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Introduction

Let 'M™ be the Moore space M(n, Z,) (i.e., a simply connected space
with two non-vanishing homology groups H(‘M”; Z)=Z and H,(‘'M”;
Z)=Z,), where p is an odd prime. Let 'z; be the stable homotopy group
lim [*M"*¢; *‘M™], and ‘n*=$‘7z,-. Then, there are non-trivial elements
ael”zp—z and Blelﬂzp(p—l)—l[g]'

Let 2M”" be the mapping cone of a (ie., *M"='M"U ,T'M""**~* for
sufficiently large #), and ?z; be the stable homotopy group lim [*M"*¢;
*M™], *my=22m;. Corresponding to B,E€'r, s p-v-1» We can define a non-
trivial elemént BE 7,2,

Then, our main theorem is

Theorem. a'+0 in 'z, and B'+0 in *z, for all t=1.

This paper is divided into three chapters. In the first chapter, we
deal with the functionalization of Adams-Maunder higher cohomology
operations [1], [3], and study some relations among them ; in chapter
2, suitable chain complexes are constructed by means of the Milnor
basis of the mod p Steenrod algebra [4]. In the last chapter, the main
theorem is proved in a slightly general form using the results in preced-
ing chapters, especially Proposition 4. 3.

The writer wishes to express his sincere gratitude to Professors
H. Toda, A. Komatu and M. Nakaoka for many advices and constant
encouragement given during the preparation of this paper.

CHAPTER 1. FUNCTIONAL OPERATIONS

1. Preliminaries

In this paper, spaces are arcwise connected, based and having the
homotopy type of a CW-complex. Maps take base point to base point
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and homotopies leave base point fixed. Base points are denoted by .
Groups are finitely generated and abelian. The additive group of in-
tegers is denoted by Z, and the additive group of integers modulo an
odd prime p by Z,. The closed interval [0,1] is denoted by I, f=g
denotes that two maps f and g are homotopic, and X=Y means that
two spaces X and Y are homotopy equivalent. A map and its homotopy
class are often denoted by the same letter.

Most of cohomology groups are that of modulo p, so, unless other-
wise stated, we shall denote H*(X) instead of H*(X; Z,). The set of
homotopy classess of maps X—Y is denoted by [X; Y]. A homomor-
phism of a set of homotopy classes into such a set is a correspondence
such that it maps the class of the constant map into such a class and
if both sets admit a group structure it is an (ordinary) homomorphism.

The (reduced) suspension of a space X is denoted by SX and the
space of loops of X by QX. The mapping cylinder Y, of a map f:
XY is the space obtained from XxIU Y by identifying (x, 1) with
f(x), x€X. The mapping cone C, of f is obtained from Y, by
identifying (x, 0) with the base point * for x& X, and denoted often by
YU ,TX. The mapping track L, of f is the space of maps \:I-Y,
such that A(0)=% and A(1)X, with the CO-topology.

For a map f: X—Y the map Sf:SX—SY is defined by Sf(x,?)=
(f(x), t), xX, tel, and the map Qf : QX—QY is defined by Qf(\)(¢)=
FO@®), neQX, tel. There are homomorphisms Sy : [X; Y ]—[SX; SY]
and Q. :[X; Y]-[QX; QY] defined by Su(f)=Sf and Q.(f)=Qf,
respectively.

There is a canonical isomorphism [SX; Y]—-[X; QY]. Since the
Eilenberg-MacLane space K(z, n) is the space of loops of K(z, n+1),
the suspension homomorphism s*: H*"(SX; »)-H™X; =) is an isomor-
phism for any coefficient group » and any integer n>0.

It is well-known that if X is an (#—1)-connected space, then S, :
7 X)—>m; (SX) and Qu: Hi(X; n)->H'(QX; n) are isomorphisms for
i<2n-—1.

Since QK (7, n)=K(n, n—1), for n>2, we may regard Q'K (=, n—1)
as K(zx, n). Let f:K(x, n)—-K(z', m) be a map where m<2n-—2, then
there is a map f’: K(z, n+1)—K(n’, m+1) such that Qf'—~f. Let F and
F’ be the mapping tracks of f and f’ respectively, then we may regard
Q7'F as F’ because QF’=F. Similarly, let g:S”—-S" be a map where
m<2n—2, then there is a map g’:S™*'—»S""* such that Sg’—g, and let
M and M’ be the mapping cones of g and g’, then we may regard S—'M
as M’ because SM’'=M.

If we are only concerned with stable (cohomology and homotopy)



APPLICATION OF FUNCTIONAL HIGHER OPERATION 39

elements, or spaces obtained from K(z, n)-spaces or spheres by stable
elements, or maps into or from such a space, we say that we are “in
the stable range”.

Let A* be the mod p Steenrod algebra where p is an odd prime.
A chain complex is a sequence

d, . d

4 2 1
o >C,3C, > —>C,3C, 3C,

of finitely generated graded free A*-modules C; such that the component
(C;), of degree g of C; is zero for i>gq, with A*-maps d; of degree 0
such that d;_.d;=0 for i=2.

Let K= >1<K(Z ,» 1) be a (finite) cartesian product of Eilenberg-

MacLane spacés, and let n,>#n for some positive integer #, then by
Kiinneth theorem, we have H(K)=3 HZ, n;; Z,) for j<2n-2, ie.

in the stable range. Let u=H*(X) be an element such that z=>;,
(3

u;€ H*(X), and there be a positive integer # such that n<n;<2rn—2,
then there is a map ¢:X—>K=XK(Z,, n;) such that >p*(,)=u, (ie.
@*(¢;)=u;). We shall often denote Lu by @*. Thus, for gi\;én a homomor-
phism 7: H*(K)—H*(X), in the stable range, there is a map ¢: X—K
such that ¢o*=7%: H*(K)—-H*(X).

