Re} q(t; x, \xi)+c_1)| \leqslant C_{\alpha,\beta} \lambda(x, \xi)^{-(\rho,\alpha)+(\delta,\beta)}$

with constants c_0 and c_1 . Apply Theorem 2.11. Then we can construct the complex power $\{\tilde{Q}_z(t)\}$ for $Q(t)+c_1$. Note that Q(t) is self-adjoint. Then we have $\tilde{Q}_z^*(t) \equiv \tilde{Q}_z(t)$ for real s (See Lemma 4.2 in [6]). We obtain

Re
$$((P(t)+c_1)u, u) = (\tilde{Q}(t)u, u) = (\tilde{Q}_{1/2}(t)u, \tilde{Q}_{1/2}(t)u) + (K(t)u, u)$$
,

for some $K(t) \in \mathcal{E}_t^0(S_{\lambda,\rho,\delta}^{-\infty})$. Then we have

Re
$$((P(t)+c_1)u, u) \ge ||\tilde{Q}_{1/2}u||^2 - c_2||u||^2$$
.

Take $C=c_1+c_2$. Then we get the assertion.

Q.E.D.

4. Behavior of E(t, s) as $(t-s) \rightarrow \infty$

In this section we assume for the basic weight function $\lambda(x, \xi)$ to satisfy

(4.1)
$$\lambda(x, \xi) \geqslant A_0(1 + |x| + |\xi|)^{\sigma}$$

with a positive constant σ and for $p(t; x, \xi) \in \mathcal{E}_{t}^{\infty}(S_{\lambda,\rho,\delta}^{m})$ to satisfy (3.2) with a positive constant m' and assume that there exist a positive constant c_{2} and c_{2} and $c_{3} = 0$ such that

(4.2)
$$\operatorname{Re}\left(P(t)u, u\right) \geqslant c_2||u||^2 \qquad t_0 < t < \infty$$

for $u \in \mathcal{S}(\mathbb{R}^n)$.

Theorem 4.1. Let $u(t) \in \mathcal{E}_{t}^{\infty}(\mathcal{S}(R^{n}))$ satisfy Lu(t) = g(t) in $t > t_{0}$. Then for $b \geqslant 0$ and any $c_{3} < c_{2}$ there exists a constant B independent of t such that

$$||u(t)||_b \leq B\left(e^{-c_3(t-t_0)}||u(t_0)||_b + \int_{t_0}^t e^{-c_3(t-s)}||g(s)||_b ds\right).$$

For the proof of the above theorem we prepare the following

Lemma 4.2. Let v and w belong to $S(\mathbb{R}^n)$. Then we have with a constant C

$$(4.3) |(Av, Bw)| \leq C||v|| ||w|| \text{if } A \in S_{\lambda, \rho, \delta}^{-m} \text{ and } B \in S_{\lambda, \rho, \delta}^{m},$$

$$(4.4) |(Av, Bw) - (A_1v, B_1w)| \leq C||v|| ||w||$$
 if $A, A_1, B, B_1 \in S_{\lambda, \beta, \delta}^{\infty}, A \equiv A_1 \text{ and } B \equiv B_1$,

(4.5) Re
$$(P(t)\Lambda_s v, \Lambda_s v) \ge 1/2||Q_{1/2}\Lambda_s v||^2 - C||v||^2$$

and

$$(4.6) \qquad |([\Lambda_s, P(t)]v, \Lambda_s v)| \leq \varepsilon ||Q_{1/2}\Lambda_s v||^2 + C_{\varepsilon}||v||^2 \qquad \text{for any } \varepsilon > 0$$

where $\{Q_{i}(t)\}\$ is the complex power of $Q(t)=(P(t)+P^{*}(t))/2+c_{1}$

Proof. Set $R=(\Lambda+\Lambda^*)/2+d$ for large number d such that $\sigma(R)$ satisfies (H.E) (see (2.16)). Let $\{R_z\}$ be the complex power for R constructed in §2. We can write $R_{-m}R_m+K_1=I$, where K_1 belongs to $S_{\lambda,\theta,\delta}^{-\infty}$. Then we have

$$(Av, Bw) = (R_m Av, R_{-m} Bw) + (K_1 Av, Bw)$$

= $(R_m Av, R_{-m} Bw) + (R_m K_1 Av, R_{-m} Bw) + (K_1 Av, K_1^* Bw)$.

