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Introduction

Let k, A be commutative rings with 1 and assume that A is a Λ-algebra.
A q-th order derivation D of A into an ^4-module F over k is defined as an element

of Honij, (Ay F) such that for any set of (^+l)-elements (xoy xιy •••, xg) of A we
have the identity

1
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The first order derivation is just an ordinary derivation. This interesting notion

of high order derivations were introduced by H. Osborn in [5] as far as the author
knows.υ In his paper he developed the theory of high Kahler differentials rather
than derivations themselves and furnished algebraic foundation in the theory
of high order differentials of C°° functions. In this paper we shall give funda-

mental theories for the calculus of high order derivations and some functorial
properties of the module of high order differentials. In a subsequent paper2)

we shall treat an application of the present theory to the Galois theory for purely
inseparable field extensions of finite exponent.

One word about higher derivations due to H. Hasse and F.K. Schmidt
(cf. [2]). As is supposed spontaneously they have close connections with our
high order derivations. In fact if (Z)0, Dly ••• , Dmy •••) is a higher derivation
of rank finite (or infinite), then m-th component Dm is an m-th order derivation.
But an m-th order derivation cannot necessarily be an m-th component of a
higher derivation. It would be an interesting problem to find a condition for
an m-th order derivation to be an m-th component of a higher dirivation.

1) After I completed the work it comes to my attention that the same notion has appeared
in R.G. Heyneman and M.E. Sweedler: Affine Hopf Algebras I, J. of Algebra 13 (1969),
192-241.

2) The paper will appear in Journal of Science of the Hiroshima University series A-1,
Vol 34 (1970).
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Notations and terminologies: Any commutative ring in this paper is

assumed to contain 1 and any module is assumed to be unitary. Let k and A

be commutative rings. We say that A is a Λ-algebra if there exists a ring homo-

morphism/such that/(!)=!. /is not necessarily injective but we shall often

speak as if/were injective and/is not written explicitly when there is no fear of

confusion. Thus if a^k and x is an element of an ^4-module we shall write ax

instead of f(a)x. The set of ^-th order derivations of a A-algebra A into an

^-module F over k will be denoted by &<?\A/k, F). When F=A we shall

use the notation ^^(A/k) in place of 3)^(A/k, A) and an element of £)$\AIK)

will be called simply a q-ih order derivation of A/k. The numbering of the

propositions is renewed in each Chapter. To quote the proposition of different

Chapters we shall use the notation such as 1-6 (Proposition (or Theorem) 6 of the

Chapter I). The proposition of the same Chapter will be referred to without

the Chapter number.
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CHAPTER I. CALCULUS OF HIGH ORDER DERIVATIONS

1. Definition and fundamental properties

Let k, A be commutative rings with unit elements and let A be a ^-algebra.

Let F be an yl-module. A ^-th order derivation Δ of A/k into F is, by definition,

a β-homomorphism of A into F satisfying the following identity:

q

Δ(Vι> " i Xg) = Σ (— I)5'' Σ *i! - *, ,Δ(*o ••' Xh ••• Xis — Xg)
s~l »1< <fS

for any set Λ?O, x19 ••• , xq of (^+l)-elements in A.

We have Δ(α)—0 for any a^k. In fact Δ(α)=#Δ(l) and we have
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If q= 1 (2), then Δ(1)=2Δ(1), hence Δ(l)=0. If ?=0 (2), Δ(1)=(1-1)Δ(1)=0.
Let a be an element of A. We shall denote by aL an ̂ 4-homomorphism of F

into F such that

aL(x) = ax for x^F.

If m is an element of F, we shall denote by mR an ^4-homomorphism of A into
F such that

mR(a) = am .

Let a be an element of A and let Δ be an element of Homk(A9 F). We
shall set

[Δ, a] = ΔaL—aLΔ—(Δ(a))R

We shall sometimes use the notation Δa instead of [Δ, a].
We shall also omit the subscript L or R if there is no fear of confusion. Thus

we shall write as

[Δ, a] = Δa— aΔ~ Δ(α)

It should be remarked that Δa is a homomorphism while Δ(ά) is the value of
Δ at a.

Proposition 1. Let Δ be an element of Hom^ (A, F) and xly - , xq be any
set of q elements of A. Then we have

[•••[[Δ, tfj, *2], ,#,] = ΔXi—Xg—Δfa—Xg)
Q

— Σxi{ΔXι &i ~Xg — Δ(xι"'Xr"Xg)} + '"
ί=ι

+ (— I)5 Σ 1̂ ^{ΔΛ71 if 1 */5 Λ?ff--Δ(Λr1 *f l
' "

Proof is easy by induction on q and will be omitted. It should be noted

that the above expression is symmetric in x19 ••• , xq.

