ON NON-COMMUTATIVE QUADRATIC EXTENSIONS OF A COMMUTATIVE RING

Teruo KANZAKI

(Received January 30, 1973)

Let A be a ring with the identity element and B an extension ring of A with the common identity element. B is called a quadratic extension of A, if the residue module B / A is an invertible A - A-bimodule, i.e. $B / A \otimes_{A} \operatorname{Hom}_{A}(B / A, A)$ $\approx \operatorname{Hom}_{A}(B / A, A) \otimes_{A} B / A \approx A$. In [4], [5] and [9], one has studied about commutative quadratic extensions. We like to extend these results to non-commutative quadratic extensions. But, in general, it is difficult. In this note, we shall study non-commutative quadratic extensions of a commutative ring. Let A be a commutative ring with the identity element. Let D be an A-algebra with the identity element such that D is a quadratic extension of a commutative subring B and B is a separable quadratic extension of A. In the section 1 , we shall show that if A has no idempotents other than 0 and 1 , then such an A-algebra D is either a commutative ring or a central A-algebra having B as a maximal commutative subring. We shall say that A-algebra D is a quaternion A-algebra with a maximal commutative and separable subalgebra B, if D is an A-algebra mensioned above and is a central separable A-algebra. In the section 2 , we shall show that a quaternion A-algebra with a maximal commutative and separable subalgebra B is characterized by the separable quadratic extension B of A and a non-degenerate hermitian B-module (V, Φ) of rank one. Let (V, q) be a non-degenerate quadratic A-module such that V is a finitely generated projective A-module with a constant rank two. Then the Clifford algebra $C(V, q)=C_{0}(V, q) \oplus \mathrm{C}_{1}(V, q)$ is a quaternion A-algebra with a maximal commutative and separable subalgebra $\mathrm{C}_{0}(V, q)$. And, the quadratic A-module (V, q) is hyperbolic if and only if $\left[\mathrm{C}_{0}(V, q)\right]=1$ in $\mathrm{Q}_{s}(A)$, where $\mathrm{Q}_{S}(A)$ is the group of separable quadratic extensions of A (cf. [4], [5] and [9]).

1. Let A be a commutative ring with the identity element, and B a commutative and separable quadratic extension of A. Then B is characterized by an invertible A-module U, an A-linear map $f: U \rightarrow A$ and a quadratic form $q: U \rightarrow$ A, as $B=A \oplus U$ and $x^{2}=f(x) x+q(x)$ for $x \in U$ (cf. [4]). Let τ be an A-algebra automorphism of B defined by $\tau(a+x)=a+f(x)-x$ for $a \in A, x \in U$. Then we have $B^{\tau}=A$. Because, if x is in U and $\tau(x)=x$, then $f(x)=0$, and $2 x=0$. From the fact that a bilinear form $\mathrm{D}_{f, q}: U \times U \rightarrow A ;(x, y) \rightsquigarrow \rightarrow f(x) f(y)+2 B_{q}(x, y)$
is non-degenerate (Theorem 1 in [4]), x is 0 , consequently we have $B^{\top}=A$. Therefore, B is a Galois extension of A with the Galois group $\mathrm{G}(B / A)=\{\mathrm{I}, \tau\}$. If A has no idempotents other than 0 and 1 , then $\mathrm{G}(B / A)=\{\mathrm{I}, \tau\}$ is the group of all A-algebra automorphisms of B.

Let D be an A-algebra which is a quadratic extension of B. Then we have
(1.1) Theorem. Let D and B be as above. If A has no idempotents other than 0 and 1 , then D is either a commutative ring or a central A-algebra having the subalgebra B as a maximal commutative subring.

