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Introduction

Let k, A be commutative rings with 1 and assume that A4 is a k-algebra.
A g-th order derivation D of 4 into an A-module F over k& is defined as an element
of Hom, (4, F) such that for any set of (¢ 1)-elements (x,, x,,--, x,) of 4 we
have the identity

q
D(xyx, - Xq) :§ (_1)s—1i <Z,<i X, e x’,sD(xo 50;1 .,Vcis xq) .
1 s

The first order derivation is just an ordinary derivation. This interesting notion
of high order derivations were introduced by H. Osborn in [5] as far as the author
knows.” In his paper he developed the theory of high Kahler differentials rather
than derivations themselves and furnished algebraic foundation in the theory
of high order differentials of C* functions. In this paper we shall give funda-
mental theories for the calculus of high order derivations and some functorial
properties of the module of high order differentials. In a subsequent paper®
we shall treat an application of the present theory to the Galois theory for purely
inseparable field extensions of finite exponent.

One word about higher derivations due to H. Hasse and F.K. Schmidt
(cf. [2]). As is supposed spontaneously they have close connections with our
high order derivations. In fact if (D,, D,, -+, D,,, --+) is a higher derivation
of rank finite (or infinite), then m-th component D,, is an m-th order derivation.
But an m-th order derivation cannot necessarily be an m-th component of a
higher derivation. It would be an interesting problem to find a condition for
an m-th order derivation to be an m-th component of a higher dirivation.

1) After I completed the work it comes to my attention that the same notion has appeared
in R.G. Heyneman and M.E. Sweedler: Affine Hopf Algebras I, J. of Algebra 13 (1969),
192-241.

2) The paper will appear in Journal of Science of the Hiroshima University series A-I,
Vol 34 (1970).
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Notations and terminologies: Any commutative ring in this paper is
assumed to contain 1 and any module is assumed to be unitary. Let 2 and 4
be commutative rings. We say that A is a k-algebra if there exists a ring homo-
morphism f such that f(1)=1. fis not necessarily injective but we shall often
speak as if f were injective and f is not written explicitly when there is no fear of
confusion. Thus if ak and x is an element of an A-module we shall write ax
instead of f(a)x. The set of ¢-th order derivations of a k-algebra A into an
A-module F over k will be denoted by 9Ds’(A/k, F). When F=A we shall
use the notation 9(A4/k) in place of DP(A[k, A) and an element of DV(A[k)
will be called simply a g-th order derivation of A/k. The numbering of the
propositions is renewed in each Chapter. To quote the proposition of different
Chapters we shall use the notation such as I-6 (Proposition (or Theorem) 6 of the

Chapter I). The proposition of the same Chapter will be referred to without
the Chapter number.

Contents

Chapter I. Calculus of high order derivations
Definitions and fundamental properties
The ring of constants and derivation algebra
D(x™)
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Localization theorem
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3. Functorial properties

CuapTER I. CALrcurLus oF HicH ORDER DERIVATIONS

1. Definition and fundamental properties

Let k, A be commutative rings with unit elements and let 4 be a k-algebra.
Let Fbe an A-module. A g¢-th order derivation A of A/k into F is, by definition,
a k-homomorphism of 4 into F satisfying the following identity:

q

A%xgXy,y o0y Xg) = D) (—1)“‘. DV gy e X AKXy e Ky eer Xg)

§=1 1<<is

for any set x,, x,, +*- , X, of (¢g-+1)-elements in 4.
We have A(a)=0 for any a k. In fact A(a)=aA(1) and we have
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M) = a0 = (@) —( )1y ()
+ (=17 @) JA) = [ 1)180)

If g=1(2), then A(1)=2A(1), hence A(1)=0. If ¢=0(2), A(1)=(1—1)A(1)=0.
Let a be an element of 4. We shall denote by a, an A-homomorphism of F
into F such that

ar(x) = ax for xeF.

If m is an element of F, we shall denote by mp an A-homomorphism of 4 into
F such that

mp(a) = am .
Let a be an element of A and let A be an element of Hom, (4, F). We
shall set
[A, a] - AaL—aLA-‘(A(a))R

We shall sometimes use the notation A, instead of [A, a].
We shall also omit the subscript L or R if there is no fear of confusion. Thus
we shall write as

[A, a] = Aa—aA— A(a)

It should be remarked that Aa is a homomorphism while A(a) is the value of
Aata.

Proposition 1. Let A be an element of Hom, (4, F) and x,, -+ , x, be any
set of q elements of A. Then we have

[...[[A’ xl], xz], e xq] — Axl...xq_A(xl...xq)
_g x,-{Axl'--ovc;-“xq——A(x,---aVc,----xq)}—I—---
+(_1)s,-1<?_~:"<is xil...xiS{Axl...jcl.l...&is...xq_A(xl...;cil...
Jvc‘.s...xq)}_,_..._|_(__1)qx1...qu.

Proof is easy by induction on ¢ and will be omitted. It should be noted
that the above expression is symmetric in x;, -*-, %,.

Theorem 2. Let A be an element of Hom,, (A, F). Then A is a g-th order
derivation if and only if we have

[---[[A, %], %], s 2] =0

for any set of elements x,, -+, x, in A.
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Proof. From Proposition 1 we see that

[--[[A, %], %], -+, %g)(%0) = é} (=177 20 gk A(Kg ooy, ooy 2g)

0 Eki
The assertion follows immediately from this identity.
The following Propositions are immediate from Theorem 2.

Proposition 3. An element A of Hom, (4, F) is a g-th order derivation if
and only if [A, a] is a (q—1)-th order derivation for any ac A.

Proposition 4. If A is a q-th order derivation, then A is also a q'-th order
derivation for any q’ >q.