590 C. Iwasyki

Noting that R_mA , $R_{-m}B$, R_mK_1A , K_1A and K_1^*B belong to $S_{\lambda,\rho,\delta}^0$, we get (4.3). The estimate (4.4) is clear by (4.3). For (4.5) we write

$$\operatorname{Re}\left(P(t)\Lambda_{s}v,\,\Lambda_{s}v\right)=\left(Q_{1/2}(t)\Lambda_{s}v,\,Q_{1/2}(t)\Lambda_{s}v\right)+\left(K_{2}(t)\Lambda_{s}v,\,\Lambda_{s}v\right)-c_{1}(\Lambda_{s}v,\,\Lambda_{s}v)\,,$$

where

$$Q_{1/2}^{*}(t)Q_{1/2}(t)+K_{2}(t)=Q(t), K_{2} \in \mathcal{E}_{t}^{\infty}(S_{\lambda, \rho, \delta}^{-\infty}).$$

We can write by Proposition 2.13 $c_1 \equiv G_1(t)Q_{1/2}(t)$ where $G_1(t)$ belongs to $\mathcal{E}_t^{\infty}(S_{\lambda,\rho,\delta}^{-m'/2})$. Then we get

Re
$$(P(t)\Lambda_s v, \Lambda_s v) \ge ||Q_{1/2}(t)\Lambda_s v||^2 - ||G_1(t)Q_{1/2}(t)\Lambda_s v||^2 - C'||v||^2$$
.

by (4.4). Now applying Proposition 2.12, we get

Re
$$(P(t)\Lambda_s v, \Lambda_s v) \ge 1/2||Q_{1/2}(t)\Lambda_s v||^2 - C''||v||^2$$
.

By Proposition 2.13 we can write $[\Lambda_s, P(t)] \equiv G_2 Q(t)$, where $G_2(t) \in \mathcal{E}_t^{\infty}(S_{\lambda, \rho, \delta}^{-\epsilon_0})$. By (4.7) and $Q_{1/2}G_2^* \equiv G_3 Q_{1/2}$ with $G_3 \in \mathcal{E}_t^{\infty}(S_{\lambda, \rho, \delta}^{-\epsilon_0})$ we get for any $\varepsilon > 0$ the estimate (4.6). Q.E.D.

Proof of Theorem 4.1. Note that $\Lambda_b u(t)$ satisfies

$$\left(\frac{\partial}{\partial t}+P(t)\right)\Lambda_b u(t)=\Lambda_b g(t)-[\Lambda_b,P(t)]u(t) \qquad ext{for } b\geqslant 0.$$

Then we have

$$\begin{split} \frac{\partial}{\partial t} (\Lambda_b u(t), \, \Lambda_b u(t)) &= -2 \mathrm{Re} \left(P(t) \Lambda_b u(t), \, \Lambda_b u(t) \right) \\ &+ 2 \mathrm{Re} \left(\Lambda_b g(t), \, \Lambda_b u(t) \right) + 2 \mathrm{Re} \left([\Lambda_b, \, P(t)] u(t), \, \Lambda_b u(t) \right). \end{split}$$

By Lemma 4.2 and (4.2) we get for any $c_3 < c_2$

(4.9)
$$\frac{d}{dt}||\Lambda_b u(t)||^2 \leq -2c_3||\Lambda_b u(t)||^2 + 2||\Lambda_b g(t)|| ||\Lambda_b u(t)|| + C||u(t)||^2$$

with some constant C. Integrating (4.9) from t_0 to t, we get

$$(4.10) ||\Lambda_b u(t)|| \leq e^{-c_3(t-t_0)} ||\Lambda_b u(t_0)|| + \int_{t_0}^t e^{-c_3(t-s)} \{||\Lambda_b g(s)|| + C||u(s)||\} ds.$$

On the other hand it is clear that

$$||u(t)|| \leq e^{-c_2(t-t_0)}||u(t_0)|| + \int_{t_0}^t e^{-c_2(t-s)}||g(s)||ds.$$

Then from (4.10) and (4.11) we get the assertion.

Q.E.D.

Lemma 4.3. For any b such that $\sigma b - (n+1)/2 \ge 0$ we have

 $C_b^{-1}|u|_{b_1,S} \leq ||u||_b \leq C_b|u|_{b_2,S}$, $b_1 = [\sigma b - (n+1)/2]$, $b_2 = \tilde{\tau}(b+1) + (n+1)/2$ for $u \in S(\mathbb{R}^n)$, where $\tilde{\tau} = \max(1/\tilde{\rho}_j, \tau)$.

Proof. For $l \ge 0$ we have

$$|u|_{l,s} \leq C_{l}||u||_{k}, \quad k = l/\sigma + (n+1)/2\sigma.$$

Note that $\lambda(x, \xi) \leq (|x| + |\xi| + 1)^{\tilde{\tau}}$. Then we get Lemma 4.4. Q.E.D.

Theorem 4.4. Let E(t, s) be the fundamental solution which is constructed in §3. Then for any fixed $t_0 > s_0 \ge 0$ and any integers l_j (j=1, 2, 3) there exists a constant C independent of t such that

$$|\partial_t^{l_1}e(t, s_0)|_{s_3}^{(-l_2)} \leq C \exp \{-c_3(t-t_0)\}$$
 $t \geq t_0$

where c_3 is any constant such that $c_3 < c_2$.