Proof. Since the residue B - B-bimodule D / B is invertible, there exists an A-algebra automorphism σ of B such that $x b \equiv \sigma(b) x(\bmod B)$ for all $x \in D$ and $b \in B$. Then σ is either I or τ. If $\sigma=\mathrm{I}$, then for each x in $D, d_{x}(b)=x b-b x$ is in B for all $b \in B$. The map $d_{x}: B \rightarrow B$ becomes a derivation of B over $A . B$ is seprable over over A, hence every derivation of B over A is 0 , and so $d_{x}=0$. Therefore, D is a B-algebra. Since D is a quadratic extension of B, D is a commutative ring. If $\sigma=\tau$, then for each $x \in D, d_{x}(b)=x b-\tau(b) x$ is in B for all $b \in B$, and the map $d_{x}: B \rightarrow B$ is a (τ, I)-derivation of B over A, i.e. $\mathrm{d}_{x}\left(b_{1} b_{2}\right)=$ $\mathrm{d}_{x}\left(b_{1}\right) b_{2}+\tau\left(b_{1}\right) d_{x}\left(b_{2}\right)$ for b_{1}, b_{2} in B, (cf. p. 170 in [6]). Since D / B is a projective left B-module, the exact sequence $0 \rightarrow B \rightarrow D \rightarrow D \mid B \rightarrow 0$ is split, i.e. there exists an invertible left B-submodule V of D such that $D=B \oplus V$. We consider the commutator ring $V_{D}(B)=\{x \in D ; x b=b x$ for all $b \in B\}$, then $V_{D}(B) \supset B$. Now, we shall show $V_{D}(B) \cap V=0$. If x is in $V_{D}(B) \cap V$, we have $d_{x}(b)=x b-\tau(b) x$ $=b x-\tau(b) x \in B \cap V=0$, and so $\tau(b) x=b x$ for all $b \in B$. Since $B \supset A$ is a Galois extension with the Galois group $\mathrm{G}(B / A)=\{\mathrm{I}, \tau\}$, there exist $b_{1}, b_{2}, \cdots b_{r}$ and c_{1}, $c_{2}, \cdots c_{r}$ in B such that $\sum_{i} c_{i} b_{i}=1$ and $\sum_{i} c_{i} \tau\left(b_{i}\right)=0$. Then $x=\sum c_{i} b_{i} x=\sum_{i} c_{i} \tau\left(b_{i}\right)$ $x=0$. Consequently, we get $V_{D}(B)=B$, i.e. B is a maximal commutative subring of D. Finally, we shall show that the center of D is A. Let c be an element of the center. c is contained in $B=V_{D}(B)$. For any $x \in V, c x=x c=d_{x}(c)+\tau(c) x$ in $B \oplus V=\mathrm{D}$. Therefore, we have $c x=\tau(c) x$. Since V is faithful over B, $c=\tau(c)$, and c is contained in $B^{G(B / A)}=A$. Therefore, A is the center of D.
2. Let B be a commutative and separable quadratic extension of A, and D an A-algebra such that D is a quadratic extension of B. If D is central separable over A, then B is a maximal commutative subring of D. Because, when we regard D as $D \otimes_{A} B$-left module by $d \otimes b \cdot x=d x b$ for $d \otimes b \in D \otimes_{A} B$ and $x, \in D, D$ is a finitely generated projective $D \otimes_{A} B$-module and $\operatorname{Hom}_{D \otimes B}(D, D) \approx V_{D}(B) \supset B$. For every maximal ideal \mathfrak{m} of $A, \operatorname{Hom}_{D \otimes B}(D, D) \otimes_{A} A_{\mathfrak{m}} \approx \operatorname{Hom}_{D_{\mathfrak{m}} \otimes B_{\mathfrak{m}}}\left(D_{\mathfrak{m}}, D_{\mathfrak{m}}\right) \approx$ $V_{D_{\mathfrak{m}}}\left(B_{\mathfrak{m}}\right) \supset B_{\mathfrak{m}}$. But, $A_{\mathfrak{m}}$ has no idempotents wihout 0 and $1, V_{D_{\mathfrak{m}}}\left(B_{\mathfrak{m}}\right)=B_{\mathfrak{m}}$. Therefore, $V_{D}(B)=B . \quad B$ is a maximal commutative subring of D. We shall say that D is a quaternion A-algebra with a maximal commutative and separable subalgebra B, if D is an A-algebra defined above and is central separable over A. If A has no idempotents other than 0 and 1 , and if D is non-commutative
and separable over A, then by (1.1), D is a quaternion A-algebra with a maximal commutative and separable subalgebra B.
(2.1) Proposition. Let D be a quaternion A-algebra with a maximal commutative and separable subalgebra B. Then D is a generalized crossed product of B and $G(B / A)$ (defined in [3]). Therefore, there exists an invertible B - B-submodule of D such that $D=B \oplus V$ and $B=V \cdot V \approx V \otimes_{B} V$.

Proof. D is a central separable A-algebra and contains a maximal commutative subalgebra B which is a Galois extension of A with the Galois group $\mathrm{G}(B / A)=\{\mathrm{I}, \tau\}$. By Proposition 3 in [3], D is a generalized crossed product of B and $\mathrm{G}(B / A)$, and so D is written as $D=J_{I} \oplus J_{\tau}$, where $J_{I}=B$ and $J_{\tau}=\{x \in D$; $\tau(b) x=x b$ for all $b \in B\}$ are invertible B - B-bimodules. Furthermore, the map $\mathrm{f}_{\tau, \tau}: \mathrm{J}_{\tau} \otimes_{B} \mathrm{~J}_{\tau} \rightarrow \mathrm{J}_{I} ; x \otimes y \rightsquigarrow \rightarrow x y$ is a B-B-isomorphism. Put $V=\mathrm{J}_{\tau}, V$ is the required B - B-bimodlue.

Definition. Let $B \supset A$ be a commutative and separable quadratic extension which is a Galois extension with Galois group $\mathrm{G}(B / A)=\{\mathrm{I}, \tau\}$. For a left B-module M with an A-bilinear form $\Phi: M \times M \rightarrow B$, we shall call (M, Φ) a hermitian B-module if it satisfies

1) $\Phi(b x, y)=b \Phi(x, y)$,
2) $\Phi(x, y)=\tau(\Phi(y, x))$ for every $b \in B$ and $x, y \in M$.