Proposition 5. Let (D,, D,,---, D,,, ) be a higher derivation. Then the
g-th component D, is a q-th order derivation for ¢>1.

Proof. By definition we have for any %, y in 4

Dy(y) = 33 Di)Da-i(3) -
In other words
9-1
[Dgx—xDy—Dy(x))(y) = 23 Di(*)Dq-()
ie.,
Dyx—xDy—Dy(x) = 3 Dy(x)Dg_; .
The induction assumption on ¢ implies that any member of the right hand

side is a derivation of order g—1. Hence D, is a ¢g-th order derivation by
Proposition 3 and 4.

Proposition 6. Let D, A be derivations of Alk. Then we have
[DA, a] = D[A, al+[D, a]A+[D, A(a)]+D(a)A+A(a)D .
Proof.
DAa—aDA—D(A(a))
= D[Aa— Aa— A(a)]+[Da—aD— D(a)|A-+D(a)A-+DA(a)—D(A(a))
= D[A, a]+[D, a]A+[D, A(a)]+A(a)D+D(a)A q.e.d.

Corollary 6.1. DA is a derivation of order r+s, where r, s are orders of
D, A respectively.

This is immediate from Proposition 6 and Proposition 3.

Corollary 6.2.
[D, A]= DA—AD
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is a dertvation of order r4-s—1

Proof. We shall use the induction on r+s. When r=s=1 this result is
well known. From Proposition 6 we have

[DA—AD, a] = [D, [A, a]]—[A, [D, a]]+[D, A(a)]—[A, D(a)]

The right hand side is derivations of order »+s—2 by induction assumptions.
Hence by Proposition 3 DA—AD is a derivation of order r+s—1.

2. The ring of constants and derivation algebra

Let A4 be a k-algebra and let F be an A-module. By Proposition 4 we have
Ds"(A[k, F)c Di¥(A[k, F)c -

An element of 9§”(A/k, F) not contained in D? (A/k, F) will be called a
proper g-th order derivation. 9”(A/k, F)is a left A-module and a submodule
of Hom, (4, F). Let C,(A[k, F) be the subset of A consisting of elements x
such that for any A in 9§ (A[k, F) we have Ax=0. From the definition we
see that

Ci(AJk, F)DC,(AJk, F)D---

Proposition 7. Let A be a g-th order derivation of Ak into F. Then
for any x&C,_ (AR, F) we have [A, x]=0. In particular for any y< A we have

A(xy) = xAy+yAx .

Proof. Let y be an arbitrary element of 4. Then we have [A, y](x)=0.

That is
A(xy) = xA(y)+yA(x)

This relation can also be read as [A, x](y)=0 for any y= 4. Hence we must
have [A, x]=0.

Corollary 7.1. Let A, be a q-th order derivation and let p (>0) be the
characteristic of A. Then A,=k[A?'|CC,(A, F) for any A-module F.

Proof. Induction on ¢q. The case g=1 is well known. Letx=A. Then
by induction assumption a=x?'"'€C,_,. Hence A(x?")=A(a?)=pa? 'A(a)
=0.

i Proposition 8. C,(A[k, F) is a sub-k-algebra of A.

Proof. It is clear that if x, ye(C, and a, bk, then ax-by is also in C,.
Hence it remains to show that xye(,. It is also immediate because for any
A€ D (A, F) we have A(xy)=xA(y)+yA(x).
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Corollary 7.1 can be sharpened much more. In fact if ¢<<p” then
any g-th order derivation A of AJk annihilates any element of A, —=k[A4?]
(cf. Proposition 10). Hence if A is a p/-th order derivation A induces on A,
an ordinary derivation. Such an operation A is called a semi-derivation of
height f by J. Dieudonné in [1].

Let A be a k-algebra. We shall sct

DAk = VD (4]k)
and
D(AJk) = ADD(AJF)

where an element a of 4 is identified with the elements a; of Hom, (4, A4).
9)(A|k) is not only a subset of Hom, (4, 4) but also a subring. To see this fact
it suffices to show the following:

(1) A sum of two elements of 9)(A/k) is an element of 9 (A4/k).

(2) A product of any two elements of 9(A[k) is again contained in
Dy(A[R).

(3) For any a in 4 and De 9(A/k), aD and Da are again contained in
D(AJk).

(1) and the first of (3) are trivial from the definition and (2) is proved in
Corollary 6.1. If D is a high order derivation we have

Da = D(a)+[D, al+aD

by Definition of [D, a]. Hence Da is an element of 9(A/k). Moreover it is
easily seen that k& is contained in the center of 9(A[k). Thus D(A[k) is a
k-algebra. We shall call it the derivation algebra of AJk. The derivation
algebra will play the fundamental roles in a subsequent paper.

3. D(x")

Proposition 9. Let D be a q-th order derivation of Ak into an A-module F
and let x be an element of A. Then we have

@ (o s D) = 5 (1

qg—s

><n’—q+s—1>x,,_q[s D)

s

for every natural number n.

Proof. We shall use the double induction on # and q. The case ¢=1 is
immediate. The case n—=1 isalso immecdiate for any g. Now assume the formula
for any derivation of order <<¢ and ®(m, ¢) is valid for m<n. We shall show
that ®(n+-1, g) isalso true. By Proposition 1, A=Dx—xD—D(x) is a derivation
of order ¢g—1. By induction assumption we have
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D(x"")—xD(x™)—x"D(x)
- §( 1)’\ '1’__s)<”“s9+5)x"-q+s+1[D(xq-S)—xD(xq-H)—xq-s-lD(x)] .

Then we get

D(xﬂu)_ (_1)\ n )(n—q+s—1>xn4q+s—1D(xq_s)

+g(_1)s(;s>(ﬂ ff; D\ yn-assm pya-s)
+a"D()+ S5 (1) B G O
~S1y <n+1><n T+ )yreasanp(y

+{1+§(‘1)s+1< n 1><n—q+s>

g—s— s

DT ().

