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Let A be a ring with the identity element and B an extension ring of 4 with
the common identity element. B is called a quadratic extension of 4, if the
residue module B/A4 is an invertible A-A4-bimodule, i.e. B/A @, Hom4(B/A4, A)
~Homy, (B/4, A)® 4 B/A~A. In [4], [5] and [9], one has studied about com-
mutative quadratic extensions. We like to extend these results to non-commutative
quadratic extensions. But, in general, it is difficult. In this note, we shall study
non-commutative quadratic extensions of a commutative ring. Let 4 be a com-
mutative ring with the identity element. Let D be an A-algebra with the identity
element such that D is a quadratic extension of a commutative subring B and B is
a separable quadratic extension of 4. In the section 1, we shall show that if 4
has no idempotents other than 0 and 1, then such an A-algebra D is either a com-
mutative ring or a central A-algebra having B as a maximal commutative subring.
We shall say that A-algebra D is a quaternion A-algebra with a maximal commuta-
tive and separable subalgebra B, if D is an A-algebra mensioned above and is a
central separable A-algebra. In the section 2, we shall show that a quaternion
A-algebra with a maximal commutative and separable subalgebra B is characteriz-
ed by the separable quadratic extension B of 4 and a non-degenerate hermitian
B-module (V, ®) of rank one. Let(V, ¢) be anon-degenerate quadratic A-module
such that V' is a finitely generated projective A-module with a constant rank two.
Then the Clifford algebra C(V, q)=Cy(V, )P C,(V, g) is a quaternion 4-algebra
with a maximal commutative and separable subalgebra Cy(V, q). And, the
quadratic A-module (V, ¢) is hyperbolic if and only if [C(V, ¢)]=1 in Qs(4),
where Qg(A4)is the group of separable quadratic extensions of 4 (cf. [4],[5] and [9]).

1. Let 4 be a commutative ring with the identity element, and B a commu-
tative and separable quadratic extension of 4. Then B is characterized by an
invertible 4-module U, an A-linear map f: U—A4 and a quadratic form ¢: U—
A, as B=A4 @ U and x*=f(x)x+q(x) for x& U (cf. [4]). Let 7 be an A-algebra
automorphism of B defined by 7(a+x)=a--f(x)—x for ac 4, x U. Then we
have B'=A. Because, if x is in U and 7(x)=x, then f(x)=0, and 2x=0. From
the fact that a bilinear form D, ,: UXU— 4; (x, y) W f(x) f(9)+2Bq(x, »)
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is non-degenerate (Theorem 1 in [4]), x» is 0, consequently we have B'=A.
Therefore, B is a Galois extension of 4 with the Galois group G(B/4)={I, 7}.
If A has no idempotents other than 0 and 1, then G(B/4)={I, 7} is the group
of all 4-algebra automorphisms of B.

Let D be an A-algebra which is a quadratic extension of B. 'Then we have

(1.1) Theorem. Let D and B be as above. If A has no idempotents other
than 0 and 1, then D is either a commutative ring or a central A-algebra having
the subalgebra B as a maximal commutative subring.

Proof. Since the residue B-B-bimodule D/B is invertible, there exists an
A-algebra automorphism o of B such that xb=o(b)x (mod B) for all x& D and
beB. Then o is either I or 7. If o=I, then for each x in D, d,(b)=xb—bx
is in B for all 5 B. 'The map d,.: B—B becomes a derivation of B over 4. B
is seprable over over A, hence every derivation of B over 4 is 0, and so d,=0.
Therefore, D is a B-algebra. Since D is a quadratic extension of B, D is a
commutative ring. If o=, then for each x& D, d,(b)=xb—7(b)x is in B for
all b= B, and the map d,,:B—B is a (7, I)-derivation of B over 4, i.e. d (b, b,)=
d.(5,)b,+7(b,)d.(b,) for b,, b, in B, (cf. p. 170 in [6]). Since D/B is a projective
left B-module, the exact sequence 0—>B->D->D/B—0 is split, i.e. there exists
an invertible left B-submodule V of D such that D=B®V. We consider the
commutator ring V,(B)= {x& D; xb=>bx for all b= B}, then V,(B)DB. Now,
we shall show V,(B)NV=0. Ifxis in V,(B)NV, we have d.(b)=xb—7(b)x
=bx—7(b)xc BN V=0, and so 7(b)x=bx for all b= B. Since BD A is a Galois
extension with the Galois group G(B/4) ={I, 7}, there exist b,, b,,--+b, and ¢,,
Cyy+++¢, in B such thatdY,c;b;,=1 and >Y;¢;7(b;)=0. Then x=3¢;b;x=>;¢;7(b;)
x=0. Consequently, we get V,(B)=B, i.e. B is a maximal commutative subring
of D. Finally, we shall show that the center of D is A. Let ¢ be an element of
the center. ¢ is contained in B=V,(B). For any x€V, cx=xc=d, (c)+7(c)x
in B@V=D. Therefore, we have cx=T(c)x. Since V is faithful over B,
¢=1(c), and ¢ is contained in B¢B/=/4. Therefore, A is the center of D.