We shall say that a hermitian B -module (M, Φ) is non-degenerate, if the A-linear map $M \rightarrow \operatorname{Hom}_{B}(M, B) ; x M \rightarrow \Phi(-, x)$ is an isomphism. Let $\left(M_{1}, \Phi_{1}\right)$ and $\left(M_{2}\right.$, Φ_{2}) be hiermitian B-modules. The product $\left(M_{1}, \Phi_{1}\right) \otimes\left(M_{2}, \Phi_{2}\right)$ is defined by $\left(M_{1} \otimes_{B} M_{2}, \Phi_{1} \otimes \Phi_{2}\right)$ where $\Phi_{1} \otimes \Phi_{2}:\left(M_{1} \otimes_{B} M_{2}\right) \times\left(M_{1} \otimes_{B} M_{2}\right) \rightarrow B ;\left(x_{1} \otimes x_{2}\right.$, $\left.y_{1} \otimes y_{2}\right) \rightsquigarrow \rightarrow \Phi_{1}\left(x_{1}, y_{1}\right) \cdot \Phi_{2}\left(x_{2}, y_{2}\right)$. We denote by (B, I) a hermitian B-module defined by $I\left(b, b^{\prime}\right)=b \cdot \tau\left(b^{\prime}\right)$ for $b, b^{\prime} \in B$.

If M_{1} and M_{2} are finitely generated projective B-modules, and if (M_{1}, Φ_{1}) and (M_{2}, Φ_{2}) are non-degenerate hermitian B-modules, then the product (M_{1}, $\left.\Phi_{1}\right) \otimes\left(M_{2}, \Phi_{2}\right)$ is also non-degenerate.
(2.2) Theorem. Let D be a quaternion A-algebra with a maximal commutative and separable subalgebra B. Then there exists a non-degenerate hermitian B module (V, Φ) with an invertible B-bimodule V such that $D=B \oplus V, x b=\tau(b) x$ for $b \in B, x \in V$ and $x y=\Phi(x, y)$ for $x, y \in V$. Conversely, if (V, Φ) is any nondegenerate hermitian B-module with an invertible B-left module V, then an A-algebra $D=B \oplus V$ which is defined by $(b+x) \cdot\left(b^{\prime}+x^{\prime}\right)=b b^{\prime}+\Phi\left(x, x^{\prime}\right)+b x^{\prime}+\tau$ $\left(b^{\prime}\right) x$ for $b, b^{\prime} \in B$ and $x, x^{\prime} \in V$, is a quaternion A-algebra with a maximal commutative and separable subalgebra B.

Proof. Let D be a quaternion A-algebra with a maximal commutative and separable subalgebra B. By (2.1), there exsists an invertible B - B-bimodule V
such that $D=B \oplus V$ and $V \cdot V=B$. We define an A-bilinear map $\Phi: V \times V \rightarrow B$ by $\Phi(x, y)=x y$ for $x, y \in V$. We shall show that (V, Φ) is a non-degenerate hermitian B-module. Put $\Psi(x, y)=\Phi(x, y)-\tau(\Phi(y, x))$ for x, y in V. For any maximal ideal \mathfrak{m} of A, the localization $B_{\mathfrak{m}}$ is a semilocal ring, therefore $V_{\mathfrak{m}}$ is a free $B_{\mathfrak{m}}$-module of rank 1. Let $V_{\mathfrak{m}}=B_{\mathfrak{m} v}, \Psi_{\mathfrak{m}}=\Psi \otimes \mathrm{I}_{\mathfrak{m}}, \Phi_{\mathfrak{m}}=\Phi \otimes \mathrm{I}_{\mathfrak{m}}$ and $\tau_{\mathfrak{m}}=$ $\tau \otimes \mathbf{I}_{\mathfrak{m}} \quad$ Then we have $\Psi_{\mathfrak{m}}\left(b v, b^{\prime} v\right) v=\Phi_{\mathfrak{m}}\left(b v, b^{\prime} v\right) v-\tau_{\mathfrak{m}}\left(\Phi_{\mathfrak{m}}\left(b^{\prime} v, b v\right)\right) v=\left(v b^{\prime} v\right) v$ $-v\left(b^{\prime} v b v\right)=b \tau_{\mathfrak{m}}\left(b^{\prime}\right) v^{3}-\tau_{\mathfrak{m}}\left(b^{\prime}\right) b v^{3}=0$ in $D_{\mathfrak{m}}$. Therefore, we have $\Psi_{\mathfrak{m}}=0$ for any maximal ideal \mathfrak{m} of A, and so $\Psi=0$, i.e. $\Phi(x, y)=\tau(\Phi(y, x))$ for every x, y in V. Since $V \bigotimes_{B} V \rightarrow B ; x \otimes y \rightsquigarrow \rightarrow x y$ is B - B-isomorphism from (2.1), (V, Φ) is nondegenerate. Conversely, let (V, Φ) be any non-degenerate hermitian B-module with an invertible left B-module V. We can make a B - B-bimodule V by $x b=$ $\tau(b) x$ for $b \in B, x \in V . \quad$ Since (V, Φ) is non-degenerate, the map $f_{\tau, \tau}: V \otimes_{B} V \rightarrow$ $B ; x \otimes y \leadsto \longrightarrow \Phi(x, y)$ is a B - B-isomorphism as B - B-bimodules. By [3], we can construct a generalized crossed prduct $\Delta(f, B, \Psi, G)$ of B and $G=\mathrm{G}(B / A)=$ $\{\mathrm{I}, \tau\}$ provided $\Psi ; \Psi(\mathrm{I})=\mathrm{B}, \Psi(\tau)=V$, and a factor set $f=\left\{I=f_{I, I}, f_{\tau, I}, f_{I, \tau}, f_{\tau,\}}\right\}$, where $f_{I, r}: B \otimes_{B} V \rightarrow V ; b \otimes x \mathcal{M} \rightarrow b x, f_{\tau, I}: V \bigotimes_{B} B \rightarrow V ; x \otimes b \leadsto \longrightarrow x b$. To show the commutativity of the diagrams of the factor set, we need only to show the following commutative diagram:

we shall show it by taking the localization with respect to a maximal ideal \mathfrak{m} of A. Then we have $f_{\tau, I} \circ\left(I \otimes f_{r, \tau}\right)(a v \otimes b v \otimes c v)=f_{\tau, I}\left(a v \otimes f_{\tau, \tau}(b v \otimes c v)\right)=a v \cdot \Phi$ $(b v, c v)=a \tau(b) c \tau(\Phi(v, v)) v=a \tau(b) c \Phi(v, v) v=\Phi(a v, b v) c v=f_{\tau, \tau}(a v \otimes b v) c v=f_{I, \tau^{\circ}}$ $\left(f_{r, \tau} \otimes I\right)(a v \otimes b v \otimes c v)$ for all $a v, b v, c v$ in $V_{\mathfrak{m}}=A_{\mathfrak{m}} v$. Therefore, the diagram is commutative. Thus, $D=B \oplus V=\Delta(f, B, \Psi, G)$ is an A-algebra defined the multiplication by $(b+x) \cdot\left(b^{\prime}+x^{\prime}\right)=b b^{\prime}+\Phi\left(x, x^{\prime}\right)+b x^{\prime}+\tau\left(b^{\prime}\right) x$ for $b+x, b^{\prime}+x^{\prime}$ in $B \oplus V=D$. By Proposition 3 in [3], D is an Azumaya A-algebra, accordingly $D=B \oplus V$ is a quaternion A-algebra with a maximal commutative and separable subalgebra B.

We shall call (V, Φ) a non-degenerate hermitian B-module of rank 1 if (V, Φ) is a non-degenerate hermitian B-module and V is an invertible left B-module. For a non-degenerate hermitian B-module of rank 1 , we denote by $D(B, V, \Phi)$ the quaternion A-algebra D with a maximal commutative and separable sabalgebra B defined by (V, Φ) in (2.2)
(2.3) Corollary. Let (V, Φ) and $\left(V^{\prime}, \Phi^{\prime}\right)$ be non-degenerate hermitian B modules of rank 1. Then (V, Φ) and $\left(V^{\prime}, \Phi^{\prime}\right)$ are isometric if and only if there exists an A-algebra isomorphism of $D(B, V, \Phi)$ to $D\left(B, V^{\prime} \Phi^{\prime}\right)$ which is idetity map on B.

Let (P, q) be a quadratic A-module with a quadratic form $q: P \rightarrow A$. We shall call that (P, q) is a non-degenrate quadratic A-module of rank n, if P is a finitely generated projective A-module with constant rank n, i.e. $\left[P_{\mathfrak{m}}: A_{\mathfrak{m}}\right]=n$ for every maximal ideal \mathfrak{m} of A, and $q: P \rightarrow A$ is non-degenetate.
(2.4) Proposition. Let (V, q) be a non-degenerate A-module of rank 2. Then the Clifford algebra $C(V, q)=C_{0}(V, q) \oplus C_{1}(V, q)$ is a quaternion A-algebra with a maximal commutative and separable subalgebra $C_{0}(V, q)$, where $C_{0}(V, q)$ (resp. $C_{1}(V, q)$) is the subalgebra of $C(V, q)$ of homogeneous elements of degree 0 (resp. degree 1.)

Proof. $C(V, q)$ is an Azumaya A-algrbra, and $\mathrm{C}_{0}(V, q)$ is a commutative and separable quadratic extension of A (Lemma 6 in [7]). Therefore, $V \approx C_{1}$ (V, q) is a finitely generated projective $C_{0}(V, q)$-module. We shall show that $\mathrm{C}_{1}(V, q)$ is an invertible $\mathrm{C}_{0}(V, q)$-module. It suffices to show that for the case where A is a local ring. Assume that A is a local ring. Then, $V=A u \oplus A v$ is a free A-module of rank 2 . Since (V, q) is non-degenerate, we may assume that $q(u)$ is invertible in A. Then we have $C_{0}(V, q)=A \oplus A u v$ and $\mathrm{C}_{1}(V, q) \approx V=$ $A u \oplus A v=\mathrm{C}_{1}(V, q) u$. Since u is invertible in $\mathrm{C}(V, q), \mathrm{C}_{1}(V, q)$ is a free $\mathrm{C}_{0}(V, q)$ -module of rank 1.
(2.5) Lemma. Let Λ be a Galois extension of a ring Γ with a Galois group G, and P a Λ-module. Then we have $\operatorname{Hom}_{\Gamma}(P, \Gamma)=\operatorname{Tr} \circ \operatorname{Hom}_{\Lambda}(P, \Lambda)$, where Tr $(x)=\sum_{\sigma \in G} \sigma(x)$ for $x \in \Lambda$.