Hence to prove the assertion it suffices to show the following:

Lemma 1. For any pair of positive integers n, q¢ we have

=1+ (" )T ) =0

Proof. Induction on g¢. f(1)=0 and we have

far g = (P ey ) ( )

s—1 s
- —( Z%g(_l)ﬁ.l(;sxn—?s)
——(rz <—1>”‘<;’)<‘§)

=2 (-1(7)=0

§=0

Alternative proof: Apply the defining formula to the calculus of D(x***)=
D(x"*'"9x---x). 'Then from the induction assumption for small #» we get easily
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ey =S -1r{(1)

§==0

(>R Ay Ao/ G A e G

Hence the proof is reduced to the following Lemma on binomial coefficients.

Lemma 2. For any triplet n, q, s of integers such that n>0, and ¢>s>0

we have
(1) =5 ()0 500
Proof. A simple calculation yields that the right hand side is equal to
(DB, it
=)0, B

Hence the Lemma is reduced to the proof of the following identities:

a ZEn(l)" ) =1,

@ 21(f )(";t>,z—_t_—,_l,+~;g _

Since
" —i>q . q Ty q net
x(1 L) = ()
the left hand side of (1) times ¢! is equal to
dq { » 1)4
- 1—— =gq!.
dx? ¥ ( x }x=1 1
Similary the left hand side of (2) is equal, up to a constant factor, to
AL )
dx’L x dx?7°7! x -

This is clearly equal to zero.

Proposition 10. Let A be a k-algebra of characteristic p and let A be a
g-th order derivation of A[k into F. Then if ¢> p‘, A vanishes on A;.

Proof. Assume that ¢g<<p’ and let x be an element of 4. Then by Prop-
osition 9, we have
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A(x’i) _ "E‘l(— l)s( P )(Pt__q+$+ 1 )xpi_q_,_SD(xq_s) )
i=0 qg—s $
As is well known
(P')Eo (mod. p)
r
for any 1 <r<p‘. Hence A vanishes on 4,.

It is natural to raise the following problem. Let, for instance, D be a
p-th order derivation. Then D may induce on A, a non-trivial ordinary
derivation. In this case we can ask that whether any derivation of A4, can be
obtained in this way or not. In other words, whether an arbitrary derivation
of A, can be extended to a p-th order derivation of A/k or not. These problems
will be treated under a restricted situation in a forthcoming paper.

4. [D, x,x, - x,]
For notational conventions we shall set
[-+-[[D, %,], 5], -+~ %4] = [D, %, %x,%-++xx4]
Proposition 11. Let D be an element of Hom, (4, F). Then we have the
Sfollowing identity:

[D, %,-x,] = [D, xl*---*x,,]—i—‘}:_‘,lx,-[D, PRI,
+z<; 2,0, [D sk e k] e eee +Z_,: oo iy, [D, ]
Proof. Induction onn. We have for n=2.

[D, xx,] = Dx,x,—x,x,D—D(x,x,)

= [Dx,—x,D— D(x,)]x,+x,[Dx,— x,D— D(x,)]
—+x,D(%,)+%,D(%,)— D(x,x,)
= D, x,+x,D,,—D, (x,)
= (Dy¥o—x,D,,— D, (x,))+x,D,,+x,D,,
= [D,,, %]+ xD,,+x,D,,
= [[D, x,], x,]4x,[D, x,]+x,[D, x,] .
Assume the Proposition for <#. Then

[D’ xl"'xn] = [D7 xl*"'*xn—1xn]

”n-

N}

v v
r=1 {;<<i,
n-2 v v
+’~_‘ 2 xil"'xir_lxn—lxn[D7 xl*'“*xil*'"*xir_l*“'*xn—-z]

<<y -y
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From the formula for n=2 we see that

[D, %o sy %,] = [D, X520, %2, + %, [ D, %500 %, %X,
Fx,[D, K%K, _1] .
Substituting this relation in the preceding one we get
[D, x,-+-x,] = [D, xx-%x,]
n-2
+ E{ 20 %%, [D, % 2 P TELE S LT

7oz i< <i,

+xi1 . 1[D Xk xtl*"'*ki,*"'*xn—z*xn]

v v
+x; 002,54 D, xl*---*x,-l*.--*x,-r*---*x,,_l]}

n-2

V. V.
TN D WKy, K X[ D, ey ekl keeoka, ]
7=1 1< <is—y

n—1
= [D’ xl*...*x”]_l_z 2 xil...xir[D’ xl*'"*&il*'”*‘kir*"'*xn] .

=S
Corollary 11.1.
D, a") = (" )a' D, a* )
Corollary 11.2. If the characteristic is p=>0, then we have
[D, a*’] = [D, a*?"] (f=1, 2, --).

Proposition 12. Let D be a g-th order derivation of A|K. Then we have
the following identity :

: +1 1-rY a7
3 (T ey, sy = 0.
Proof. From Corollary 11.1 we have

=0

[D, x71-"] = Z <q+1 ) (D, wkat1=r=s]
Hence the left hand side is equal to
3 (17 (7 )y Zwp, weenrgyer
_ z": S '(_1) (T+S> q+1> r4s 7 (D), akati=r=s]yar

r+s

(1) Sy (" )y, ey

m=0 m 7=0



Hicu OrDER DERIVATIONS 1 11

[D, x*2**~™] is a derivation of order m—1. Hence the proof of the proposition
is reduced to the following:

Proposition 13. Let D be a g-th order derivation. Then we have
qzﬂ (__ 1)r<q+ 1>yrqu+1—r -0
=0 7

Proof. We shall use the induction on ¢q. For a small integer ¢ it is easy to
check. Then we have

Sy (T ypy

Serl(2)e( 2

=22 )y 51y =0,

I

since [D, y] is a derivation of order ¢—1.