Finally, the following lemma is easily proved.

Lemma 1.1. Let f: X->Y, g: U-X be two maps such that fg—0.
Then, there are maps g: U—L; and f':L,—~QY such that i,g=g, f'r,~
QOf and gig—~=—7,f', where i;: L, —X, i,: L,—~U are projections and t,:
QY—=L;, 7,: QX—L, are injections.

2. Cohomology operations of higher kind

Following Adams [1] and Maunder [3], we shall define a pyramid
of stable cohomology operations {®°*} associated with a certain chain
complex

d, d, _d,
(2.1) e »C,5Cpy—> = C,5C,>C,.
We shall say that a chain complex is r-admissible if we can con-

struct a realization up to the r-th stage, that is, a sequence of spaces
and maps
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such that F; YR P f’ B; and so QB; 5 F; 5 Fj , are fiberings for
j=1, -, 7, and there are isomorphisms «, : C,—~H*(F,) and «;: —>H (Bj),
j=1,---,7, such that f¥a,=ad, and ¥, ffa;=a;_,d; for j=2,-

For any chain complex, we can construct a fibering F, —>F —>B as
follows: Let ¢,, be the generators of C, of degree g;, then put F,=
>{<K (Z,, m+g;) where X denotes the cartesian product and m is a suf-
ficiently large integer, and let «,:(C,),—~H™ %F, be the canonical
isomorphism. Let ¢, ; be the generators of C, of degree ¢j, then put
B,=>j<K (Z,, m+gqj) and let a,:(C,),—~H™""*(B,) be the canonical isomor-
phism. A map f,: F,—B, is defined by f¥=«ad,ar’. We may regard
fi as a fiber map and let F, be its fiber i,: F,—F, be the injection.

Thus any chain complex is 1-admissible.

Next, let C;=A*[c;,] where c;, is of degree g, j=2, then we
define B,-=>’,<K(Zp,m+q,,—-j+1) and «;:(C;),—~H™"* 7" (B;) to be the
canonical isomorphism. Then, we have

Proposition 2.1. Let a chain complex (2.1) be (r — 1)-admissible, and
if we have ¥ «a, .d,=0 for f¥,:H*(B,.)—-H*F,.,). Then, the chain
complex (2.1) is r-admissible.

Proof. Since we are concerned only with the elements in the stable
range, we have the following exact sequence

- [F,,; X] -5 = [QB,_,; X] —= @f.- [QF, ,; X] —

Since B, is a cartesian product of Eilenberg-MacLane spaces, there
is a map k& :QB,_,—B, such that a;'h*a,=d,. By the assumption, we
have f* «a,_.d,=0, so we have f* h*a,=0 and hence (Qf,_,)*4h=0. So
that, there is a map f,:F,.,—B, such that #_, f,=h. This implies that
ot f¥r* a,=d,. We may regard f, as a fiber map, and let F, be its
fiber, i,: F,—F,_, be the injection. q.e.d.

REMARK. Since d,d,=0 implies that f¥a,d,=0, any chain complex
is 2-admissible.

Let a chain complex (2.1) be r-admissible, and let
@. 2) C, — Cs—l — Ct+1 g Ct’
0<t<s=<r, be a part of (2.1). Then we can construct a realization of
(2. 2), that is, a sequence of spaces and maps

BS Bt +2 Bt'l‘l
t,s t,t+1

ts > Ups—qa = 00 > Gt,H—l > Uy
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i fis . i
such that G,; -4, G,,, 2%, B; and QB; %% G, ; 2% G,,., are

fiberings for j=t+1,--,s where G,,=QB; and there are maps A, ;:
G, ;—F; for j=t+1, ---, s, satisfying that
f?ﬁj=A;k,j_1fj*, A:k,_,i_;r:i:k_JA;k’J_l and T;‘<=T:‘<’1A:k,j, Where Af,t=Tt‘

Tt,t+1 Lee

In fact, put G, ,=QB;, f:i1=feame, and let QB,,, — G,y —

Tt

]
QB, be the fibering induced from QB,,, —> F,,, —> F, by 7,=A, .
Then there is a natural map A,;.,:G;;.,—F:,, such that 7, A=

ft,t+1

. it,t+1 .
Ay dygen and 7, =A, 7, and Gy, —— Gy —— B, is also a
fibering.
. . Tt it, . . .
Let, inductively, QB; -~ G, ; 4, G, ;- j>t, be the fibering in-

T i;
duced from QB; 3 F; =2 F;_, by a map A, ;. ,:G,; ,—F;, then there
is a natural map A, ;:G, ;—F;such that {;A, ;=A, ; 4, ;and 7;=A, ;7 ;,

it,j ft,j . .
and G,; — G, ;., —5 B; is also a fibering where f,; ;=f;A, ;.
Bs Bt+2 BI+1
| [ e [ Fow
F ls F F 1
s T > s, > e > Ly —> L'y —> -
. TAI,S—I I At,H—l . IAt,t:"t
s Le,t+a
t,s > Ups—y > 0 > Gy > Uyt

Similarly, if s>¢, there are maps Af,:G, ;—G;;, for j>s, such
that As,j=A,’,-A§'_,- and

— t > — 13 — 17
g = AF LS AT, =i AN L, T = THAN

for j>s, and the fibering QB;—G, ;—G, ;_, is regarded as to be induced
from QB;—G; ;—G, ;-, by A ;. where A{,=7,.