Theorem 2. Let Δ be an element of Hom^ (A, F). Then Δ is a q-th order

derivation if and only if we have

[ « [[Δ, Λj, *J," , Xg] = 0

/or any set of elements x19 ••• , xq in A.
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Proof. From Proposition 1 we see that

Q

The assertion follows immediately from this identity.
The following Propositions are immediate from Theorem 2.

Proposition 3. An element Δ of Homk(A, F) is a q-th order derivation if
and only if [Δ, a] is a (q—l)-th order derivation for any a^A.

Proposition 4. If Δ is a q-th order derivation, then Δ is also a q'-th order
derivation for any q'>q.

Proposition 5. Let (D0, A, •••, Dm, •••) be a higher derivation. Then the
q-th component Dq is a q-th order derivation for q>l.

Proof. By definition we have for any x, y in A

q
D (VΛJ\ — ̂  D (κ\D ( v\Q\ j) — ' ' i\ ) Q — i\y) '

In other words

[Dqx—xDq—Dq(x)](y) = Σ A(*)£*-, (jO >

i.e.,

The induction assumption on q implies that any member of the right hand

side is a derivation of order q—l. Hence Dq is a <?-th order derivation by

Proposition 3 and 4.

Proposition 6. Let D, Δ be derivations of Ajk. Then we have

[D\ a] = D[Δ, a] + [D, α]Δ+[A Δ(a)]+D(a)Δ+Δ(a)D .

Proof.

DAa-aDΔ~D(Δ(a))

= D[Δa-Aa~Δ(a)] + [Da-aD-D(a)]Δ+D(a)Δ+DΔ(a)-D(Δ(a))

- Z)[Δ, fl] + [A β]Δ+[A Δ(α)]+Δ(β)Z)+^(β)Δ q.e.d.

Corollary 6.1. Z)Δ w α derivation of order r-\-s, where r, s are orders of
D, Δ respectively.

This is immediate from Proposition 6 and Proposition 3.

Corollary 6.2.

[D, Δ] - Z>Δ-ΔZ)
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is a derivation of order r+s— 1

Proof. We shall use the induction on r-\-s. When r=s=l this result is
well known. From Proposition 6 we have

[DΔ-ΔD, a] = [D, [Δ, «]]-[Δ, [D, a]] + [D, Δ(β)]-[Δ, D(a)]

The right hand side is derivations of order r-\-s — 2 by induction assumptions.
Hence by Proposition 3 DA — ΔD is a derivation of order r-\-s — 1.

2. The ring of constants and derivation algebra __________

Let A be a ^-algebra and let F be an ^4-module. By Proposition 4 we have

An element of S)^q\A\k, F) not contained in 3)^\A\k, F) will be called a
proper ^-th order derivation. 3)tf\A/k, F) is a left ^4-module and a submodule
of Homk(A, F). Let Cq(A/k, F) be the subset of A consisting of elements x
such that for any Δ in 3)^\A\k^ F) we have Δx=0. From the definition we
see that

Proposition 7. Let A be a q-th order derivation of A Ik into F. Then
for any x^Cq^A/k, F) we have [Δ, x]=0. In particular for any y^A we have

Δ(xy) = xΔy+yΔx .

Proof. Let y be an arbitrary element of A. Then we have [Δ, y](x)=0.
That is

Δ(xy) = xΔ(y)+yΔ(x)

This relation can also be read as [Δ, x](y)=0 for any y^A. Hence we must
have [Δ, #]=0.

Corollary 7.1. Let Δg be a q-th order derivation and let p (>0) be the
characteristic of A. Then Aq=k[Ap9]<^Cq(A, F) for any A-module F.

Proof. Induction on q. The case q=l is well known. Let x^A. Then
by induction assumption a=xp9~1^Cg_1. Hence Δ(xpg)=Δ(ap)=pap~~1Δ(a)
=0.

I Proposition 8. C9(A/k, F) is a sub-k-algebra of A.

Proof. It is clear that if xy y^Cq and α, b^k, then ax-}- by is also in Cq.
Hence it remains to show that xy^Cq. It is also immediate because for any

A, F) we have Δ(xy)=xΔ(y)+yΔ(x).
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Corollary 7.1 can be sharpened much more. In fact if q<pf then
any q-ih order derivation Δ of A/k annihilates any element of Aj=k\Apf\
(cf. Proposition 10). Hence if Δ is a pf-th order derivation Δ induces on Af

an ordinary derivation. Such an operation Δ is called a semi-derivation of
height/ by J. Dieudonne in [1].