Proof. Since $\Lambda \supset \Gamma$ is a Galois extension with a Galois group G, there exist $x_{1}, x_{2}, \cdots x_{n}$ and $y_{1}, y_{2}, \cdots y_{n}$ in Λ such that $\sum_{i} \sigma\left(x_{i}\right) y_{i}=\left\{\begin{array}{l}1, \sigma=\mathrm{I} \\ 0, \sigma \neq \mathrm{I}\end{array}\right.$. Then, for f in $\operatorname{Hom}_{\Gamma}(P, \Gamma), F(-)=\sum_{i} x_{i} f\left(y_{i}-\right)$ is contained in $\operatorname{Hom}_{\Lambda}(P, \Lambda)$, and $\operatorname{Tro} F$ $(z)=\sum_{i} \operatorname{Tr}\left(x_{i} f\left(y_{i} z\right)\right)=f\left(\sum_{i} \operatorname{Tr}\left(x_{i}\right) y_{i} z\right)=f(z)$ for all $z \in P$. Therefore, f is in $\operatorname{TroHom} \Lambda(P, \Lambda)$. The converse is clear.
(2.6) Lemma. Let (P, Φ) be a non-degenerate hermitian B-dmodule. Then ($P, \operatorname{Tr} \circ \Phi$) is a non-degenerate bilinear A-module.

Proof. Tro $\Phi: P \times P \rightarrow A ;(x, y) \rightsquigarrow \rightarrow \operatorname{Tr}(\Phi(x, y))=\Phi(x, y)+\tau(\Phi(x, y))$ is an A-bilinear form. We show that $P \rightarrow \operatorname{Hom}_{A}(P, A) ; x \leadsto \longrightarrow \operatorname{Tr}(\Phi(-, x))$ is an A isomorphism. If x is in P such that $\operatorname{Tr}(\Phi(-, x))=0, \Phi(P, x)$ is an ideal of B and $\operatorname{Tr}(\Phi(P, x))=0$. Let $b_{1}, b_{2}, \cdots b_{n}$ and $b_{1}{ }^{\prime}, b_{2}{ }^{\prime}, \cdots b_{n}{ }^{\prime}$ be elements in B such that $\sum_{i} b_{i} b_{i}{ }^{\prime}=1$ and $\sum_{i} \tau\left(b_{i}\right) b_{i}{ }^{\prime}=0$. Then, we have $b=\sum_{i} \operatorname{Tr}\left(b b_{i}\right) b_{i}{ }^{\prime}=0$ for every b in $\Phi(P, x)$, hence $\Phi(P, x)=0$. Therefore, $x=0$. From Lemma (2.5), (P, Tr $\circ \Phi)$ is non-degenerate.
(2.7) Theorem. Let $D=D(B, V, \Phi)$ be quaternion A-algebra with a maximal
commutactive and separable subalgebra B. Then there exists an involution $\sigma: D \rightarrow D$ which is defined by $\sigma(b+v)=\tau(b)-v$ for $b \in B, v \in V$. We put $N(x)=x \cdot \sigma(x)$ and $T(x)=x+\sigma(x)$ for x in D. Then $N: D \rightarrow A$ is a qduaratic form, (D, N) is a nondegenerate quadratic A-module of rank 4, and $D=B \perp V . \quad T: D \rightarrow A$ is an A-linear map and $B_{N}(x, y)=T(x \cdot \sigma(y))$ for $x, y \in D$.