B, Bs+2 Bs+1
P E2
r s+1
Fr ? Fi—l e > Ly —> L' -
’ T A‘."'l T At,s+1 . I At,s
Lty bt s+1
t,r > tr-1 > vt > t,s+1 > Gt,s g
¢ ¢ ¢
i 1 s, r—1 T As,.s+1 . I As s—Tt,s
s,7 s,s+1
Gs,r e Gs,r—l e > Gs,s+1 ? s,s

For the simplicity, if it is necessary, we regard F; (resp. 7;, f;, ¢,
etc.) as G, ; (resp. 7, foj» %o7» €tC.).
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For given an element #u=H*(X) which is represented by a map
@ : X—QB,, (or p: X—F,), we define

D () = ¢*f;k.c+1 ’

i.e, an element in H*(X) which is represented by f;,, .

If ®*"4u)=0, there is a map ¢’: X—G,,,, such that ¢'*i, , ,=¢*
We define

¢t+2,t(u) = {¢/* :k.t+2 ’

for all such maps ¢'.

Inductively, if 0€®°"/(«), then there is a map @i '™ : X—G,,_,
such that

¢f)s_t_2)*i?<.s—1"'i?<,c+1=¢* and <Pt()s—t—2)*f?‘.s—1=0-

So that there is a map @“ *"V: X—G; ,_, such that @« #"¥¥, | =pf t 2%,
and hence @@ * ¥i¥ - i¥, . 1=¢* We define

D7 (u) = {7 H S

for all such maps @“~#7%.
Then, we have

Proposition 2.2. (Cf. [3; Theorem 2.4.2]) For given an r-admis-
stble chain complex

Cr-’cr—l_> o —)Cz_)cl_)co;

there is a pyramid of stable cohomology operations {®°*}, r=s>t=0.
They satisfy that

1) @ is defined for any element ue= H*(X) which is represented by
a map ¢: X—>QOB,, provided that ©"*(u)=0 for s>I>t.

2) @%u) is a coset of elements of H*(X) modulo Im &°*, i.e.,
for any two elements w, w' =®**(u), there is an element ve H*(X) which
is represented by a map ¢ : X—QB,,, such that w—w' €®°*(v).

3) For given a map g: Y—X and any element us H*(X) for which
@t is defined, we have g*®**(u)C D (g*(u)).

4) s*®%H(u)=—D"(s*(u)) for the suspension isomorphism s*:
H*(SX)—>H*(X), if ® Yu) is defined.

5) Let €:C,—~H*(X) be an A*-map defined by E=o*a, for a map
@ : X—QB, representing ucs H¥(X), and 7:C,—~H*(X) be an A*-map
defined by n=+r*a, for a map r:X-—>B, representing an element in
@ *(u). If € is of degree m, then v is of degree m—(s—1t)+1.

The proof is carried out similarly to that of [3; Theorem 2.4.2],
so it is omitted.

A operation @°* is called an operation of the (s—#)-th kind. These
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operations ®°'* of the (s—#)-th kind are determined uniquely up to an
operation of the (s—¢—1)-th kind [3; Theorem 2.4.3].

Note that we have ®°**®*(u)=0 (mod zero) whenever @°*(u) is
defined.

3. Functional operations of higher kind

In [5], stable functional cohomology operations were defined by the
method of universal examples.

Now, we shall define stable functional cohomology operations of
higher kind by making use of the above stable cohomology operations
of higher kind.

Let

Cs—)cs—1*")""’ct+1_’ct» rgs>tgo’

be a part of an r-admissible chain complex with a realization

B, B;., B,
1 1
Gt,s g Gf,s—l — e > Gt,t+1 - Gt,t-

Let g: Y—-X be a map and = H*(X) be an element such that ®*"*(x)
=0 and g*(#)=0. Then there is a map ¢: X—QB, representing # and
satisfying that @*f¥,,,=0 and g*p*=0. Hence we have a map ¢’:
X—G; 4, such that o™i, ., =¢* But, since g*ep™*i¥,,,=g%p*=0, there
is a map V' : Y-QB,,, such that g*@/*=+"*r¥,,,.

Y————»X

P AY

‘Q'Bu-l > Gthl — tt ?
Tt t41 Lty £t41

t+1

We define
D () = (¥},
for all such maps .
If u satisfies that ®*"*¥(u%)=>0 and ®;**‘(#)>0, then for some maps
Pos Pi - X“"Gt,tﬂ’ satisfying ¢6*i;k,p+1=¢{*i;k,c+1=¢*; we have ¢(/J*f;k.c+2=0
and g*@i*=0. If there is a map ¢;: X—G, ., such that
(3.1) PEif e = 9%, b FE. =0 and g¥pi* = 0.

Then there is a map y":Y—QB,,, such that y""*r¥,,,=g*p”* for a map
@” : X—>G,,,, satisfying ¢"*i¥,,,=¢p¢*. We define

() = {77}
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for all such maps +".
If, inductively, ®°*(») and ®;'‘(u) are defined, and 0®**(u),
0=®; "‘(«), and moreover there is a map ¢§ " :X—-G,, , such that

(3. 1)/ ¢8"“"1)*i?‘_,_1 i;k,ml — ¢>!<’
PyITU* ¥, =0 and g¥pl Tt V* = 0.

Then we can find a map ¥“ ?: Y—QB, such that ¢ Pk = g*pt-0*
where ¢“ #: X—G,, is a map satisfying that @ P*i¥, =@ —t—1*,

vy -4, x

N l PP l \¢<s—:- )

QG!,s—x g QBs - Gts - Gt,s—1 e Bs

th,: Tt,s ' z.t,.qr ft,s
We define
o) = (W)

for all such maps %,
Then, easily we have

Proposition 3.1. 1) &°(u) is defined for any element us H*(X)
which is represented by a map ¢ : X—QB, provided that D *(u) and
@; 7" (u) are defined and contain O, and there is a map @F "> : X—>G,,_,
satisfaing (3.1).