Let A be a ^-algebra. We shall set

and

= A®3)0(Ajk)

where an element a of A is identified with the elements aL of Homk(A, A).
<3)(A/k) is not only a subset of Horn^ (A, A) but also a subring. To see this fact
it suffices to show the following:

(1) A sum of two elements of <D0(A/k) is an element of <DQ(A/k).
(2) A product of any two elements of <D0(A/k) is again contained in

(3) For any a in A and D^3)0(A/k), aD and Da are again contained in

3)(Alk).
(1) and the first of (3) are trivial from the definition and (2) is proved in

Corollary 6.1. If D is a high order derivation we have

Da = D(a)+[D, a]+aD

by Definition of [D, a]. Hence Da is an element of ^(A/k). Moreover it is
easily seen that k is contained in the center of <D(Alk). Thus S)(Alk) is a
β-algebra. We shall call it the derivation algebra of A/k. The derivation
algebra will play the fundamental roles in a subsequent paper.

3. D(xn)

Proposition 9. Let D be a q-ih order derivation of A/k into an A-module F
and let x be an element of A. Then zee have

Φ(n, q): D(xn) = Σ (~
q —

for every natural number n.

Proof. We shall use the double induction on n and q. The case q=l is
immediate. The case n== 1 is also immediate for any q. Now assume the formula
for any derivation of order <q and Φ(m, q) is valid for m<n. We shall show
that Φ(n+l, q) is also true. By Proposition 1, Δ=Zλ# — xD — D(x) is a derivation
of order q—l. By induction assumption we have
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D(xn+1) - xD(x") - x"D(x)

= 'ί! (-!)'( n V»-ί+*
^—' V / \ Λs=o \q— j —

Then we get

+Σ (-
• "

* q+S

s—\

Hence to prove the assertion it suffices to show the following:

Lemma 1. For any pair of positive integers n, q we have

n

s—l

Proof. Induction on .̂ /(!)= 0 and we have

Alternative proof: Apply the defining formula to the calculus of D(xn+l)=

D(xn+1~*x -x). Then from the induction assumption for small n we get easily
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Hence the proof is reduced to the following Lemma on binomial coefficients.

Lemma 2. For any triplet n, q, s of integers such that w>0, and q>s>0
we have

ί / V q—s

Proof. A simple calculation yields that the right hand side is equal to

n-t+l
ί A q /n—t+l — q+s

, q t q n-t+l-

Hence the Lemma is reduced to the proof of the following identities:

q
i-t

q Jn—t—q->rS-\-].

Since

= 0.

the left hand side of (1) times q\ is equal to

- i i =qι
^

Similary the left hand side of (2) is equal, up to a constant factor, to

^π j^Wi n η .
Λ 5 L Λ ; r f^- 5 - 1 ! V Λ J / JJ^

This is clearly equal to zero.

Proposition 10. Let A be a k-algebra of characteristic p and let Δ be a
q-th order derivation of A Ik into F. Then if q~>p*y Δ vanishes on A{.

Proof. Assume that q<pi and let x be an element of A. Then by Prop-
osition 9, we have
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= Σ (-i pi

5^0

As is well known

() (mod./>)

for any 1 <r </>'". Hence Δ vanishes on 1̂,-.

It is natural to raise the following problem. Let, for instance, D be a
p-th order derivation. Then D may induce on ̂  a non-trivial ordinary
derivation. In this case we can ask that whether any derivation of A1 can be
obtained in this way or not. In other words, whether an arbitrary derivation
of A1 can be extended to a p-th order derivation ofA/k or not. These problems
will be treated under a restricted situation in a forthcoming paper.

4. [A
For notational conventions we shall set

[—[[A #J, *J, ••• , xg] = [D, x^x& xxg]

Proposition 11. Let D be an element of Homk(A, F). Then we have the

following identity :

[D, Xi—Xn] = [D, Λi* *Λ!n]+Σ*i[A #!*••• *#, * *<|
ί=ι

Proof. Induction on w. We have for n=2.

[D, x^z] — Dxίx2—x1x2D—D(x1x2)

= [Dx1-xlD-D(x1)]x2+x1[Dx2-x2D-D(x2)]

+ x2D(x1 ) + x1 D(x2) — D(xlx2)

= DXlx2+x2DX2—DXl(x2)

= (DXlx2-x2DXl-DXl(x2))+XlDX2+x2DXl

= [[D, Λ?J], ΛίJ+^f

Assume the Proposition for <.n. Then

[D, Λ?!— Λ?J = [A #!*•••**„_!#„]

«-2

+ Σ Σ ^/1 ^ fv[AΛ?1*
«-2

+ Σ Σ Λr.Ί ^v-^i -Λt
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From the formula for n=2 we see that

[D, *!*•••*#,,-!#«] = [D, X& 'XXn- L

Substituting this relation in the preceding one we get

[Z>, XS XH] = [D, *!*•••*<]

n-2

+Σ Σ
' = 1 .•!<-«._!

n-

= [D, Λj* — *Λ?J+Σ Σ Xii — Xi^D, Λ!*--**, * — *άfV*- *Λ?fl]
r = ι ί^ XiV

Corollary 11.1.