Proof. Let $f(t, s; x, \xi) = e^{ix \cdot \xi} e(t, s; x, \xi)$. Then we get

$$\sigma(P(t)E(t, s))(x, \xi) = e^{-ix\cdot\xi}p(t; x, D_x)f(t, s; x, \xi).$$

From the above equation we get the following equations for t

(4.12)
$$\begin{cases} \frac{\partial}{\partial t} f(t, s; x, \xi) + p(t; x, D_x) f(t, s; x, \xi) = 0 & \text{in } t > s \\ f(s, s; x, \xi) = e^{ix \cdot \xi}. \end{cases}$$

Then $f(t, s; x, \xi)$ is a solution of (0.1) with the intial data $e^{ix \cdot \xi}$. We see that $f(t, s_0; x, \xi)$ for $t > s_0$ belongs to $S(R_{x,\xi}^{2n})$ from Theorem 3.1 and the assumption (4.1) for $\lambda(x, \xi)$. Apply Theorem 4.1 for g=0 and u=f. Then we get

$$||f(t, s_0; \cdot; \xi)||_b \leq Be^{-c_3(t-t_0)}||f(t_0, s_0; \cdot, \xi)||_b$$

Lemma 4.3 means that for any l there exists l' such that

$$|f(t, s_0; \cdot, \xi)|_{l,S} \leq B'e^{-c_3(t-t_0)}|f(t, s; \cdot, \xi)|_{l',S}.$$

From (4.12) we get

$$\begin{cases} \frac{\partial}{\partial t} \left(\frac{\partial f}{\partial \xi_j} \right) (t, s; x, \xi) + p(t; x, D_x) \frac{\partial}{\partial \xi_j} f(t, s; x, \xi) = 0 \\ \frac{\partial}{\partial \xi_j} f(s, s; x, \xi) = i x_j e^{i x \cdot \xi} . \quad j = 1, 2, \dots, n. \end{cases}$$

and

$$\begin{cases} \frac{\partial^2}{\partial t^2} f(t, s; x, \xi) + p(t; x, D_x) \frac{\partial}{\partial t} f(t, s; x, \xi) = -\frac{\partial}{\partial t} p(t; x, D_x) f(t, s; x, \xi) \\ \frac{\partial}{\partial t} f(s, s; x, \xi) = -p(s; x, D_x) e^{is \cdot \xi} . \end{cases}$$

By the same argument we get

$$\left|\frac{\partial}{\partial \xi_{j}}f(t, s_{0}; \cdot, \xi)\right|_{l, \mathcal{S}} \leq B'e^{-c_{3}(t-t_{0})}\left|\frac{\partial}{\partial \xi_{j}}f(t_{0}, s_{0}; \cdot, \xi)\right|_{l', \mathcal{S}}$$

and

$$\left|\frac{\partial}{\partial t}f(t, s_0; \cdot, \xi)\right|_{l,S} \leq B'e^{-c_3(t-t_0)}\left|\frac{\partial}{\partial t}f(t_0, s_0; \cdot, \xi)\right|_{l'S}.$$

 $\partial_{t_{-}}^{l_{1}}e(t_{0}, s_{0}; x, \xi) \in S_{\lambda, \rho, \delta}^{-\infty}$ for $t_{0} > s_{0}$ means that $\partial_{t_{-}}^{l_{1}}f(t_{0}, s_{0}; x, \xi)$ belongs to $S(R_{x}^{n} \times R_{\xi}^{n})$ for $t_{0} > s_{0}$ by the assumption (4.1) for $\lambda(x, \xi)$. Hence we get the assertion.

Q.E.D.

OSAKA UNIVERSITY

References

- [1] P. Greiner: An asymptotic expansion for the heat equation, Arch. Rational Mach. Anal. 41 (1971), 163-218.
- [2] V.V. Grushin: Hypoelliptic differential equations and pseudo-differential operators with operator-valued symbols, Mat. Sb. 88 (1972), 504-521.
- [3] B. Helffer: Une class d'operateurs hypoelliptiques, C.R. Acad. Sci. Paris 277 (1973), 531-533.
- [4] L. Hörmander: Pseudo-differential operators and hypoelliptic equations, Proc. Symposium on Singular Integrals, Amer. Math. Soc. 10 (1967), 138–183.
- [5] H. Kumano-go: Pseudo-differential operators of multiple symbol and the Calderón-Vaillancourt theorem, J. Math. Soc. Japan 27 (1975), 113-120.
- [6] H. Kumano-go and C. Tsutsumi: Complex powers of hypoelliptic pseudo-differential operators with applications, Osaka J. Math. 10 (1973), 147-174.
- [7] T. Matsuzawa: Some degenerate parabolic equation II, Nagoya Math. J. 52 (1973), 61-84.
- [8] M. Nagase and K. Shinkai: Complex powers of non-elliptic operators, Proc. Japan Acad. 46 (1970), 779-783.
- [9] K. Shinkai: The symbol calculus for the fundamental solution of a degenerate parabolic system with applications, Osaka J. Math. 14 (1977), 55-84.
- [10] C. Tsutsumi: The fundamental solution for a degenerate parabolic pseudo-dierential operator, Proc. Japan Acad. 50 (1974), 11-15.
- [11] C. Tsutsumi: The fundamental solution for a parabolic pseudo-differential operator and parametrices for degenerate operators, Proc. Japan Acad. 51 (1975), 103-108.
- [12] C. Iwasaki: Parametrices for degenerate operators of Grushin's type (in preparation).