2) ®iu) is a coset of elements of H*(Y) modulo g*H*(X)+
DtH*(Y) (or more precisely, g*[ X; QB ]+ (Qf:)«[Y; QG .]).

3) Let €:C,—>H*(X) be an A*-map defined by &=¢p*a,, and n:C,—
H*(Y) an A*-map defined by n=+*a, for a map r: Y—->QB, represent-
ing an element in Dy‘(u). If € is of degree m, then n is of degree
m—(s—t).

ReEMARK. If &%%u)>0, @ "‘(#)>0 and at least one of them is
reduced to zero (mod zero), there is a map @~V satisfying (3.1).

By definition, if g=# then we have ®}‘(u)=®; *(¥) whenever one
of them is defined, and if g=0 then for any operation ®°*, ®: ‘() is
defined and ®{‘(u)=0 (mod zero) provided that &°*(x) is defined and
@4 (u)>0.

Let #: U—Y be a map, and # be an operation of the first kind,
then it is easily verified that

Proposition 3.2. (i) #*®)‘(u)C D} (w) if @5 '(u) is defined.
(i) D5 (g*w) D Pyl (u) if ©ii(u) is defined.
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Proposition 3.3. (i) 0(@;"<u))c(9¢)s")g(u) if ©5'(u) is defined.
(i) 0D (u)) D(OD°*),(u) if (0D°*),(u) is defined.

4. Some relations among functional operations

Peterson and Stein [5] proved two formulas in connection with
relations of stable functional operations of the first kind.
We shall begin with to give a generalizations of these formulas.

Proposition 4.1. &*"°®! ' (u)=g*® " (u) modulo Im g*P° "+ (i.e.
&5 t11,50:4 X5 Grir 1), whenever @7 '(u) is defined.

Proof. Let @:X—QB, be a map representing v H*(X) for which
@7 %(u) is defined, then there are maps ¢“~#: X—G,, and ¥ *: Y—-QB,
such that @@ #*F, ... i¥,,,=¢* and ¥ ¥, =g*p“-* By definition,
&5 %(u) is the set of elements ¢~ ** for all such maps “~*, so that
DDy i(u) is the set of elements CTOKfE L =S OXLE fE =
gF P T i

g
Y — X
-0 s—1)
¥ lcp
¢
th,s Tti1,s Afirs ft,s+1
‘Q‘Gf,s—l ? s > Gt+1,s t,s > Bs+1

On the other hand, since ®:‘(x) is defined, we have @°*(x)=>0,
hence ®°*“*(u) is defined and is the set of elements @“ #*f¥,,,. So
that, @*"*®; ‘(¥) and g*®**"*(u) have a common element.

But, we have

the indeterminacy of @) (u)
= fs,s+l*(g*[X; QBS:I_I_(th,s)*[Y; -QGt,s—J)
= fs,s+1*g*[X; QBs]
Cft+l,s+1*g*[X; Gt+1,s]
= the indeterminacy of g*®*+*(u). q.e.d.

Proposition 4.2. &' @ (u)= —°*(g*(w)) modulo Im g*+Im
O (ie. gF[X; QB ]+ (Qf rias )Y Grinol), provided that @°*(u)
is defined and g*®**(u)>0.

Proof. Let ¢@: X—QOB, be a map representing #. Then, there is a
map ¢ Y : X—>G, ,_, such that o *"*5¥ | ... i¥, ., =¢* Since g*D**(u)
50, for some @“~*», we have g¥p® t-*f¥ =0, so there is a map X:
Y—G, , satisfying that X*i¥, =g¥*p©-t-1%,

Since Q7'f; ., f1,=0, there are maps f,,:G,,.,—~Q'G,,,, and
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fisn1:Gs—B,,,, by Lemma 1.1, such that
(4' 1) Q_lis,s+1 'ﬁ,s = ft,s, f-t,s'it,s = —Q_lTs,s+1’f;»8+l ’

f.;,s+1'7't,s = fs,s+1 ’

so that the equality =¥, f(%,.=f%,,, implies that fi¥,,=f%,1+iF\*
for some map X :G;,.,—B;.,.

Hence, there is a map p:Y—-B,, such that p*(Q7'r, ., )=
g tOX fk . because g¥pCt ¥ fF (Q7Y,,,)*=0, and we have
D; 1 % (u)= {p*} for all such maps p.

y £, x
plo X 1<p(s~t—1)
Tt,s it,s ft s _lfs,s~'r1 1
QBS ' ? Gts ? Gt s-1 e s Bs 1

On the other hand, since 0€®°*(g*(«)) (because g*®**(u)C
@°(g*(u))), there is a map o: Y—G,, such that o™i¥, - i¥,,,=g%p%,
and ®°*“*(g*(u)) is the set of elements o*f¥,,, for all such o.

But, by its definition, we have X*=¢*+ u*Al¥, ;,, for some map
I Y_*Gt—ﬂ,s'

Since

p*(Q_ITs,s+l)* — g*<P(s_t_1)*f_;'f3 — X*i;k,sf;k,s
= _X*f;.’i;+l(ﬂ_l7's,s+1)* ’ by (4. 1),

we have p*+X*f*,,=v*f¥ ,, for some map v: Y-QB,.
Thus, we conclude that

P*+0'* ;k,s+1 = ”*f;lfs-»l—/L*f;kﬂ,s\tl—g*¢(s_t—1)*7\*
Eg*[X; Bs+1] +ft+1,s+1*[Y; GH—l,s] . q'e'd'
The following proposition is useful in the later arguments.
Proposition 4.3. Let h: U-Y be a map, then we have
Dyt Dy (u) = gt (w)  modulo ITm h*+Im ¢
(ie, R*LY; QB 1+ Qf: . )xLU; QG, ), provided that ©y'(u) is defined
Dy (u)=0 (mod zero) and ®°*(u)>0.