2. Let B be a commutative and separable quadratic extension of 4, and D
an A-algebra such that D is a quadratic extension of B. If D is central separable
over 4, then B is a maximal commutative subring of D. Because, when we regard
D as D) , B-left module by d® b-x=dxb for dQ b DR 4B and x,=D, D is a
finitely generated projective D) 4B-module and Hompgg (D, D)~V ,(B)DB.
For every maximal ideal m of 4, Homygs(D, D)X 4Am~Homp, g (Dm, Dm)~
Vpu(Bm)DBm. But, Am has no idempotents wihout 0 and 1, Vp, (Bm)=DBm.
Therefore, V,(B)=B. B is a maximal commutative subring of D. We shall say
that D is a quaternion A-algebra with a maximal commutative and separable
subalgebra B, if D is an A-algebra defined above and is central separable over
A. If A has no idempotents other than 0 and 1, and if D is non-commutative
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and separable over 4, then by (1.1), D is a quaternion A-algebra with a maximal
commutative and separable subalgebra B.

(2.1) Proposition. Let D be a quaternion A-algebra with a maximal com-
mutative and separable subalgebra B. Then D is a generalized crossed product of B
and G(B|A) (defined in [3]). Therefore, there exists an invertible B-B-submodule
of D such that D=B®V and B=V -V=VQgV.

Proof. D is a central separable A-algebra and contains a maximal com-
mutative subalgebra B which is a Galois extension of 4 with the Galois group
G(B/A)={I, 7}. By Proposition 3 in [3], D is a generalized crossed product of
B and G(B/A), and so D is written as D=],® J,, where J;=B and J,= {x&D;
7(b)x=uxb for all b= B} are invertible B-B-bimodules. Furthermore, the map
f..: J.Qs) =] xQy W xy is a B-B-isomorphism. Put V=], V is the
required B-B-bimodlue.

DerFINITION. Let BD A be a commutative and separable quadratic exten-
sion which is a Galois extension with Galois group G(B/4)={I,7}. For a left
B-module M with an A-bilinear form ®: M x M —B, we shall call (M, ®) a
hermitian B-module if it satisfies

1) ®(bx, y)=bd(x, y),
2) P(x, y)=7(D(y, x)) for every b B and x, yc M.

We shall say that a hermitian B-module (}, ®) is non-degenerate, if the A-linear
map M—Homgz(M, B); x W ®(-, x) is an isomphism. Let (M,, ®,) and (M,,
®,) be hiermitian B-modules. The product (M,, ®,)Q(M,, ®,) is defined by
(M1®BM2’ ¢1®q)2) where q)1®q)z: (M1®BM2) X (M1®BM2)_)B; (x1®x2’
Y1 QY )W D (x,, ¥,) D,(x,, ¥,). We denote by (B, I) a hermitian B-module
defined by I (b, 8")=b-7(?’) for b, ¥’= B.

If M, and M, are finitely generated projective B-modules, and if (M,, ®,)
and (M,, ®,) are non-degenerate hermitian B-modules, then the product (M,
D,)R(M,, ®,) is also non-degenerate.