Corollary 11.2. If the characteristic is p>Q, then we have

[D9 a*'] = [D, a**'] (/=!, 2, ...)•

Proposition 12. L^ί D be a q-th order derivation of A/K. Then we have

the following identity :

± (_ ιγ(9+ l\xyγ[D, x^~r]y^r = 0 .
r=o \ γ /

Proof. From Corollary 11.1 we have

[D, x«+1-r] - Σ ( qJr l

S^Q \ $

Hence the left hand side is equal to

= Σ Σ

Σ (- i)r

m



HIGH ORDER DERIVATIONS I 11

[Dy x*g+1~m] is a derivation of order m— 1. Hence the proof of the proposition

is reduced to the following :

Proposition 13. Let D be a q-th order derivation. Then we have

£*+1~r = 0

Proof. We shall use the induction on q. For a small integer q it is easy to

check. Then we have

' = o,

since [D, j] is a derivation of order q—l.

Theorem 14. Let A be a k-algebra of characteristic p>0, and let D be an

n-th order derivation of A/k. Then D induces on A1=kAp a — \-th order
LpΔ

derivation.

Proof. Induction on I — I. Proposition 10 implies that the Theorem is
Ip Δ

valid when — =0. Let us set — \=q, i.e., qp<n<(q+l)p. Let a be an

arbitrary element of A. Then Δ=[D, ap] is a derivation of order n— p of A

by Corollary 11.2. Hence Δ induces on Aί a (q— l)-th order derivation by

induction assumption, i.e., ["-[[Δ, αj, •••, «ff-J=0 on Aί with a^A^ In
other words we have [D, a1* ~*ag_r*ap]\Al=Q. We get immediately the

assertion.

Corollary 14.1. Under the circumstances in Theorem 14, D induces on

A~kApt a I — \-th order derivation.

5. Localization theorem

Theorem 15. Let A be a k-algebra and let S a be multίplίcatively closed

set in A. Let D be a q-th order derivation of A into an As-module M. Then
D can be extended in a unique way to a k-derίvation D of As into M. Moreover

the extension is given by the formula
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Σ (- i)r( q+
r;-o \ r

Proof. We shall use the induction on q. The case q=l is well known.

First we shall show that the extension, if possible, is unique. In fact let s be
an arbitrary element of S. Then Δ=Ds—sD—D(s) is a derivation of order

<q. Hence there exists a unique extension which will also be denoted by the
same letter Δ. Then we must have

where D is the extension of D to As. Thus D is determined uniquely by D.
_ / β \

We shall show that D( — J is given by the formula (*). If D is of order 1, then
\ s /

the right hand side is equal to

S S

and (*) is valid. Assume the formula is true for any derivation of order
and let us set

Ds—sD—D(s) = Δ .

Δ is of order q— 1 and we have

Hence

fl(fH=
Thus the assertion is proved.

-<flfH=Fδ<-
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To prove the extensibility of the derivation D to a derivation D of As, it
ΛΛ / Λ/l \

suffices to show the following. For an element — of As we set D(—J by the
s \ s /

formula (*). Then D is actually a derivation of order q. First we have to show

that D is well defined, i.e., if — = ̂ , then we have Z)ί— ) = />(-^-j i.e.,
S l \ ΐ / \ I /

Since — = 3L, there is an element u of S such that u(tx— sy)=0. For the sake
o ί

of convenience we shall denote the expression (*) by δ(#, s). Then it suffices
to show that

(**) δ(x, s) = δ(vx, vs)

for any v^S. In fact if (**) is valid, then

S(x, s) = S(utx, uts) = S(usy, uts) = δ(y, t)

as required.

The relation (**) is reduced to the following identity:

= Σ (-

In other words:

From Proposition 12, we have

Σ (-!)'(«+^M'tA *-'»y-' = o

and
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on account of Proposition 13. Thus we could see that D is a well defined
mapping. Next we have to show that D is a derivation.

First we remark that D is actually an element of Homk(ASf M). In fact if
x/s and y/t are in As, then

St St

If D is a <?-th order derivation we denote by D the element of Homfe(^4s, ni)
defined by (*). Then we shall show, in the next place, that

[D, u] = [D, u]

for any

Now

s*

\\4
uD(s"x)} - D(u)—

- 0

on account of Proposition 13 since [Z>, #] is of order q—l.
We are now well prepared to show that D is a derivation of order q of

into M. Let us set

Δ = [D, s] .

Then we can see easily that

= 1̂ -7̂ -11*' τ]
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Any members of right hand side is a derivation of As into M by induction

assumption on q. Hence I D, — is also a derivation of As into M of order

q — 1. Hence D is a derivation of order q of As into M. Thus the proof of

Theorem is complete.