Proof. Let ¢:X—QB, be a map representing #. Then, we have a
map ¢ ?:X—G,, such that g¥e® ¥} =0, and @“ *f¥,,,=0. We
have, therefore, a map “#: Y—-QB, such that
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(4.2) A ETRLR gk pE-Dk gnd R CP* = 0,
and hence we have

YO = AR fE o = g = 0.
So that there is a map X: Y—G,,, such that
(4.3) XHKiE o = PC0F,
and hence

PEX* ik 01 = R¥YC D% = 0. by (4.2)

This implies that we have a map p: U-QB,,, such that
4.4) p¥1E e = WFX*,

By definition, ®;***®} *(u)= {p*} for all such maps p.
On the other hand, since @“ #*f¥,,,=0, there is a map ¢
X—G, ., such that

(S—¢t+1) .

*.5 P IRy = R
h
U —-> Y 8 - X
0//P X / ‘!r(s—t) (p(s—“/ ¢(s-g)
3
QG,’S Qf QBS [ > Gs,s L1 __3.8_'*1’- 541 Gl,s—l
s Ts st ) . "
" o \Zi’s“ (1) lt.sﬂ\ /:’,s
QB, - G'n‘" —> B,
Tt,s t,s41

Then, we have

h*g*¢(s—t+1)*l';|<.s+l — h*g*q,“—f)* = 0,
. (4.2)

so that there is a map ¢ : U—-QB,,, such that

4.7 o*rf o = h¥grpl-ttx
By definition, ®;+'‘(#)= {a*} for all such maps o.
But, since
X*AK i, = X*i¥ ot = \lf(s")*'r?‘.s
(4.3)
= gpetk = gkpeoerORE L
4.2) (4.5)

we have X*A%, =g¥pC ™R \*rE,,, for some map A:Y-QB,.
Hence,



48 N. YamamoTo

p*Tatk.s+1 = P*T.’?k.s+1A;fks+1 = RB*X*AZ
(4.4)
= pRgrpe-rrIk L prakok
(426) AT N o Vo S
This implies that
oF —a*— HENE = uHQf, )

for some map up: U-QG, ;.
Thus, we have

pr—a* = BENE+ KOS )
Eh*[ Y’ QBs—H] -+ (th,er'l)*[U; QG!,S] . q'e‘d'

CHAPTER 2. CONSTRUCFION OF CHAIN COMPLEXES

5. The Steenrod algebra

Recall that p is an odd prime.

It is well-known [2] that the mod p Steenrod algebra A* has a
multiplicative basis Ae A4’, P?* < A2#**»-> £=0,1,2, ---, and they satisfy
the Adem’s relations.

On the other hand, Milnor [4] determined another basis, so called
Milnor basis, as follows :

Theorem 5.1. [4; Theorem 4.a] The elements Q3Q5: -+ ®F form an
additive basis for A*, where &,, &,, -+ are zero or one, almost all zero, and
R=(r,, r,, ) is an infitnite sequence of non-negative integers almost
all zero.

The Milnor basis @, and ®F satisfy the following relations:

Q;‘Qk+Qij =0,
(5.1) PRQ,— QPR = ; Qp, P R-S5PP,

CPRG)S — Z b(X)G)T(X) ,
X

where S;(s) is the sequence consisting of zeros except for one positive
integer s in the j-th place, and if R=(, 7,,:-) and S=(s,, s, -*-), R—
S=(r,—S$,, 7,—S,, --+) if r;—s;=0 for all {, and ®®-5=0 if at least one of
r;—5;<0, and T(X)=((X),t,(X), --+), where £,(X)= > x;; for a matrix

ivj=n
X=(x;;) consisting of non-negative integers x;;,4,7=0,1,2, (%, is
omitted), almost all zero, such that
(5. 2) ijx,'j =7 i = 1; 2, ey _gzoxif =S, j = 1?2? E)

izo
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and o(X)=(I1#,(X))/(IIx;!), and the sum extends over all matrices X

satisfying (5.2). (See [4; Theorem 4b])

It is directly verified, by (5.1), that the elements PFQgs0Qqs1:-- also
form an additive basis for A*.

Milnor also gave some relations between the Adem’s basis and
his basis:

(5 3) Qo = A$ Qk+1 = [63Pk, Qk])
: PSS = @5, @SK® = [@pk, @S- ],

where [a, b]=ab— (—1)deee-deet pg,
PR is denoted simply by ‘®"v"z"m if R=,,7;, ***s ¥, 0,0, ++*).
For the simplicity, we shall often denote QgoQ;1---Q:»P"172"m by
QeE,, &, -+, &,)®(r,, 7,, -, 7,,), and the sequence consisting of zeros of

—F—
number k by 0% (i.e., O¥=(0, ---, 0)).
Since the degree of @, is 2p*—1 and that of ®(»,, -+, 7,,) is 7,(2p—
2)+ o +7,,(2p"—2), the degree d(a) of a monomial a=Q(&,, -, &,)-
Cr,, -, 7, is

d(@) = &+ 62— 1)+ -+ 628"~ 1) +7,(2p—2)+ -+ +7,(2p" ~2)
=&+ +8n+2(p—1)[(61+rl)+ +(81+7’1)(p1_1+ +1)]

where /=max(m, n) and &;=0 for i>n, r;=0 for j>m.
We define the height Z#(a) of a monomial a=Q(&,, -+, ,)PR to be

Wa) = &+ +E&,.