Theorem 14. Let A be a k-algebra of characteristic p>0, and let D be an
n-th order derivation of Alk. Then D induces on A,=kA? a [—jn?]-th order

dertvation.

Proof. Induction on [1] Proposition 10 implies that the Theorem is

valid when [%]:0. Let us set [%]:q, ie., gp<n<<(q+1)p. Let a be an

arbitrary element of 4. Then A=[D, a?] is a derivation of order n—p of A4
by Corollary 11.2. Hence A induces on A4, a (¢—1)-th order derivation by
induction assumption, i.e., [--:[[A, a],***, @g_,]=0 on A4, with a;€4,. In
other words we have [D, a*---*a,_,*xa?]| 4,=0. We get immediately the
assertion.

Corollary 14.1. Under the circumstances in Theorem 14, D induces on

A;=kA? a [%]-tk order derivation.

5. Localization theorem

Theorem 15. Let A be a k-algebra and let S a be multiplicatively closed
set in A. Let D be a g-th order derivation of A into an Ag-module M. Then
D can be extended in a unique way to a k-derivation D of Ag into M. Moreover
the extension is given by the formula
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(%) D(ﬁ) _ (=1 fq_,‘ (—1)’<q': 1>s"D(s‘"’x) .

s st =0

Proof. We shall use the induction on ¢q. The case g=1 is well known.
First we shall show that the extension, if possible, is unique. In fact let s be
an arbitrary element of S. Then A=Ds—sD—D(s) is a derivation of order
<q. Hence there exists a unique extension which will also be denoted by the
same letter A. Then we must have

B(5) = D= 5P~ a(5)

where D is the extension of D to As. Thus D is determined uniquely by D.
We shall show that D(%) is given by the formula (). If D is of order 1, then

the right hand side is equal to

= () 2D ()] = PO —_DC)

and () is valid. Assume the formula is true for any derivation of order <g,
and let us set

Ds—sD—D(s) = A.

A is of order ¢g—1 and we have

p-s5(3) =300 - a(3)

_ (=D g(-l)’( 3 )s’A(s""“’x)

s?

= L% g (— 1)’( Z )s’{D(s""x)——sD(s"‘"‘x)—s"“"’xD(s)}

R Lo crene)]

+(—_S—IX > (—1y( ; JsoaD(s)

l

_ (—slq)"" {g (_1)'(9;r 1>s’D(s""x)}+D(x)—%D(s) .
Hence

2 = A B (1 oo,

r

Thus the assertion is proved.
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To prove the extensibility of the derivation D to a derivation D of Ag, it
suffices to show the following. For an element -f* of Ag we set 5(%) by the
formula (x). Then D is actually a derivation of order q. First we have to show

that D is well defined, i.e., if % , then we have D( ) ( ) Le.,

(— 1)“2( l)r(q—l-l)er(sq—rx)

sIt =

_ (=1 é( 1y (!I"’ 1>t’D(t" %) .

t4+1 =0

Since T:—Ji there is an element u of S such that u(zx—sy)=0. For the sake

of convenience we shall denote the expression (x) by 8(x, s). Then it suffices
to show that

() 8(x, 5) = 8(vx, vs)
for any v S. In fact if (+x) is valid, then
o(x, §) = S(utx, uts) = S(usy, uts) = 8(y, t)

as required.
The relation (*x) is reduced to the following identity:

o7 33 (—1y(4 ! 1>s’D(s""x)

= '}i‘_(‘) (_1)r<q": 1)(vs)’D((vs)”"vx) .
In other words:
+ 1>(‘Z)s)”{D(qu—r+1sq—rx)__vq—rﬂD(sq—rx)}
r
= [éo (—1)"(4‘: 1)(2)3)’{D7)q_r+1—vq_r+lD}sq"](x)
= [g(——l)r( q+ )(vs) {[D e r+1]+D(.vq r+1)}sq '](x) —0.
From Proposition 12, we have
3 (=1 (4 sy D, o s = 0
= ’
and

53 (=1y(7F Dorperry =0

r=0
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on account of Proposition 13. Thus we could see that D is a well defined
mapping. Next we have to show that D is a derivation.

First we remark that D is actually an element of Hom,(A4g, M). In fact if
x/s and y/[t are in Ag, then

- a(et) - o()+0(3)
D5+ ) = () = D()+2(3) = D5 )+ 7).
If D is a g-th order derivation we denote by D the element of Hom,,(4s, m)

defined by (*). Then we shall show, in the next place, that
[l—) ,u] = [D, u]

for any us 4.
Now

. o(2) -9 2)

-GS (0 e run —un ) |-Dw-E

+E 5 (—1y( 1) (D67 ur)— (st )=t w D)}

_= {D(s”ux) —uD(s7x)} — D(u)—

- q+1

S (e -( 1)) 06—y

~CUS (1 )ap)
(= 1)42

sq+l =

(—1)y ( ; )s'{D(s"’ux)—uD(s""x)}
(=1)° {z:; (—1)'(‘-1 )s[D, u]s""} (®)

s

Il

on account of Proposition 13 since [D, #] is of order ¢—1.
We are now well prepared to show that D is a derivation of order g of Ag
into M. Let us set

=[D, s].

Then we can see easily that
= x] 15 B x
[D.%] = LD, 151D, —+[5, %]

; 5

- DA 5D - 1[A

hlx
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Any members of right hand side is a derivation of Ag into M by induction
assumption on g. Hence [5, —ii] is also a derivation of Ag into M of order

g—1. Hence D is a derivation of order ¢ of As into M. Thus the proof of
Theorem is complete.