(2.2) Theorem. Let D be a quaternion A-algebra with a maximal commuta-
tive and separable subalgebra B. Then there exists a non-degenerate hermitian B-
module (V, @) with an invertible B-bimodule V such that D=B®V, xb=1(b)x
for be B x€ V and xy=®(x, y) for x, y= V. Conversely, if (V, D) is any non-
degenerate hermitian B-module with an invertible B-left module V, then an
A-algebra D=B®V which is defined by (b+x) - (b'+x")=bb'+®(x, ')+ bx'+7
&)z for b, =B and x, ¥ =V, is a quaternion A-algebra with a maximal com-
mutative and separable subalgebra B.

Proof. Let D be a quaternion A-algebra with a maximal commutative and
separable subalgebra B. By (2.1), there exsists an invertible B-B-bimodule V/



600 T. KANzZAKI

such that D=B@V and V-V=B. We define an A4-bilinear map ®: V' X V—-B
by ®(x, y)=xy for x, y& V. We shall show that (V, @) is a non-degenerate
hermitian B-module. Put ¥(x, y)=®&(x, y)—7(®(y, x)) for x, y in V. For any
maximal ideal m of 4, the localization Bw is a semilocal ring, therefore Vi is a
free Bm-module of rank 1. Let Vin=Bmv, Yu=YRIn, ®n=>RIn and Tm=
7@Im Then we have ¥n (bo, b'v)v=>m(bv, b'0)v—Tm(Pm(b'v, bv))v=(vb'v)v
—0(b'0vbv)=brm(b’)0* —Tm(d)bv*=0 in Dw. Therefore, we have Wm=0 for any
maximal ideal m of A4, and so ¥=0, i.e. P(x, y)=7(D(y, x)) for every x, y in V.
Since VQzV—B; ¥Qy W xy is B-B-isomorphism from (2.1), (V, ®) is non-
degenerate. Conversely, let (V, ®) be any non-degenerate hermitian B-module
with an invertible left B-module V. We can make a B-B-bimodule V by xb=
7(b)x for b B, x= V. Since (V,®) is non-degenerate, the map f,,.: VR gV —
B; x®ywW ®(x, y) is a B-B-isomorphism as B-B-bimodules. By [3], we can
construct a generalized crossed prduct A(f, B, ¥, G) of B and G=G(B/4)=
{I, 7} provided ¥ ; W(I)=B, W(7)=V, and a factor set f={I=f;.1, fr.0, [1.0 fr.r}»
where f; .: BV —=V; bQxMWbx, f, 1: VR gB—V; %Qbm > xb. To show the
commutativity of the diagrams of the factor set, we need only to show the
following commutative diagram:

I®f..
VReVRgV ——> VRgB

l fr @I l frr
fr

BRgV ——> V

we shall show it by taking the localization with respect to a maximal ideal m of
A. Then we have f, ;o(IQf...) (avQbv @ cv)=f, ; (av R [, . (bv R cv))=av-P
(bv, cv)=a7(b)cm(D(v, v))v=a7(b)c®(v, v)v=D(av, bv)cv=f, (avQbv)cv = f; .o
(f+.-R1I) (av@bvQcv) for all av, bv,cv in Vin=Amv. Therefore, the diagram is
commutative. Thus, D=BPV=A(f, B, ¥, G) is an A-algebra defined the
multiplication by (b-+x)- (b’ +&')=bb"+D(x, x')+bx’+7(d')x for b+x, b'+x" in
B®V=D. By Proposition 3 in [3], D is an Azumaya A-algebra, accordingly
D=B@®V is a quaternion A-algebra with a maximal commutative and separable
subalgebra B.

We shall call (V, @) a non-degenerate hermitian B-module of rank 1 if (V, ®)
is a non-degenerate hermitian B-module and V is an invertible left B-module.
For a non-degenerate hermitian B-module of rank 1, we denote by D(B, V, @)
the quaternion A-algebra D with a maximal commutative and separable
sabalgebra B defined by (V, ®) in (2.2)

(2.3) Corollary. Let (V, ®) and (V’, @) be non-degenerate hermitian B-
modules of rank 1. Then (V, ®) and (V’, ®’) are isometric if and only if there
exists an A-algebra isomorphism of D(B, V, ®) to D(B, V' @) which is idetity
map on B.
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Let (P, q) be a quadratic A-module with a quadratic form ¢: P—-A4. We
shall call that (P, ¢) is a non-degenrate quadratic 4-module of rank #, if Pisa
finitely generated projective A-module with constant rank #, i.e. [Pm: Am]=n
for every maximal ideal m of 4, and ¢: P—A is non-degenetate.