Then, since p is odd, we have

Lemma 5.2. d(a)=h(a) (mod 4) for any monomial o< A*.
For i=0, let M;=A*Q,+---+A*Q; and M,=Q,A*+ .- +Q;A*, then
M;cM;., and M;CcMi,,. Let M.=|M; and M.=JM}, then M.. and

M, are submodules of A* generated, respectively, by the elements
Q& &, -+ )®® and PRQ(E,, &,, --+) such that at least one of £;#+0. They
are subalgebras (actually ideals) of A*, and, by (5.1), M.=M"’.

For /=0, let L; and L]} be submodules of A* generated by the
elements Q0 &;, &y, -+ )®PF and PRQ(OY, &;, Eiyyy ++-) (1€, E=++-=8;_,
=0). Then, L,=L{=A* L,DOL;.,, L,DL},,, and L;, L} are subalgebras
of A* It follows from (5.1) that L,=L]. Let L.=()L; and L.=()L],

then they are submodules of A* generated by the elements ®Z® (i.e.
&=&=---=0), and hence L.=L..

Lemma’ 59 39 A*:Mf@Li—{»!:Mm@va
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Proof. It is easily seen that A*=M;+L, ,=M;+L;,, and A*=M.
+L... But, by definition, M;NL,;,,=M;NL;,,={0} and M.NL..={0}.

Lemma 5.4. L;=L,; Q;PL;,,.

Proof. Since L{=L; and L}, ,=L;,,, this follows from L=
L}, Q:PL;., which is easily verified. qg.ed.

Lemma 5.5. A* = (3> L., Q)®L:, = ( N Le QOBL., where 3
£=0 £=0
denotes a direct sum.

Proof. Since A*=L, and, by Lemma 5.4, L;=L;.,Q;PL;,,, we have
the first decomposition. Since L,DL,.,, lim L;=()L;=L.. So that the

second decomposition is obtained. q.e.d.

Let #;:L;,—~A*/M; (resp. 7.:L.—A*/M,) be a homomorphism
defined by the composition of the injection L;.,—>A* (resp. L.—A*) and
the projection A*—A*/M; (resp. A*—A*/M.). Then, as a direct con-
sequence of Lemma 5.3, we have

Lemma 5.6. 7; (resp. n..) is an L; ~(resp. L.-) isomorphism.

Let L, and L, be submodules of A* generated by the elements
QO &, Eiyyy - )PR and PEQ(O &, &;.,y, --+) With at least one nonzero
&;, respectively (i.e., L;=L;NM., L/=L;nNM,). Then, L,=L{=M.,, L,;=

7, and L; is a subalgebra of M...
Similarly to the above Lemmas, we have

Lemma 5.3. M.=M;®L;.,.
Lemma 5.4. L;,=L; ,Q;®L,,,.

Lemma 5.5, —(E]L,,HQ,,)GB‘L,+1 ZL,,HQk (direct sum)

Lemma 5.6". The homomorphism #;:L; ,—M./M; defined by the
injection L;.,—~M.. and the projection M.—M./M;is an L;, - isomorphism

Let M:L=M.-M*" and L:=L;-L}, k=2, then Mt c M, LiC
L:cM!, and we have

Lemma 5.3". M:=L: &ML NM,).

Lemma 5.6". #;,:L: —-M*%/(MLNM,) is an L, ~isomorphism.
The following Lemmas are useful for later arguments.

Lemma 5.7. Let a&M,./M; be an element such that Qx=0 (mod
M), then there is an element B A* such that Q;8=ca (mod M;). That

is, the sequence A* 2—» M..|M; &» A*|M; is exact,
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Proof. We shall identify M./M; with L;,, by #;. Any two mono-
mials «, o’ can be written in the form a=Q(0¢, &1, -+, Esrn) Py, =+ 7s)
o' =Q(0, &/, -+, &1L )P (ri, -+, L), without loss of generality, by adding
zeros of &;,; (resp. &,;) or r; (resp. r}), if necessary.

For the convenience we introduce an order among monomials in
L;,,: For two monomials a=Q(0% &,,, -+ Ein) P, -, 7,) and o' =
QO &Ly, o+, E1)® (7Y, -+, 7L), we define a>a’ if there is an integer &,
1<k=mn, such that

&y =¢€l,;and r; =r) for 1=j<k, and &; x>&i .4,
or, &,; =& ,; and r; =7} for 1=j<k, & ., =&, and 7,>7;.

Let a=x,a,++- be an element of L;,, such that Q=0 (mod M),
where «, is the first (largest) monomial in the above order, and x,%+0.
Then a,=Q(0% &, ***, i w)®(r,, -++,7,) must satisfy the condition that
there exists an integer k, 1<k=<nu, such that

(5. 4) Eipj = 0, rj<pi for 1§j<k, and Eivr = 1.

For, suppose that this condition were not satisfied, then there is an
integer /, 1</<un, such that &, ;=0, r;<pi for 1=j</, &,.,=0 and r,=p?,
(The case where &;,;=0 and 7;<p‘ for all j<» is omitted since o, &
M..) Hence, by (1.5), we have

Qi = 2,0 1, gy o Ein )Py, o =Dy oo 1)+

and the monomial QO™ Y 1, &pryy o Eirw)P 7y, ooy vi—Dfy oo 7,) 1S
larger than any other monomials in @;x. So that it is not cancelled.
This contradicts to the assumption that Q,a=0.

While, the monomial

Bl = Q(Oﬁ—k’ 8:‘+k+1! ERE) 8i+n)@(rv Tty rk+pi) R rn)

satisfies that @;8,= —«a,+smaller terms (mod M;) and hence, if we put
a'=a+Q(x,B,), we have Q,a’=0 (mod M;) and «’ consists of monomials
smaller than «,. By repeating such a process, we conclude that there
is an element 8= —x,8,+ ---€A* such that @Q,3=a (mod M;). q.e.d.