CuapTER II. MobuLEs oF HicHe ORDER DIFFERENTIALS

1. Modules of high order differentials

Let k, A be as in Chapter 1 and let C be the category of 4-modules. Let
F be an A-module and let 9 (A/k, F) be the set of g-th order derivations of
A into F over k. 9§ (A[k, F) is a left A-module and the correspondence

Fw— 9 (Alk, F)
is easily seen to be a covariant functor of C into C. This functor is repre-

sentable (Cf. [5]), and the representing module is given in the following way.
Let us consider the exact sequence

0T —> AR A -2 4 —>0

where

P (2 a;®b;) = >3 a;b; .
We consider 4®,A4 as an 4A-module via

a(xQRy) = axQy .

The A-module I/19*" is the module we are looking for. In fact the mapping
of A4 into Ij/17% given by

8(a) = {Class of (1Qa—a®1) modulo [¢}

is a derivation of order ¢ of AJk, and we can see that any g-th order
derivation D of A/k into F can be factored through I/1?*'. We shall denote this
A-module by Q”(4) and will be called the module of g¢-th order (Kihler)
differentials. The mapping § will be called the canonical q-th order derivation
of Alk. The canonical ¢g-th order derivation of A4/k will usually denoted by
84, or 84, if no confusion will occur.

Proposition 1. Let A be a k-algebra and let § be the canonical q-th order
derivation of Alk. Let x be an element of A such that §(x)=0. Then for any
g-th order derivation D of A[k into an A-module M we have Dx=xD.

Proof. Let y be an arbitrary element of 4. The assumption §(x)=0
implies that 1@x—x®1 is contained in /?*', Hence we have
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1Qxy—xyR1 = (1RQRx—xRN(1Ry—yR1)+y(1Rx—xR1)
+x(1Qy—y®1)
=x2(1Ry—yR1) mod 17+

- 3(xy)=x3(y) -

Now let D be as in Proposition. Then there exists an A-homomorphism % of
QiP(A) into M such that D=h8. Hence we have

D(xy) = h-8(xy) = h(x3(y)) = xhd(y) = xD(y)
for any y in 4. This implies that we have Dx=xD.

For ¢-th order differential module we can develope similar considerations
as is done for the module of ordinary differentials (Cf. [4]). These are the
subjects of the following paragraphs.

2. Polynomial rings

Let & be a commutative ring with unity and let A=k[X,, NEA] be a
polynomial ring over k in indeterminates {X,, AEA}. In this case AR,4 is
again a polynomial ring in two system of indeterminates 1® X, and X,®1 with
the same indices set A. If we set

Y)\ - 1®X}\‘—X)~®1

and identify X,®1 with X,, then A®4 is a polynomial ring R[X,, Y,; AEA].
The kernel I of the homomorphism @: A®,4 — A is generated by {Y,}. Hence
Q(A)=1/I7"" is a free module over A with generators {h,}, {hhu}, -+, {fny - Ia}
where we set

h,=89°X, (8°=8%)).

Then we have

Iaby = 8PX\ 8P X,y o, oo oby, = 80X, 80K,
For any polynomial f(X) in 4 we have

8 (f) = 2 (A)SC A2 (A f)FP XS K-

2 (Ana g f)IP X 8 X Oy
The coefficients A, f, A,.f, --+ are determined by the following formula:
FXATH—f(X) = 22 (AS) T2 (A ) Tn T+

Axs Dyus**+5 Ay, a, are derivations of orders 1, 2,---, g respectively of R[X,]/k
and 7T’s are indeterminates, From the equations
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SO(X, - Xy,) =3 XAI"'X)\,‘“'X)\,,S(q)(X;)
RS Xxl"'XA.-"'Xx,f"XA,3(q)(Xx;)5(q)(Xxj)‘|‘

i<j

we can solve §8X,50X,,:-, S(q)X,\l-uS(”X)\q in terms of &9 (X,X,),
8P(X,,--X,,) and they are represented as linear combinations of §(X))
SD(XpXu), -+, 3P(X,,++- X)) with coefficients in 4. Hence

8(X,), 8(")(X>\Xu), ey 3<4>(XA1...XM)
from a free basis of QP (k[X,]).

Proposition 2. Let A=Fk[X,, NEA] be a polynomial ring over k. Then
QiP(A) is a free module over A generated by

3P (X,), SP(XaXu), +ery 8P( Xy X)) (N EA).
For any element f(X) of A, 8“f can be represented uniquely as
50(f) = B NSO (X)+ 2 OB (XKXu) -+
20 (030 N)EP( Xy Xay) s
where 85°(f), -+, 032\ (f) are elements of A.

A detailed formula for 83°(f), -+, 852.,,(f) will be given in case where 4
is a polynomial ring of one variable.

In the rest of this paragraph let 4 be a polynomial ring over k& in one
variable X. We shall define the operation A,, (m=1, 2,-.-) by

FX+T)—f(X) = 2 Al )T -
We shall also set
Arf = fIX+T)—f(X).
We have then

Arf= 3 A ()T

Proposition 3. Let A=k[X] be a polynomial ring over k in one variable.
Then the following identity holds:

T = 3 (— 1" )Xo Ad(X).