Proof. Let $x=b+v$ and $x^{\prime}=b^{\prime}+v^{\prime}$ be elements in $D=B \oplus V$. Then we have $\sigma\left(x x^{\prime}\right)=\sigma\left(b b^{\prime}+\Phi\left(v, v^{\prime}\right)+b v^{\prime}+\tau\left(b^{\prime}\right) v\right)=\tau\left(b b^{\prime}+\Phi\left(v, v^{\prime}\right)\right)-\left(b v^{\prime}+\tau\left(b^{\prime}\right) v\right)=$ $\tau(b) \cdot \tau\left(b^{\prime}\right)+\Phi\left(v, v^{\prime}\right)-v^{\prime} \tau(b)-\tau\left(b^{\prime}\right) v=\sigma\left(x^{\prime}\right) \cdot \sigma(x)$, and $\sigma^{2}(x)=x$. Therefore, σ is an involution. Furthermore, $N(b+v)=b \sigma(b)-\Phi(v, v)$ and $\mathrm{T}(b+v)=b+\tau(b)$ are contained in $B^{G}=A$, hence $N: D \rightarrow A$ is a quadratic form, and the bilinear form is $B_{N}\left(x, x^{\prime}\right)=N\left(x+x^{\prime}\right)-N(x)-N\left(x^{\prime}\right)=x \sigma\left(x^{\prime}\right)+x^{\prime} \sigma(x)=\mathrm{T}(x \sigma(x))$ for $x, x^{\prime} \in D$. Therefore, we have $D=B \perp V$. To prove that (D, N) is non-degenerate, it suffices to show that $(B, N \mid B)$ and $(V, N \mid V)$ are non-degenerate. From Lemma (2.6), $\operatorname{Tr} \circ \Phi$ and $\operatorname{Tr} \circ I$ are non-degenerate, and $B_{N}\left(b, b^{\prime}\right)=\mathrm{T}\left(b \tau\left(b^{\prime}\right)\right)=\operatorname{Tr}\left(b \tau\left(b^{\prime}\right)\right)=\operatorname{Tr} \circ I$ $\left(b, b^{\prime}\right)$ for $b, b^{\prime} \in B$ and $\mathrm{B}_{N}\left(v, v^{\prime}\right)=\mathrm{T}\left(v\left(-v^{\prime}\right)\right)=\mathrm{T}\left(-\Phi\left(v, v^{\prime}\right)\right)=-\operatorname{Tr} \circ \Phi\left(v, v^{\prime}\right)$ for $v, v^{\prime} \in V$, hence $(B, N \mid B)$ and $(V, N \mid V)$ are non-degenerate.

In Theorem (2.7), we put $Q=-N \mid V$. Then (V, Q) is a non-degenerate quadratic A -module of rank 2.
(2.8) Theorem. Let $D(B, V, \Phi)$ be a quaternion A-algebra with a maximal commutative and separable subalgebra B, and $N: D \rightarrow A$ and $Q=-N \mid V$ as defined before. Then $D(B, V, \Phi)$ is a isomorphic to the Clifford algebra $C(V, Q)$ of the quadratic module (V, Q) as A-algebras.

Proof. Since $Q(x)$ is equal to $x^{2}=N(x)$ in $D(B, V, \Phi)$ for every $x \in V$, the inclusion map $V \rightarrow \mathrm{D}(B, V, \Phi)=B \oplus V$ can be extended to an A-algebra homomorphism $\rho: C(V, Q) \rightarrow D(B, V, \Phi)$. From the fact that $C(V, Q)$ and $\mathrm{D}(B, V, \Phi)$ are Azumaya algebras over A and are generated by V, we obtain that ρ is an A-isomorphism.
(2.9) Lemma. Let V be any invertible B-module. Then for any f in $H o m_{B}$ (V, B) and x, y in V, we have $f(x) y=f(y) x$.

Proof. Put $\Psi(x, y)=f(y) x-f(x) y$ for every $x, y \in V$, then $\Psi: V \times V \rightarrow V$ is a B-bilinear form. By taking the loclization of V with respect to a maximal ideal \mathfrak{m} of A, we get easily $\Psi_{\mathfrak{m}}=0$. Therefore, $\Psi=0$.
(2.10) Proposition. Let (V, Φ) be a non-degenerate hermitian B-module of rank 1. Then, the quaternion A-algebra $D\left(B, V \bigotimes_{B} V, \Phi \otimes \Phi\right)$ which is determined by $(V, \Phi) \otimes(V, \Phi)=\left(V \bigotimes_{B} V, \Phi \otimes \Phi\right)$, is A-algebra isomorphic to $H o m_{A}(V, V)$, and this isomorphism preserves the structure of B-modules.