The subalgebra M%:, k=1, is identified with a submodule of A*
generated by the elements @(&,, &,, ---)®F with at least k& non-zero
&;j’s. Then we have

Lemma 5.8. Let acM?%/(M2NM,) be an element such that Q,a=0
(mod M;) and Q;_.a=0 (mod M;), then there is an element < A* such
that Q;8=0 (mod M;) and Q;..B=a (mod M;). That is, the sequence

Ker Q; —Qﬂ» Ker Q:N[MZ/(M2NM,)] —QL”; A*|M; is exact,
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Proof. We shall identify M?Z%/(M2NM;) with L?,, by #;,. Let a=
x,a,+smaller terms be an element of L?,, such that Q=0 (mod M)
and Q; ,a=0 (mod M;). Then, we conclude, by a similar argument as
in the proof of the above Lemma, that «, must satisfy a condition that
there is an integer k, 1=<k=<wmn, such that

(5.5) & ;=0 for j<k, r,<pi, r;<pi™' for 1<j<k, and &;,,=1.

Since a€L?,,C M2, a, contains at least one non-zero &;,, other than
ik and by (5- 5), >k
Put

Y = Q(Oﬁk’ Civkirs s €itims 0’ Eitrsrs oty 8i+n)6>(rl’ "t rk+1+pi_l’
ey rl+pi’ eey r”)

then it satisfies that QQ;_,v,=(—1)"*a,+smaller terms. So that o'=
a—QQ:_,((—1)""%xy,) satisfies that Q,&’=0 and @, ,o’=0, and consist-
ing of monomials smaller than «,. Thus, after a finite number of steps,
we have an element y=(—1)/"*"'x,9,+--- such that Q,Q;_, y=a (mod M,).
Put 8= —@Q;v, then we have the required element f. q.ed.

REMARK. By a similar argument as in the proofs of the above
Lemmas, we can conclude that for any 2=0, the sequence

K., &_ki‘, Ki O[M5Y/ (M2 0 M)] —=2% Q;- _Yikk A* | M,

is exact, where K, ,=Ker @;N---NKer Q;_;.,, K_,=A*.

6. Construction of chain complexes

Now, we shall construct admissible chain complexes

:‘dr :d id
(6 1), o — iC, — iCr_l —> eee ‘C 2 :C —1 ¢C
for /=0, which are used in the later arguments.
Let iC, be a free A*-module generated by one generator ¢ of degree
0, and ‘C, be a free A*-module generated by the generators c;, ..;,
0<7,54,<---<7,<i, of degree 2(p/1+---+pir)—r, for r=1. For the

convenience, we shall denote c¢; ..;, by [j,, -, j,] and ¢ by [ 1.
Then, an A*-map id,:C,—iC,_, is defined as follows: Let j,=--+=
js1—1<js1="‘=js2—1<js2="'<'”<"‘=jsk—1<j5k:"'=jr»

k
(6- 2) ‘d,[]l, ""Jr] = )‘2=0st)\[]1’ s Jsa-1 Isat1r ]r]

Where j, =j. In particular, *d[j]=Q, ]. The A*-map ‘d, is of
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degree 0 for any »>0, and it is easily checked that ‘d,_,jd,=0 for
r=2. Thus we have obtained chain complexes (6.1); for :=0.

Lemma 6.1. The chain complex (6.1); is exact (i.e. Kerid,=Im
id,,,) for all i=0 and r=1.

Proof. By Lemma 5.5, any element € A* can be written uniquely
in the form a=a'+> @, for 'L, and a,=L,,,.
We define a chain homotopy 's, : iC,—iC,,,, »=0, by

‘S,(an[].l, >.7r]) = Of[k, jw ""jr] if kgjl’ aELkH:
iS,(,@[j,, ’]r]) =0 if BELj1+1’ for r=1;
is(a@ 1 = alk] if k<i, a€L,,,,
iso(ﬁ[ ]) =0 if lGELi—H .
Although ‘s, is not an A*-map but an L; ,-map, by a direct calculation,
we have is,_,d,+‘d,, ‘s,=identity as an A*-map. This implies the
exactness of (6. 1);. q.ed.
Let ‘F,=K(Z,, m) for a sufficiently large integer m, and ‘B,=
K(Z,, m+2(p+ -+ p'»—(r—1))—1), for »=1. The canonical

0/, S 54, Si
isomorphisms «,:{C,—~H*(‘F,) and «,:C,—~H*(:B,), r=1, are given by
ao[ ] =&
Ol,[jl, "':jr] a2 PRI
where (€ H"(‘F,)), j, ..;, EH™*(B,), k=2(p"+ - +p/r—(r—1))—1, are
the fundamental classes.
Let if,:iF,—iB, be a map such that if¥,;=Q;, and ‘F, be the fiber
of the fiber map if,. Then, we have

Lemma 6.2. In the stable vange, H*(‘F,) is gemerated by elements
a,€H"('F,) and a; ;, € H"'*('F,), k=2(p"+p2—-1)—1, for 0=j,=j,=i,
with the fundamental relations

Qu, = Qa, = - = Qa,=0; Qjﬂj,j =0 for 0=j=i,
(6. 3), Qja;,i,+Qs,a; i, =0, Q;a;,;,+Qji,a; ;, =0, 0=7,<7,=i,
Q@i i, +Qi,a5, 5, + Qa5 5, =0 for 0=7,<j, <j,=i.
This Lemma will be proved in the next section.
Inductively, we assume that H*(‘F,_,), =2, is generated by the ele-
ments a,€ H”(°F,_,) and a;, ..;, € H™"*('F,_,), k=2(p/1+ -+ pir—(r—1))—1,
for 0<j,<.--<j,<i, with the fundamental relations