Proof. We shall prove by induction on 7. Assume (3). By definition we
have

Ag(X™ ) = A DXT+(" D)X T (e DXT T,
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1e.,

T+ — __ﬁ m+ 1)xm+1—rTr+AT(Xm+1)

~
1
//

— =5 (") a1y B (D)X AE ) AX Y

= =S xme S (1) )ArE )+ A X
_ _g xm - s<m+l>§( 1y~ s(m-t-j—s)A (X°)+An(X™)

s=1

SR G (G DG WL TWTE  BNTE b

I

SZ; (_ l)m I-l—S(m;l_ 1)Xm+1—SAT(XS)+AT(Xm I'l)
= g(__l)m-u—s(m-i- 1>Xm+1—sAT(Xs) q.ed.
§==1 s
We shall set §=25;%x,,. Then for any f(X)=k[X] we have

8(f) = 2 Au(HEX)"

I

32 AN B (1o ) xmra(x)

m=1

31 33 (— 1y an ()X rB(X)

§=1 m=s

We shall set
e = B0 )annx.
Then we have
8(f) = ZO(1)5(X) .
A,, is a derivation of order m because of the following
Proposition 4. [A,,, X]=A,,_, (m=1, 2,.--) where we set A,=0.

Proof. By definition we have [A,,, X]=A,,X—XA,,—A,(X). First we
shall treat the case m=1. In this case A, is a derivation, hence [A,, X]=0 as
asserted. Assume that m>1, and let f(X) be an element of k[X]. We set

fX+T) = S ful X)T™.
Then
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An(XS) =X B f) = B X)f = (Xfu X) S oK) = Xf (X)) = frn (X)) .

Hence by definition we have

(AmX = XAp—Au(X))f) = A A(f) q.e.d.

Proposition 5. A,(X ”)—_-( " )X nom,

m
This is immediate from the definition and the proof will be omitted.
Proposition 6. Let f(X) be an element of R[X]. Then we have
det| A(X7f(X))| = (A f)" mod f(X), (=1,---,m; j=0, 1,.--,m—1).
Proof. We have by preceding Proposi‘tion 4

Am(Xg) = XAm(g)+gAm(X)+Am—1(g) .

Hence
Alf Azf h Amf
AX) ALK A(XS)
A(X™) ALX™f) o A(X™7S)
A1fy Azf) oo Amf
XAlf—I_f’ XA2f+A1f) XAm(f)+Am—1(f)

T | X A(XS)+ XS, X A, (Xf)+A(XSf) v XA Xf)+ A (XS)
XAX™ )4+ X"f, XALX" ) FAX™f) o+ X Ap(X ™)+ B o(X ™)
Alf Azf T Amf

0 Af o Apsf
0 AP Apx) | M)
0 A(X™2f) - A,_(X"2f)

Then by induction on m we get immediately
det |A(X7f)|=(Af)"  (mod f)
Proposition 7.
(X)) = 4, if i<q.
N ) (e

Proof. By definition we have
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0 (") = 33 (— (" )X A (XY)
m=s s

< __q\ym-s( M ) i-s
= (B (0)G)
(NS (P yi-s
= (B )x
Then if 7<s we have A, (X?)=0 for every m>s. If g>i>s we have

q-s y
p (—1)’(1 ; s> = 1 or zero according as 7=s or i>s.
=0

3. Functorial properties

Let 4 and B be two k-algebras and let 4 be a k-algebra homomorphism of
A into B. Let §4), and §), be the canonical ¢g-th order derivations of A/k
and BJk respectively. Then the mapping A=8}h is a ¢-th order derivation
of AJk into Q”(B). Hence there exists an A-homomorphism &* of Q”(A)
into Q;”(B) such that we have

W8 = Sh
Let p=¢4,, be a B-homomorphism of BR ,Q(A) into Q§°(B) such that

P(bREG(a)) = bh*8 % (a) = b h(a). Let N 4=N and Qi(B/A) be the
kernel and the cokernel of ¢ respectively. Then we have the exact sequence

(1) 00— N— BR,Q7(4) 2z, Q(B) —]—> Q@ (BJ/A)—0.

If we set S;g,g,k=8=j83g/k, 8 is also a ¢-th order derivation of BJk such that
§(a)=0 for any a in 4. Moreover it is immediately seen that Q”(B/A) has the
universal mapping property with respect to such derivations. Thus we have
the homomorphism

Wi Q(B|A) — QP(B)
such that
v&(b) = 8%.(b),  bEB.
Since Qf’(B) is generated over B by elements of the form 8§ 4(x) (x&B) r is

a surjective homomorphism. Contrary to the case of ordinary derivation (the
case of g=1) {r is not necessarily an isomorphism. But we have the

Proposition 8. Under the above circumstances we have
(1) @ as is left invertible if and only if any De DV (A/k, F) can be extended
to an element of Ds”(B|k, F) where F is an arbitrary B-module.
(i)  @Fass s surjective if h is surjective.
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The proof of this proposition is quite similar to that of Theorem 1 of [4]
and will be omitted.

Theorem 9°. Let A be a k-algebra and let S be multiplicatively closed
subset of A. Then we have the isomorphism

07 (A4s)=AsR0(A4) .

Proof. By I-15 high order derivation of A/k into an Ag module can be
extended to that of Ag/k. Hence Proposition 8 implies that @ =@,/ is
injective. Moreover the formula of I-15 tells that ¢ is surjective. Hence ¢
is an isomorphism.

We shall now determine the kernel of the homomorphism r. For this
purpose we need the following

Proposition 10. Let D be an element of D (BJk, F) where F is a B-
module. Then for any ac A, d(a)y=[D, a] is an element of D' V(B/k, F) and
the mapping d is an element of D' V(Alk, D' (B/k, F)).

Proof. We shall use the induction on the order ¢ of D. The case ¢g=1
is trivial because we have d(a)=0 for any a= 4, and hence d=0. Let x be an
arbitrary but fixed element of 4. We shall show that [d, x] is an element of
DF>(Alk, D" P(BJk, F)). By I1-3, D,=[D, x] is an element of 9§’ (B/k, F).
Hence dy(a)=[D,, a]=[D,, x] is a (¢g—2)—th order derivation of B/k into F.
We can see that [d, x]=d,. In fact we have

[d, x)(a) = d(xa)—xd(a)—ad(x)
= [D, %a]—3[D, a]—a[D, ] = [[D, ], a] = dja)
(cf. I-11). Moreover by induction assumption d, is an element of

D (A[k, D (BJk, F)). Hence d is a (g—1)-th order derivation of Ajk
into 9§ (B|k, F) as asserted.