(2.4) Proposition. Let (V, q) be a non-degenerate A-module of rank 2.
Then the Clifford algebra C(V, ¢)=CyV, q)DC.(V, q) is a quaternion A-algebra
with a maximal commutative and separable subalgebra C,(V, q), where C,(V, q)
(resp. C(V, q)) is the subalgebra of C(V, q) of homogeneous elements of degree 0
(resp. degree 1.) '

Proof. C(V, q) is an Azumaya A-algrbra, and C,(V, ¢) is a commutative
and separable quadratic extension of 4 (Lemma 6 in [7]). Therefore, V~C,
(V, g) is a finitely generated projective C,(V, g)-module. We shall show that
C.(V, g) is an invertible C,(V, ¢)-module. It suffices to show that for the case
where A4 is a local ring. Assume that 4 is a local ring. Then, V=Au®Av is a
free A-module of rank 2. Since (V, ¢) is non-degenerate, we may assume that
g(u) is invertible in A. Then we have Cy(V, 9)=APAuv and C(V, ¢)=V=
Au®Av=C,(V, q) u. Since u is invertible in C(V, q), C,(V, q) is a free Ci(V, q)

-module of rank 1.

(2.5) Lemma. Let A be a Galois extension of a ring T with a Galois group
G, and P a A-module. Then we have Hom(P, T')=TroHom, (P, A), where Tr
(%)=2lo(x) for x= A.

oceq

Proof. Since ADT is a Galois extension with a Galois group G, there

(1): Z:T:%' Then, for
fin Homy (P, T'), F(—)=>x;f(y:—) is contained in Hom, (P, A), and TroF
()=>NTr(x; f(y: 2))=fiTr(x;)y:2)=f(2) for all z&P. Therefore, f is in
TroHom,(P, A). The converse is clear.

exist ¥y, X,,***¥,, and y,, ¥,,***y, in A such that 2;a(x,~)y,-={

(2.6) Lemma. Let(P,®)be a non-degenerate hermitian B-dmodule. Then
(P, Tro®d) is a non-degenerate bilinear A-module.

Proof. Tro®: PXP—A4; (x, y)W- Tr(D(x, ¥))=>D(x, ¥)-+7(D(x, y)) is an
A-bilinear form. We show that P-—-Hom,(P, 4); xmW—>Tr(®D (-, x)) is an 4-
isomorphism. If x is in P such that Tr(®(-, x))=0, ® (P, x) is an ideal of B
and Tr(®(P, x))=0. Letb, b,,---b, and b/, b,,---b,’ be elements in B such
that >3,6,6,/=1 and >%,7(b;)b;/=0. Then, we have b=>),Tr (bb;)b;/=0 for every
b in ®(P, x), hence ®(P, x)=0. Therefore, x=0. From Lemma (2.5), (P, Tro®)
is non-degenerate.

(2.7) Theorem. Let D=D(B,V,®) be quaternion A-algebra with a maximal
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commutactive and separable subalgebra B. Then there exists an involution o: D—D
which is defined by o(b+v)=7(b)—v for be B, ve V. We put N(x)=x-o(x) and
T(x)=x+a(x) for x in D. Then N: D—A is a qduaratic form, (D, N) is a non-
degenerate quadratic A-module of rank 4, and D=B1V. T:D—Aisan A-linear
map and By(x, y)=T(x-o(y)) for x, ye D.

Proof. Let x=b-+v and x'=5b'}v" be elements in D=B®PV. Then we
have o(xx") = o(bb'+ @ (v, v')+bv'+7(b')v)=7(bb’ + P(v, v’))— (bv'+7(b')v)=
7(b) T(b')+ P (v, v')—0'7(b)—7(b')v=0(s’) o(x), and c*(x)=x. Therefore, o isan
involution. Furthermore, N(b+v)=ba(b)—® (v, v) and T(b+v)=>b-+7(b) are
contained in B®=4, hence N: D— A is a quadratic form, and the bilinear form
is By(x, &')=N(x+x")—N(x)—N(x')=x0(x')+x'c(x)="T(xc(x)) for x, ¥’€D.
Therefore, we have D=B_LV. To prove that (D, N) is non-degenerate, it suffices
to show that (B, N|B) and (V, N| V) are non-degenerate. From Lemma (2.6),
Tro® and Trol are non-degenerate, and By (b, b')=T(b7(8"))="Tr(b7(d’))=Trol
(b, &) for b, b= B and By(v, v')=T(v(-"))=T(-DP(v, v'))=-Trod(v, v’) for
v, v’ V, hence (B, N|B) and (V, N |V) are non-degenerate.