CHAPTER II. MODULES OF HIGH ORDER DIFFERENTIALS

1. Modules of high order differentials

Let kt A be as in Chapter 1 and let C be the category of ^4-modules. Let

F be an ^4-module and let 3)^ (A/k, F) be the set of q-th order derivations of
A into F over k. 3)φ (A/k, F) is a left yί-module and the correspondence

is easily seen to be a covariant functor of C into C. This functor is repre-
sentable (Cf. [5]), and the representing module is given in the following way.
Let us consider the exact sequence

0 - >/

where

We consider A®kA as an ^-module via

a(x®y)

The ^4-module I/Ig+1 is the module we are looking for. In fact the mapping
of A into I/Ig+1 given by

S(a) = {Class of (l®a—a®l) modulo Ig+1}

is a derivation of order q of A/k, and we can see that any q-th order
derivation D of A/k into F can be factored through I/Ig+1. We shall denote this
l-module by Ω?\A) and will be called the module of q-th order (Kahler)

differentials. The mapping δ will be called the canonical q-th order derivation
of A/k. The canonical <?-th order derivation of A/k will usually denoted by

&A/k or &A/k if no confusion will occur.

Proposition 1. Let A be a k-algebra and let δ be the canonical q-th order
derivation of A Ik. Let x be an element of A such that δ(#)=0. Then for any

q-th order derivation D of A/k into an A-module M we have Dx=xD.

Proof. Let y be an arbitrary element of A. The assumption δ(#)=0

implies that 1®#— #®1 is contained in I9+1. Hence we have
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= x(\®y— y®l) mod Ig+1

i.e.,

S(xy)=xt(y) .

Now let D be as in Proposition. Then there exists an ^4-homomorphism h of

into M such that D=hS. Hence we have

D(xy) = h δ(xy) = h(x8(y)) = xhS(y) = xD(y)

for any y in A . This implies that we have Dx=xD.

For <?-th order differential module we can develope similar considerations

as is done for the module of ordinary differentials (Cf. [4]). These are the

subjects of the following paragraphs.

2. Polynomial rings

Let k be a commutative ring with unity and let A=k[Xλ, λ^Λ] be a
polynomial ring over k in indeterminates {X^ λeΛ}. In this case A®kA is
again a polynomial ring in two system of indeterminates l®^λ and Xχ®\ with
the same indices set Λ. If we set

and identify -X"λ®l with X^ then A® A is a polynomial ring k[Xλ, Yλ;
The kernel 7 of the homomorphism φ : A ®kA — > A is generated by { Yλ} . Hence

Ωy>(A)=IIIg+l is a free module over A with generators {Aλ}, {λλ/*μ}, ••• , {/V"**J
where we set

Then we have

For any polynomial f(X) in yί we have

The coefficients Δλ/, Δλμ/, are determined by the following formula :

f(Xλ+ TJ-f(Xλ) = Σ (Δλ/)Γλ+Σ (A

Δλ, Δλμ, ••• , Δλl t...tλg are derivations of orders 1, 2, ••• , q respectively of k[Xλ]/k
and Γ's are indeterminates, From the equations
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we can solve S^Xλδ^X^ ••- , 8̂ ^ — S^X^ in terms of 8Cflr)(-XχJίΓμ),
Scg:>(Xλl Xλg) and they are represented as linear combinations of 8^\Xλ)

λl XKq) with coefficients in A . Hence

from a free basis of Ωϊf\k[Xλ]).

Proposition 2. Let A=k[Xλ, λeΛ] fe # polynomial ring over k. Then
is a free module over A generated by

μ), ... , S«\X^. X,J (λ,eΛ).

For any element f ( X ) of A, δc<7)/ can be represented uniquely as

= Σ (9

o/ A.

A detailed formula for d%>(f), — , 9^?..λff(/) will be given in case where ^4
is a polynomial ring of one variable.

In the rest of this paragraph let A be a polynomial ring over A in one

variable JΓ. We shall define the operation Δw (m=l, 2, •••) by

We shall also set

We have then

Proposition 3. Lei A=k[X] be a polynomial ring over k in one variable.
Then the following identity holds:

S

Proof. We shall prove by induction on m. Assume (3). By definition we

have
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i.e.,

r

S

r

= -Σ ̂  »+1-
*=ι

= Σ (-l)">+1

s=l

= Σ (- 1 )m+ί-s(m+ 1 }xm+1-sΔτ(Xs) q.e.d.
s=l \ J /

We shall set δ = δ ί / f t . Then for a n ^ Γ e A : ^ we haveί/ft

= Σ Σ (-
5=1 m=ί

We shall set

Then we have

Δm is a derivation of order m because of the following

Proposition 4. [Δw, X] = Δm^ (m=l9 2, ) where we set Δo=0.