Here we shall remark that if D vanishes on A4, then d(a) also vanishes on A4.
Henceforse we shall denote by 9¢”(B/A/k, F ) a set of g-th order derivations
of B/k into F vanishing on A. 'Then we have the

Corollary 10.1. In Proposition 10, assume that D vanishes on A. Then
d is an element of Dy (Alk, D (BJA[k, F).

We shall apply the above Corollary to the g-th order derivation §=8,,

3) It is possible to give a direct proof of this Theorem without the knowledge of I-15.
T. Kikuchi informed me that he proved the isomorphism 2(¥(B)=B@2{(A4) under the
assumption that (1) B is a flat 4A-module and (2) the ring homomorphism 4— B is an epimor-
phism in the category of commutative rings.
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of BJk into Q§”(B/A). Then the mapping p of A defined by p(a)=I[$, a]
—8a—aé is an element of D(AJk, D¢ (BJAJk, Q*(B/A)). Hence there
exists a B-homomorphism p*(a) of Q7 P(B/A) into Q”(B/A) such that
(2) P*(a)85an = p(a) -
We can see easily that p* is a derivation of A/k of order ¢g—1 into
Homg (Qy (BJA), QP (B/A)). Hence there exists an 4A-homomorphism f of
Q47 (A4) into Hom 5 (Qi7"2(B/A4), QP (B|A)). such that
(3) p* = fo4n" -
Combining (2) and (3) we have for any a= 4 and b= B,
(845 (@) a0(b)) = p(a)(B) = [8, a)(b) = 8(ab)—a’d(b) .
By the canonical bijection of
Hom,, (Q3""(4), Homp (" 2(B/4), Qi(B/4))
= Hom, (" (A)® 404" (B/4), %"(B/4)),

We get an element o of the latter group such that
(343 (@) RO AN(b)) = (FBLR"(@)S5aN(®) =[5, al(®) -

Now we shall show that the sequence of B-modules

(4) (D@L BIA) > 00 (B1A) o 0 (B) —> 0

is exact. It is immediate to see that Im (o) Ker (). Let us consider the
mapping A of B into Coker (¢) such that
A= ¢§

where € is the natural homomorphism of Q;”(B/A4) onto Coker (s). Then A
is a g-th order derivation of BJk into Coker(c). We have A(a)=0 for any
acA. We have also [A, a]=0. In fact for any element b in B we have
(A, a](b) = A(ab)—aA(b) = £8(ab)—acd(b)
= &([3, a(b)) = Eo (843 (a) @81z (8)) = 0 .

Hence A must be an A-derivation i.e., A is an element of D”(B/A4, Coker (o).
Let & be a B-homomorphism of Q4’(B) into Coker (o) corresponding A. Then
we have A=h8,. Now let 3 bS(c)=Ker () where b, ¢’s are elements of B.
Then (32 58(c))=0. Hence we have

0 = 2 bhd(c) = 3 bhdia(c) = 2 bA(c) = I bed(c) = &(2) bS(c)) .

Hence 3)b8(c)eKer (€)=Im(s). Thus the exactness of (4) is proved. For
the future reference the above results will be summarized in the following



Hicu OrpER DERivATIONS 1 23

Theorem 11. Let k, A and B be as above. Then we have the following
exact sequences.

B®,0i(4) 2 00 (B) > 2i9(BJ4) —> 0
QY A)R 0 (Bl A) 2, QP (BJA) —\L QPB)—0
where 0,7 (B[A)=Coker (p) and r is defined by the formula rjd(b)=255 a(b).
Taking the dual sequence we get the

Corollary 11.1°. Being k, A and B as before, we have the exact sequences
0 —> D@(B|A) —> D (B|AJk) — D57 (A[k, D5~ (B|A[k)

0 —> Di(BJA[k) —> D (Blk) —— @8“’(A/k, B)

where D (BJAJk) is the submodule of DsP(BJk) consisting of elements D such
that D(a)=0 for any element a of A and 7 is defined by (D) (a)=[D, a](ac A).

Proposition 12. Let k, A and B be as before. Then we have the followings:

(1) Assume that QP(A)=Q%L(B)=0 and either Q7 "(A) or Q7 V(B|A)
vanishes. Then we have QP (B)=0

(ii) Q°(B)=0 implies Q5 (B)=0.

(i)  Assume that Q°(A)=0. Then if either one of Q7 (A) or Q37 V(B|A)
is zero we have an isomorphism.

QP(B)=QY(B) .
Theorem 13. Let A and B be k-algebras. Then we have the isomorphism
BRQ"(A) = QF(BQy A) -

Proof. Let D be a mapping of BR,A into BR,Q’(A) defined by
D(b®a)=bR®5(a) where & is the canonical g¢-th order derivation of A/k.
Then as is easily seen D is a g-th order derivation of (B®A)/B with values in
B®0Qi"(A). Hence there exists a B-homomorphism 4 of Q§’(B®A) into
B®Qi"(A) such that D=h8{%g /5. Let us define a mapping 3, of 4 into

QF(BRA) by 8,(a)=38%gass(1Ra). This is clearly a g-th order derivation of
Alk into QF’(BRA). Hence there exists also an A4-homomorphism g of
Q°(A4) into QF’(BR A) such that §,=g6. We can extend g to a B-homomor-

4) The author proved originally Corollary 11.1 first. A slight modification of the proof
gives us the exact sequence
0— DP(BlA, F)— DP(BIAIK, F)— D 4—(A|K, D 1-Y(BIK, F)
for any B-module F. Then the representability of the functor 9, yields at once Theorem 11.
The direct proof of Theorem 11 given here is due to my friend T. Kikuchi.