In Theorem (2.7), we put Q=-N|V. Then (V, Q) is a non-degenerate
quadratic A-module of rank 2.

(2.8) Theorem. Let D(B, V, ®) be a quaternion A-algebra with a maximal
commutative and separable subalgebra B, and N:D—A and Q=—N |V as defined
before. Then D (B, V, @) is a isomorphic to the Clifford algebra C(V, Q) of the
quadratic module (V, Q) as A-algebras.

Proof. Since Q(x) is equal to #’=N(x) in D(B, V, ®) for every x& V, the
inclusion map V—-D(B, V, ®)=B®V can be extended to an A-algebra homo-
morphism p: C(V, Q)—D(B, V,®). From the fact that C(V, Q) and D(B, V, ®)
are Azumaya algebras over 4 and are generated by V, we obtain that p is an
A-isomorphism.

(2.9) Lemma. LetV be any invertible B-module. Then for any f in Hompg
(V, B) and x, y in V, we have f(x)y=f(y)x.

Proof. Put ¥(x, y)=f(y)x—f(x)y for every x, yeV, then W: VXV >V
is a B-bilinear form. By taking the loclization of V' with respect to a maximal
ideal m of A4, we get easily ¥m=0. Therefore, ¥=0.

(2.10) Proposition. Let (V,D) be a non-degenerate hermitian B-module of
rank 1. Then, the quaternion A-algebra D(B, V(X V, ®XD) which is determined
by (V, ®)Q(V, ®)=(VR sV, R D), is A-algebra isomorphic to Hom, (V, V),

and this isomorphism preserves the structure of B-modules.
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Proof. We can define a map 6: D(B, VRV, PQRQP)=BPVRQzV—-Hom,
(V, V) as follows: (b) (x)=bx for b B, x V, and 0 (uQ v) (x)= (u, x) v for
u@ve VgV, xV. Then § is an A-algebra homomorphism. Because, for
be B, uQve VRV and x= V, we have 6 (bu®v) (x)= (bu, x)v=>b® (u, x)v=
0(b)of (u Q v) (x) and 6 (u Q v b) (x)=P (u, x) vh=T(b) ® (u, x)v==> (u, bx) v=
O(u®v)od (b) (x). And, for uQRv, W'QRv' e VRV and xe V, 0 (u@ v)o0 (W'Q2’)
()=0 (uQ) (@ W, ¥') V')=D (u, @ (W, x) V') v= (4, ') D (¥, w'))v. On the
other hand, ® (-, v’) and ® (-, ') are in Hompg(V, B), by Lemma (2.9) we get
D(x, u)D(u, v)o=>(x, W) D(v, v Yu=>(u, u')d(v, v') x=0(D(u, v')D(v, v')) (x)
=0((uQ®7v) (W®7')) (x). Thus, § is an A-algebra homomorphism. Now we
check that 6 is an epimorphism. From Lemma (2.5), we have Hom, (V, V)~
Homy, (V, A)® 4 V~TrocHomgz(V, B)Q 4V ~(Tro®(-, V))Q,V. Therefore,
any element f in Hom, (V, V) is written as f=3,Tro® (-, u;)v;=>:(P(-, ©;)v
~+®(u;, —)v;) for some u;, v;€ V, and by Lemma (2.9), f(x)=>1,®(x, u;)v;+>;
D(u;, x)0,=23D (v;, u;)x+0 (3 u;,Q0;) (x) for k& V. Thus, we get f=0(>,P
(i, w;)+>:Qv;). Since D(B, VRQ gV, ®R®) and Hom 4(V, V) are Azumaya
A-algrebras, 6 is an 4-algebra isomorphism.