Proof. By definition we have [Δm, X]=ΔmX— XΔm— Δw(^ί). First we
shall treat the case m=l. In this case Δj is a derivation, hence [Δj, ^Γ]=0 as
asserted. Assume that m>l, and let f(X) be an element of k[X]. We set

Then
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Δm(Xf)-XΔm(f)-Δm(X)f= (XUV+f^Xy-XUX) = /„_,

Hence by definition we have

q.e.d.

Proposition 5. Am(X")=( n }x"-m.
\m '

This is immediate from the definition and the proof will be omitted.

Proposition 6. Letf(X) be an element of k[X]. Then we have

det|Δ£T'/(*))l = (Δ1/Γ mod/(*), (i=l, , m;/=0, 1,-, m-l) .

Proof. We have by preceding Proposition 4

Am(Xg) =

Hence

Δ2/ Δm/

ΔJ, Δ,/,

ΔJ Δ2/

0 ΔJ

0

0

Δm/

(mod/)

Then by induction on m we get immediately

det|Δ,.μΓ>y)|=(Δ1/Γ

Proposition 7.

(mod/)

Proof. By definition we have
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= Σ (-

( V \Γ*-S /Y c\

')Σ(-ιy('7 F"s

s /b=o \ t /
Then if i<s we have Δw(^fz)=0 for every m>s. If q^i^s we have

? - 5 /£* _ ^x
2 (— I)*! J — 1 or zero according as i=s or i>s.

3. Functorial properties

Let A and 5 be two Λ-algebras and let A be a β-algebra homomorphism of
A into B. Let δ^ and δ^ be the canonical <?-th order derivations of A/k
and B/k respectively. Then the mapping Δ=δ$yi is a #-th order derivation
of A/k into Ωig)(fi). Hence there exists an ^4 -homomorphism A* of &
into Ωiff)(fi) such that we have

Let φ=φ^A/k be a 5-homomorphism of β^^Ω^^) into Ω^}(5) such that

^(ft®8^(fl)) = 6A*δ^(fl) = ftδgiAW Let N%*k = N and Ω^(fi^) be the
kernel and the cokernel of φ respectively. Then we have the exact sequence

1 0 - > N - > B®AΆyA -¥-+ Ω?B -L+ ίiyBA - > 0 .

If we set SBM/A=^=J^B/*> δ is al§o a ?-th order derivation of B/k such that
S(fl)=0 for any a in A Moreover it is immediately seen that Ωy\B/A) has the
universal mapping property with respect to such derivations. Thus we have

the homomorphism

such that

Since Ω^}(.β) is generated over 5 by elements of the form δ$A(x) (x^B) ψ is
a surjective homomorphism. Contrary to the case of ordinary derivation (the

case of <?=!) ψ is not necessarily an isomorphism. But we have the

Proposition 8. Under the above circumstances we have

(i) φ(B/A/k ^ left invertίble if and only if any D^tDtf^A/k, F) can be extended
to an element of 3)^(Bjk, F) where F is an arbitrary B-module.

(ii) φ^BiAik is surjective if h is surjective.
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The proof of this proposition is quite similar to that of Theorem 1 of [4]

and will be omitted.

Theorem 93\ Let A be a k-algebra and let S be multiplicatively closed
subset of A. Then we have the isomorphism

Proof. By 1-15 high order derivation of A/k into an As module can be

extended to that of As/k. Hence Proposition 8 implies that φ = <?%$/ A/k is
injective. Moreover the formula of 1-15 tells that φ is surjective. Hence φ
is an isomorphism.

We shall now determine the kernel of the homomorphism ψ. For this
purpose we need the following

Proposition 10. Let D be an element of <Dtf\B/k, F) where F is a B-

module. Then for any a<=A, d(a}=^[D) a] is an element of S>^\Bjkf F) and

the mapping d is an element of 3)^\A\ky β)^\E\k9 F)).

Proof. We shall use the induction on the order q of D. The case q= 1

is trivial because we have d(a)=Q for any a^A, and hence d=0. Let x be an

arbitrary but fixed element of A. We shall show that \dy x] is an element of

S)$~2\A\k, &y-*\Blk, F)). By 1-3, DX=[D, x] is an element of ^-l\B/k9 F).

Hence d0(a)= [Dx, a] = [Da, x] is a (q — 2)— th order derivation of B/k into F.
We can see that [d, x]=d0. In fact we have

[d, x](a) = d(xa)—xd(a)—ad(x)

= [D, xa]-x[D, a]-a[D, x] = [[D, x], a] = d0(a)

(cf. 1-11). Moreover by induction assumption d0 is an element of

3)$-*\Alk, M^BIk, F)). Hence d is a (g-l)-th order derivation of A/k
into M*~l\B/k, F).3S asserted.

Here we shall remark that if D vanishes on A, then d(ά) also vanishes on A.