Proof. We can define a map $\theta: \mathrm{D}\left(B, V \bigotimes_{B} V, \Phi \otimes \Phi\right)=B \oplus V \bigotimes_{B} V \rightarrow \operatorname{Hom}_{A}$ (V, V) as follows: $\theta(b)(x)=b x$ for $b \in B, x \in V$, and $\theta(u \otimes v)(x)=\Phi(u, x) v$ for $u \otimes v \in V \otimes_{B} V, x \in V$. Then θ is an A-algebra homomorphism. Because, for $b \in B, u \otimes v \in V \otimes_{B} V$ and $x \in V$, we have $\theta(b u \otimes v)(x)=\Phi(b u, x) v=b \Phi(u, x) v=$ $\theta(b) \circ \theta(u \otimes v)(x)$ and $\theta(u \otimes v b)(x)=\Phi(u, x) v b=\tau(b) \Phi(u, x) v=\Phi(u, b x) v=$ $\theta(u \otimes v) \circ \theta(b)(x)$. And, for $u \otimes v, u^{\prime} \otimes v^{\prime} \in V \otimes_{B} V$ and $x \in V, \theta(u \otimes v) \circ \theta\left(u^{\prime} \otimes v^{\prime}\right)$ $\left.(x)=\theta(u \otimes v)\left(\Phi\left(u^{\prime}, x^{\prime}\right) v^{\prime}\right)=\Phi\left(u, \Phi\left(u^{\prime}, x\right) v^{\prime}\right) v=\Phi\left(u, v^{\prime}\right) \Phi\left(x, u^{\prime}\right)\right) v$. On the other hand, $\Phi\left(-, v^{\prime}\right)$ and $\Phi\left(-, u^{\prime}\right)$ are in $\operatorname{Hom}_{B}(V, B)$, by Lemma (2.9) we get $\Phi\left(x, u^{\prime}\right) \Phi\left(u, v^{\prime}\right) v=\Phi\left(x, u^{\prime}\right) \Phi\left(v, v^{\prime}\right) u=\Phi\left(u, u^{\prime}\right) \Phi\left(v, v^{\prime}\right) x=\theta\left(\Phi\left(u, u^{\prime}\right) \Phi\left(v, v^{\prime}\right)\right)(x)$ $=\theta\left((u \otimes v)\left(u^{\prime} \otimes v^{\prime}\right)\right)(x)$. Thus, θ is an A-algebra homomorphism. Now we check that θ is an epimorphism. From Lemma (2.5), we have $\operatorname{Hom}_{A}(V, V) \approx$ $\operatorname{Hom}_{A}(V, A) \otimes_{A} V \approx \operatorname{Tr} \circ \operatorname{Hom}_{B}(V, B) \otimes_{A} V \approx(\operatorname{Tr} \circ \Phi(-, V)) \otimes_{A} V$. Therefore, any element f in $\operatorname{Hom}_{A}(V, V)$ is written as $f=\sum_{i} \operatorname{Tr} \circ \Phi\left(-, u_{i}\right) v_{i}=\sum_{i}\left(\Phi\left(-, u_{i}\right) v\right.$ $\left.+\Phi\left(u_{i},-\right) v_{i}\right)$ for some $u_{i}, v_{i} \in V$, and by Lemma (2.9), $f(x)=\sum_{i} \Phi\left(x, u_{i}\right) v_{i}+\sum_{i}$ $\Phi\left(u_{i}, x\right) v_{i}=\sum_{i} \Phi\left(v_{i}, u_{i}\right) x+\theta\left(\sum_{i} u_{i} \otimes v_{i}\right)(x)$ for $x \in V$. Thus, we get $f=\theta\left(\sum_{i} \Phi\right.$ $\left.\left(v_{i}, u_{i}\right)+\sum u_{i} \otimes v_{i}\right)$. Since $D\left(B, V \otimes_{B} V, \Phi \otimes \Phi\right)$ and $\operatorname{Hom}_{A}(V, V)$ are Azumaya A-algrebras, θ is an A-algebra isomorphism.
(2.11) Corollary. $D(B, B, I) \approx \operatorname{Hom}_{A}(B, B)$ as A-algebras.
(2.12) Corollary. For any non-degenerate hermitian B-modules of rank 1 (V, Φ) and $\left(V, \Phi^{\prime}\right),\left(V \otimes_{B} V, \Phi \otimes \Phi\right)$ and $\left(V \otimes_{B} V, \Phi^{\prime} \otimes \Phi^{\prime}\right)$ are isometric.
(2.13) Theorem. Let $D(B, V, \Phi)$ be a quaternion A-algebra with a maximal commutative and separable subalgebra B, and (V, Q) a non-degenerate guadratic A-module of rank 2 defined by $D(B, V, \Phi)$ in (2.8). Then, (V, Q) is hyperbolic if and only if $[B]=1$ in $Q_{s}(A)(c f .[4])$.