(2.11) Corollary. D(B, B, I)~Hom (B, B) as A-algebras.

(2.12) Corollary. For any non-degenerate hermitian B-modules of rank 1
V, ®) and (V, @), (VR gV, DRX®) and (VR gV, ®' QD) are isometric.

(2.13) Theorem. Let D(B,V,®) be a quaternion A-algebra with a maxi-
mal commutative and separable subalgebra B, and (V, Q) a non-degenerate quadratic
A-module of rank 2 defined by D(B, V, ®) in (2.8). Then, (V, Q) is hyperbolic if
and only if [B]l=1 in Qgs(4) (cf. [4]).

Proof. In (2.8), we obtained D(B, V, ®)=C(V, Q)=BaV, C(V, O)=B
and C(V, Q)=V. We assume that (V, Q) is hyperbolic. Then we may assume
that V=P@P* for some invertible A-module P and P*=Hom, (P, 4), and Q
(x+f)=f(x) for x€ P, fe P*. Since P-P=P*.P*=0in C(V, Q), we get C,
(V, 0)=A®DP-P*~APPR 4P*. Forany >; x;f; in P- P*, we have ; x; f;)°
=% % fi x; f; =235 %:(fi(a;)—x; f)f; =2%if: (%,); fj:Ei,f Ji(w)x; f=
G fi(x)) 2 #; f;) using Lemma (2.9). We condisder an A-isomorphism g :
P.P¥(~PQ gP*) —A defined by u 3 x; f:)=2> f; (x;) for 33; x; f; in P-P*.
Then we have O2; x; f;Y¥=p O x; f;) D3 % f; for every 3); «; f; in P- P*, hence
B=C\V, Q)~(PQ ,P*, u, 0)~ (4, 1,0) as A-algebras (cf. [4]). Accordingly,
[B]=1in Qg(A4). Conversely, we assume [B]=1 in Qg(4). Then the quadratic
extension B of A4 has idempotents e, and e, such that 1=e,}¢,, ¢, ¢,=0 and B=
Ae,DAe,. Furthermore, A-module V is written as a direct sum of A-submodules
e,V and ¢,VV. Since the Galois group G=G (B/4)={I, 7} is permutations of
{e,, e} ,we have O(e, x)=D(e, x, e, x)=e, 7(e,)D(x, x)=e, e, D(x, x)=0 for every
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x€V. Therefore, e,V is totally isotropic. We have (e, V)"=e,V, because, for
e, y+e,xs(e, V)", 0=Bg(e,y+¢, 2, e,x)=D(e,y+¢,2, e,x)+D(e, x, e,y+e,2)=D
(&2, 6,%)+D (e, €,2)=e,D (2, x)+€,P (%, 2) in e,APe,A=DB, hence ¢, (x, 2)=
D(x, €,2)=0 for all zin V. Therefore, we get e,2=0. Accordingly, (V, Q) is
hyperbolic (cf. [2]).

(2.14) Corollary. Let (P, q) be any non-degenerate quadratic A-module of
rank 2. Then (P, q) is hyperbolic if and only if [C (P, ¢)]=1 in Qs(A4).

(2.15) Corollary. If B is a quadratic extension of A such that [B]=1 in
Os(A), then every quaternion A-algebra D(B, V, ®) with a maximal commutative
and separable subalgebra B is split, i.e. [D(B, V, ®)]=1 in the Brauer group
B(4).

(2.16) Corollary. If A is commutative ring such that Qs(A)=1, then every

non-degenerate quadratic A-module of rank 2 is hyperbolic.

(2.17) ExamprE. If A is the integers Z or the gaussian intgers Z [i], then
every non-degenerate quadratic A-module of rank 2 is hyperbolic (cf. [5], [7])-

(2.18) Remarx. Let K be a field, and (¥, ¢) and (V’, ¢’) non-degenerate
quadratic K-mdoules of rank 2. Then, (V, ¢) and (V”, ¢’) are isometric if and
only if [C(V, q)]=[C(V’, ¢')] in the Brauer group B(K) and [C(V, ¢)]=[C,
(7", )] in Os(4).

Proof. For a field of characteristics=2, this is obtained from Theorem 58:4
in [8], and for a field of charcteristic 2, is obtained from Theorem 3 in [1].
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