Henceforse we shall denote by $)%\B\A\k, F) a set of q-th order derivations
of B/k into F vanishing on A. Then we have the

Corollary 10.1. In Proposition 10, assume that D vanishes on A. Then

d is an element of 3)^\A\k, 3)^\B\A\k, F).

We shall apply the above Corollary to the q-th order derivation ^=

3) It is possible to give a direct proof of this Theorem without the knowledge of 1-15.
T. Kikuchi informed me that he proved the isomorphism Ωy\B)=B^βf\A) under the
assumption that (1) B is a flat ^4-module and (2) the ring homomorphism A-*B is an epimor-
phism in the category of commutative rings.
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of B/k into Ωy\B/A). Then the mapping p of A defined by p(α)= [έ, 0]

= ^α-Λ^ is an element of 5)(^/A, ^'^(B/Alk, Ωί9\B/A)). Hence there
exists a jB-homomorphism P*(Λ) of Ωy^B/A) into Ωy\B/A) such that

( 2 ) P*(*)te = p(*)

We can see easily that p* is a derivation of ^ί/& of order q—ί into
Hom^ί^Γ^CB/^), Ωy\BIA)). Hence there exists an ^1-homomorphism / of
Ω%Γι?(A) into Hom B (Ωy~*\BIA\ Ωy\BIA)). such that

(3) P*=/85Si1>.

Combining (2) and (3) we have for any a^A and

By the canonical bijection of

HamB(fiy-l\BIA),

We get an element σ of the latter group such that

<Kδ2ϋ>)®te(ft)) = (/(δ^WXteΛί*) = $, a\(b) .

Now we shall show that the sequence of 5-modules

4 Ω?-l\A®AΩΐ-lBIA -^ ΩyBIA -^ Sl%B - > 0

is exact. It is immediate to see that Im(σ)cKer (ψ>). Let us consider the
mapping Δ of B into Coker (σ) such that

where £ is the natural homomorphism of Ωy\BIA) onto Coker (σ). Then Δ
is a ^-th order derivation of B/k into Coker (σ). We have Δ(α)— 0 for any

. We have also [Δ, a]=0. In fact for any element b in B we have

[Δ, a](b) = Δ(αft)-flΔ(6) = e&(ab)-aS&(b)

= 0 .

Hence Δ must be an ^4 -derivation i.e., Δ is an element of Dtf\B/A, Coker (σ)).
Let A be a β-homomorphism of Ω%\B) into Coker (σ) corresponding Δ. Then
we have Δ=Λδj^. Now let Σ b$(c) e Ker (ψ) where by c's are elements of B.
Then ψ>(Σ! 6δ(c))=0. Hence we have

0 =

Hence Σ i$(£)^Ker(£)— Im(σ). Thus the exactness of (4) is proved. For
the future reference the above results will be summarized in the following
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Theorem 11. Let k, A and B be as above. Then we have the following

exact sequences.

> 0

tiy>(B) — > o
where &k

g\B/A)=CokeT(<p) and ψ is defined by the formula ψjδ%\(b)=δ$A(b).

Taking the dual sequence we get the

Corollary 11.1°. Being k, A and B as before, we have the exact sequences

where <D^(B/A/k) is the submodule of 3)y\Bjk) consisting of elements D such
that D(a)=0for any element a of A and τ is defined by τ(Z>) (a)=[D, a]

Proposition 12. Let k, A and B be as before. Then we have the followings:
( i ) Assume that &k«\A)=Ω,%\B)=Q and either Ωy~l\A) or

vanishes. Then we have
(ii) &k«\B)=Q implies

(iii) Assume that Ω?\A)=Q. Then if either one of £llq~l\A) or

is zero we have an isomorphism.

Theorem 13. Let A and B be k-algebras. Then we have the isomorphism

A) .

Proof. Let D be a mapping of B®kA into B®kΩ^\A) defined by

= b®ΰ(ά) where δ is the canonical <?-th order derivation of A/k.
Then as is easily seen D is a <?-th order derivation of (B®A}jB with values in

B®,fiy\A). Hence there exists a 5-homomorphism h of Ω%\B®A) into

B®,fiy\A) such that D=hS[$®AVB. Let us define a mapping S1 of A into

Ω%\B®A) by δ1(α)=δ(%AVs(l®«) Thίs ίs clearly a g-th order derivation of
A/k into Ω^(B®A). Hence there exists also an ^4-homomorphism g of

Ωy\A) into Ω%\B®A) such that Sl=g8. We can extend g to a £-homomor-

4) The author proved originally Corollary 11.1 first. A slight modification of the proof
gives us the exact sequence

Q-+3)y\BIAt F)->3)$\BIAIKt F)-»3)<<i*-v(AIK, 3)J*-n(BIKt F)

for any ^-module F. Then the representability of the functor 3)Q yields at once Theorem 11.
The direct proof of Theorem 11 given here is due to my friend T. Kikuchi.
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phism g of B®Ωy\A) into Ωy\B®A) by g(b®8(a))=bgS(a). It is immediate
to verify that hg and gh are identities and we get the assertion.