24 Y. Naxkat

phism g of BQRQ’(4) into QP (BRA) by §(bR56(a))=>bgd(a). Itis immediate
to verify that g and gh are identities and we get the assertion.

Let A be a k-algebra and let a be an ideal of 4. We shall define a mapping
p of a into 4/a®RQP(A) by

p(a) = 1R 38a aea.

where § is the canonical g-th order derivation of A/k. p is a homomorphism
of additive groups and vanishes on a?"'. Hence p induces a k-homomorphism
of a/a?"* into 4/a®@Q{’(A). p is not necessarily an A-homomorphism. We
denote by N the submodule of 4/a®Q;?”(A) generated by Im (p).

On the other hand let us consider a mapping D: 4—Qi(A4/a) such that

D(a) = &(a)

where §=08{%a,x and a is the class of a modulo a. D is clearly a ¢-th order
derivation of 4 into Qi’(A/a). Hence D can be written as D=h8 where
§=38%), and % is an A-homomorphism of Q;?(A4) into Q;(4/a). Let 7 be the
natural homomorphism of 4/a®Qi’(A4/a) into QP(A4/a). We shall set

o = ’T(1®h) .

Theorem 14. The sequence

0— N (4)a)RQL(A) —— QP (A)a) — 0
is exact.

Proof. It is clear that we have aB=0. If we identify (4/a)@Q(A4)
with the quotient module Q;”(4)/aQ;”(A), then N is equal to D®(a)-
aQi?(A)[aQs?(A) where D@(a) is the submodule of Q4”(4) generated by
elements of the form &x, x=a. Hence to prove the exactness it suffices to
show that

0i7(A/a) = Qi(A)/[D(a) 4o (4)] .

The rest of the proof will be omitted because it is literally the same as the proof
of Proposition 9 of [4].

Corollary 14.1.
Qi"(Afa) = Qi (A)[aQi(A)+D(a) .

ExampLE. Let L be a purely inseparable extension of a field K of exponent
e such that there is a primitive element x, i.e., L=K(x). If we set *°=a we
have an isomorphism
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L = K[X]/(X*"~a).

We shall denote by & the canonical g-th order derivation of K[X]/K.
First assume ¢<<p°. Then by I-7 and I-10 we have

S(Xi(X?*—a)) = X'§(X* —a)+(X?*"—a)s(X7)
= (X?**—a)8(X?).

Hence

D(a)caQi’(K[X])
where a=(X?°—a)K[X] and we have

QL) = LOOK(K[X])
ie.,
QP(L) = L8(X)+Lo(X?*) 4+ L3(X9).
If ¢g=p°, then we have also
S(XH(X?* —a)) = (X?° —a)§(X*)+ X 8(X?* —a).
Hence
D®(a) = aQP(K[X])+K[X]5(X*").

From this we immediately see that Q%4”(L) is isomorphic to the free module
over L generated by §(X), -+, 8(X?°""). Thus we have

AL =% L)
This isomorphism implies among others that

=g
where [ is the kernel of the homomorphism LQL—L. Then we have
Jﬁe =Jp”+1 =]"2+2 = e
1.€.,
OP(L) = QENL)  for gzp".

For the future reference the above results will be put in the

Proposition 15. Let L be a purely inseparable extension primitively
generated over a field K of exponent e and let us set L=K (). Then Q$(L) is
isomorphic to a free module of rank q with a basis 8(at), 8(a®), -+, 8(a?) for g<p°.

5) This result can also be obtained in a more simple way through the analysis of the
kernel L&),L—L. We took up this method here as an application of Corollary 14.1.



26 Y. Nakat

When q=p°, Q& (L) is isomorphic to QP°~>(L) and is a free module of rank p°—1
with a basis 8(at), 8(a®), -+, 8(a?™?).

Let A and B be two k-algebras. We shall set §=38%zu, 8,=084) and
8,=08%% AX,B is an A-algebra (B-algebra) via the natural homomorphism
fa(fp) such that f(a)=a®1(fz(6)=1Rb). We have a homomorphism r,(Jrz)

of Q(A)R,B(ARQ(B)) into QP(ARB) such that
Va(8,(a)@b) = (1Qb)5(a®1)
V¥ 5(a®8,(b)) = (a®1)5(1Rb)

We shall consider the mapping D,(D,) of A®B into Q" (A)QRB(ARQL"(B))
such that

D,(a®b) = §,(a)®@b
D,(a®b) = a®3,(b) .

It is not difficult to see that D,’s are also ¢-th order derivations of A®B into
QP(A)QB and AQRQ"(B) respectively. Hence we have an 4® B-homomor-
phism a 4(ap) of Q’(ARXB) into QP (A)RB(ARXQ"(B)) such that

a48(a®b) = 8,(a)Rb

o 50(a®Rb) = a®Q38,(b) .
It is immediately seen that we have

asfra=1 app=0.
apha=0, agpp=1.

These homomorphisms give rise at once the

Proposition 16. Let A and B be two k-algebras. Then there exists a direct
sum decomposition

Q"(AQR:B) = Qi (A) Qe BOARQRQ(B)D U Lo 5/t -

The submodule U {gp. has the universal mapping property with respect to deriva-
tions of AQ B which vanish on f,(A4) and fy(B).

Corollary 16.1. We have
QP (ARB) = QP (A)RBPARQL(B).

The proof is immediate because any ordinary derivation of 4® B vanishing
on A®1 and 1®B must be a trivial mapping.
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