Proof. In (2.8), we obtained $\mathrm{D}(B, V, \Phi)=\mathrm{C}(V, Q)=B \oplus V, \mathrm{C}_{0}(V, Q)=B$ and $C_{1}(V, Q)=V$. We assume that (V, Q) is hyperbolic. Then we may assume that $V=P \oplus P^{*}$ for some invertible A-module P and $P^{*}=\operatorname{Hom}_{A}(P, A)$, and Q $(x+f)=f(x)$ for $x \in P, f \in P^{*}$. Since $P \cdot P=P^{*} \cdot P^{*}=0$ in $C(V, Q)$, we get C_{0} $(V, Q)=A \oplus P \cdot P^{*} \approx A \oplus P \otimes_{A} P^{*}$. For any $\sum_{i} x_{i} f_{i}$ in $P \cdot P^{*}$, we have $\left(\sum_{i} x_{i} f_{i}\right)^{2}$ $=\sum_{i, j} x_{i} f_{i} x_{j} f_{j}=\sum_{i, j} x_{i}\left(f_{i}\left(x_{j}\right)-x_{j} f_{i}\right) f_{j}=\sum_{i, j} f_{i}\left(x_{j}\right) x_{i} f_{j}=\sum_{i, j} f_{i}\left(x_{i}\right) x_{j} f_{j}=$ ($\sum_{i} f_{i}\left(x_{i}\right)$) ($\sum_{i} x_{i} f_{i}$) using Lemma (2.9). We condisder an A-isomorphism μ : $P \cdot P^{*}\left(\approx P \otimes_{B} P^{*}\right) \rightarrow A$ defined by $\mu\left(\sum_{i} x_{i} f_{i}\right)=\sum_{i} f_{i}\left(x_{i}\right)$ for $\sum_{i} x_{i} f_{i}$ in $P \cdot P^{*}$. Then we have $\left(\sum_{i} x_{i} f_{i}\right)^{2}=\mu\left(\sum_{i} x_{i} f_{i}\right) \sum_{i} x_{i} f_{i}$ for every $\sum_{i} x_{i} f_{i}$ in $P \cdot P^{*}$, hence $B=C_{0}(V, Q) \approx\left(P \otimes_{A} P^{*}, \mu, 0\right) \approx(A, 1,0)$ as A-algebras (cf. [4]). Accordingly, $[B]=1$ in $Q_{S}(A)$. Conversely, we assume $[B]=1$ in $Q_{S}(A)$. Then the quadratic extension B of A has idempotents e_{1} and e_{2} such that $1=e_{1}+e_{2}, e_{1} e_{2}=0$ and $B=$ $A e_{1} \oplus A e_{2}$. Furthermore, A-module V is written as a direct sum of A-submodules $e_{1} V$ and $e_{2} V$. Since the Galois group $G=\mathrm{G}(B / A)=\{\mathrm{I}, \tau\}$ is permutations of $\left\{e_{1}, e_{2}\right\}$, we have $Q\left(e_{1} x\right)=\Phi\left(e_{1} x, e_{1} x\right)=e_{1} \tau\left(e_{1}\right) \Phi(x, x)=e_{1} e_{2} \Phi(x, x)=0$ for every
$x \in V$. Therefore, $e_{1} V$ is totally isotropic. We have $\left(e_{1} V\right)^{\perp}=e_{1} V$, because, for $e_{1} y+e_{2} z \in\left(e_{2} V\right)^{\perp}, 0=B_{Q}\left(e_{1} y+e_{2} z, e_{1} x\right)=\Phi\left(e_{1} y+e_{2} z, e_{1} x\right)+\Phi\left(e_{1} x, e_{1} y+e_{2} z\right)=\Phi$ $\left(e_{2} z, e_{1} x\right)+\Phi\left(e_{1} x, e_{2} z\right)=e_{2} \Phi(z, x)+e_{1} \Phi(x, z)$ in $e_{2} A \oplus e_{1} A=B$, hence $e_{1} \Phi(x, z)=$ $\Phi\left(x, e_{2} z\right)=0$ for all z in V. Therefore, we get $e_{2} z=0$. Accordingly, (V, Q) is hyperbolic (cf. [2]).
(2.14) Corollary. Let (P, q) be any non-degenerate quadratic A-module of rank 2. Then (P, q) is hyperbolic if and only if $\left[C_{0}(P, q)\right]=1$ in $Q_{s}(A)$.
(2.15) Corollary. If B is a quadratic extension of A such that $[B]=1$ in $Q_{s}(A)$, then every quaternion A-algebra $D(B, V, \Phi)$ with a maximal commutative and separable subalgebra B is split, i.e. $[D(B, V, \Phi)]=1$ in the Brauer group $B(A)$.
(2.16) Corollary. If A is commutative ring such that $Q_{s}(A)=1$, then every non-degenerate quadratic A-module of rank 2 is hyperbolic.
(2.17) Example. If A is the integers Z or the gaussian intgers $Z[i]$, then every non-degenerate quadratic A-module of rank 2 is hyperbolic (cf. [5], [7]).
(2.18) Remark. Let K be a field, and (V, q) and (V^{\prime}, q^{\prime}) non-degenerate quadratic K-mdoules of rank 2. Then, (V, q) and $\left(V^{\prime}, q^{\prime}\right)$ are isometric if and only if $[C(V, q)]=\left[\mathrm{C}\left(V^{\prime}, q^{\prime}\right)\right]$ in the Brauer group $B(K)$ and $\left[\mathrm{C}_{0}(V, q)\right]=\left[C_{0}\right.$ $\left.\left(V^{\prime}, q^{\prime}\right)\right]$ in $Q_{s}(A)$.

Proof. For a field of characteristic $\neq 2$, this is obtained from Theorem 58:4 in [8], and for a field of charcteristic 2, is obtained from Theorem 3 in [1].

Osaka City University

References

[1] C. Arf: Untersuchungen über quadratische Formen in Körpern der Charakteristik 2, J. Reine Angew. Math. 183 (1941), 148-167.
[2] H. Bass: Lectures on Topics in Algebraic K-theory, Tata Institute of Fundamental Research, Bombay, 1967.
[3] T. Kanzaki: On generalized crossed product and Brauer group, Osaka J. Math. 5 (1968), 175-188.
[4] -: On the quadratic extensions and the extended Witt ring of a commutative ring, Nagoya Math. J. 49 (1973), 127-141.
[5] K. Kitamura: On free quadratic extensions over a commutative ring, Osaka J. Math. 10 (1973), 15-20.
[6] N. Jacobson: Structure of Rings, Providence, R.I., 1964.
[7] A. Micali and O.E. Villamayor: Sur les algebres de Clifford. II, J. Reine Angew. Math. 242 (1970), 61-90.
[8] O.T. O'Meara: Introduction to Quadratic Forms, Berlin-Göttingen-Heidelberg: Springer, 1963.
[9] C. Small: The group of quadratic extensions, J. Pure Appl. Algebra 2 (1972), 83-105.