Let A be a ̂ -algebra and let α be an ideal of A. We shall define a mapping
p of α into A/a®Ωy\A) by

p(a) = l(g)δfl #eα.

where δ is the canonical <?-th order derivation of A/k. p is a homomorphism
of additive groups and vanishes on α**1. Hence p induces a &-homomorphism
of α/α^+1 into Aja®Ω(k\A). p is not necessarily an A -homomorphism. We
denote by N the submodule of AI&®Ω%\A) generated by Im(p).

On the other hand let us consider a mapping D: A^>Ωy\A/a) such that

D(ά) = 5(a)

where δ— 8[%a )/k and <ά is the class of a modulo α. D is clearly a q-ύi order
derivation of A into Ωy\A/a). Hence D can be written as D=hS where
8=8%}k and h is an ^-homomorphism of Ωy\A) into Ω^}(^[/α). Let τ be the
natural homomorphism of A/a®Ω(

k

g\Ala) into Ω^^/α). We shall set

Theorem 14. ΓA^ sequence

0 - >N-^-+(Ala)®Ωy\A) ̂  Ω^(Afa) - > 0

is exact.

Proof. It is clear that we have α/8=0. If we identify
with the quotient module Ωy\A)/aΩy\A)9 then N is equal to Z)c<7)(α) +

tfΩH^/αΩΠ-4) where ^)c^(α) is the submodule of Ωy\A) generated by
elements of the form δ#, x^a. Hence to prove the exactness it suffices to

show that

The rest of the proof will be omitted because it is literally the same as the proof
of Proposition 9 of [4].

Corollary 14.1.

EXAMPLE. Let L be a purely inseparable extension of a field K of exponent
e such that there is a primitive element #, i.e., L=K(x). If we set χpe=a we
have an isomorphism
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L « K[X]/(X*'-a) .

We shall denote by δ the canonical g-th order derivation of K[X ]/K.

First assume q<pe. Then by 1-7 and 1-10 we have

S(X'(Xp'-a)) = Xi

= (Xpe-a)8(Xi) .

Hence

where a=(Xpβ— a)K[X] and we have

.e.,

If q=pe, then we have also

S(X'(X*'-a)) =

Hence

From this we immediately see that Ωc^β)(L) is isomorphic to the free module

over L generated by 8(X), — , δ^ '̂"1). Thus we have

This isomorphism implies among others that

where/ is the kernel of the homomorphism L®L->L. Then we have

JPe

 = JPe+i = JPe+2 = ...

i.e.,

For the future reference the above results will be put in the

Proposition 155). Let L be a purely inseparable extension primitively

generated over a field K of exponent e and let us set L=K(ά). Then Ω/£\L) is

isomorphic to a free module of rank q with a basis δ(α), δ(α2), •••, δ(ag) for q<pe.

5) This result can also be obtained in a more simple way through the analysis of the
kernel L(£)kL-^L. We took up this method here as an application of Corollary 14.1.
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When q^pe, Ωχ\L) is ίsomorphic to £l*£e~l\L) and is a free module of rank pe—\
with a basis δ(α), δ(tf2), ••• , §(ap~l\

Let A and B be two ^-algebras. We shall set δ=δ^®flΛkl Sί=8^k and
δ2=δβ/fc. Aξ§kB is an ^4-algebra (β-algebra) via the natural homomorphism
fA(fB) such that fA(a}=a®\(fB(b)==\®b). We have a homomorphism
of Ωy\A)®kB(A®lfl

(j?\B)) into Ω,y\A®B) such that

Ψ ιι(*®δ2(δ))=(α® 1)8(1® ft)

We shall consider the mapping A(A) of -4®^ into
such that

D2(a®b) = a

It is not difficult to see that D/s are also <?-th order derivations of A®B into
Ω,y\A)®B and -4®Ωiβ')(J5) respectively. Hence we have an ^4(g)jB-homomor-

phism aA(aβ) of n?\A®B) into ΩSr

ff)(^)®β(^®Ωiff)(JB)) such that

aA8(a®b) - δ

aBS(a®b) = a

It is immediately seen that we have

«β^^ = 0, aBψβ — 1 .

These homomorphisms give rise at once the

Proposition 16. Let A and B be two k-algebras. Then there exists a direct
sum decomposition

The submodule U^®B/k has the universal mapping property with respect to deriva-
tions of A®B which vanish onfA(A) andfB(B).

Corollary 16.1. We have

The proof is immediate because any ordinary derivation of A®B vanishing
on A® I and 1®J5 must be a trivial mapping.
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