(6.3),_1 Qoao = = Qiaozoy and p(jv "')jr’ jr+1) =0

for 0=j,<---<j4,<j,,,=1, where p(j,, ***,7,,7,+.) is defined as follows :
Let j1="'=jsl—l<j31=“'<“'<“.=]‘Sk—1<jsk:‘“=jr+1) then
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. - . k . . . . .
(6 4) P(Jl’ 5 Jrs ]r+1) = );) Q[]s)\:K]v 0y Jsa-19 Tsa+1s **s ]r+1>9

where j, =j,, QLj]1=Q,, and {j,, -, j,» stands for aj, .. j,.
Let if, : ‘F,_,—‘B, be a map such that if*(;, .. ; )=a;, .., . Then, we

have if*a,d, ,=0 because p(j,, -+, j,-.)=0. Let ‘F, be the fiber of the
fiber map ‘f,. Then we have

Lemma 6.3. If i=0,1,2, or r<p*+p°—2, H*(°F,) is generated, in
the stable range, by elements a,c H™(°F,) and aj, .. ; . €H"™™(F,), k=
2(pir+ e+ pirei—r)—1, for O0=j=--=j, =i, with the fundamental
relations

(6 3), Qoao = e = Qiao =0, and P(ju R jr+1’jr+2) =0

for Ogjlé"'éjrﬂéjrwgi-
This Lemma will be proved in the section 8.
Thus, we have

Theorem 6.4. The chain complex (6.1); is r-admissible, for all r=1
if i<2, and for r<p'+p*—2 if i=3.

Therefore we can speak of the pyramids of stable cohomology
operations {i®°*} associated with the chain complex (6.1);.

7. Proof of Lemma 6.2

For the convenience, we shall denote a; ..; by <{j,, -, j,>, and
tiy s DY e[ Jys s 55, if it is necessary.

From the stable cohomology exact sequence of the fibering iF,—
iF,—iB,, we have exact sequences

if¥ ik ipk if ¥
H™*(B) — AM] — H™*(F) —> H™""(B,) — > A*"[.],

for £=0,1,2, ---, because H™" " *(\F )~ A¥ ].

For k=0, we have an element a@,=%¥(:). Since f¥(;)=Qj, we have
Q,a,=0 for j=0,1, -, 1.

Since ifikalzaoidl» we have ifik(aﬁdz[jn jz]):ao(idlidz[jv ]2]):0
Hence, we have elements

<j1»j2> = iTik_l(alidz[jw ]2]) for O§]1§]2§z ’

which are in H™"(‘F)), k=2(p"1+p2—1)—1, because the degree of
[7.:,7.] is 2(p"+ p2—1) and irf¥ increases the degree by one.

For k=6p'—4, 0=j=i, Q;{j, ;> iF(A*]) since ¥ Q<J, 10)=Q;Qi;
=0. For k=2(2p"+ p>-2), 0=j,<j,<i, we have @Q;{J,, s, +@Q,,
{Jys JoEF(A*[]), because
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i“'f(QjKjx ’ j2>+ sz<j1 ’ .71>) = le(le‘[j2]+QizL[j1])
+Qifoxl'[j1] =0.

Similarly, for k=2(p1+2p"2—2),0=j,<j,<i, we have @Q;<{Jj. J»>
+Qj2<juj2>eiiik(Ak[‘])’ and for k=2(pn+p2+p2-2), 0=7,<7.<7:=0,
Q;,KJzs Joo+ €, s Jo» + @, Jys Jo» EUF(A]).

On the other hand, for each case, we have k=2 (mod 4). Hence, by
Lemma 5.2, #(a)=0 (mod 4) so that A(a)+0 for any monomial a< A%
But, by Lemma 5.5, any element a=A* can be written in the form
o'+ ;, 'L, a;=L;,,. While, since 2(a)+0 and k<2pi*'—1, we

have a=z‘]a,-Q,-. Therefore, we have i¥(A*[.])=0 because #§(:)=a,
=0

and Q,az,=0 for 0=<j=<i.

Thus, we have p(j,, j,, 7,)=0 for 0=j,<7,<7,<i.

Conversely, let # be any element in H*(‘F,), then «a/jf¥'r¥u=
idat¥u=0, so that a,/rfucsKer id,, But, by Lemma 6.1, the chain
complex (6. 1); is exact so

aliTiku = idz(z B(jl’ jz)[jw ]2]) = Z B(jn jz)idz[ju ]2]

for some @B(j,,7,)=A*  This implies that u = >8(j, j.)Jv» Jor+
Bda,, for some B(j,, j.), B,EA*.

Let >3 B(ji» 72)XJ1s Jo> + B2, =0 for some B(Jss Jo)s BOEA*° Then,
‘.Tik(E B(jl ’ j2)<jl b j2> + B()ao) = Z B(jl ’ jz)alid2[jl ’ jZ] :0' SO that we have
‘d(23 B4 7)LJ1» 421)=0, Again, by Lemma 6.1, we have 338(j,» /.7 7]
:E'Y(jl ’ jza ja)ids[jj» jz’ .73] for some 7(j1 ’ jz ’ ]3)EA* So we conclude

that 2 B(jv jz)<jn ]2> = Z 'Y(jl ’ jz’ ja)P(jl » jz ’ ja)» and hence Bo= go riji
for some v;E A*. !
This completes the proof of Lemma 6. 2.

8. Proof of Lemma 6.3

Let the chain complex (6.1); be (»—1)-admissible, and H*(‘F,_))
is generated by a, and <{j,, ---,7,>, 0= 7,<.--< j,<i, with the fundamental
relations (6.3),_,. We define, then, a map if, : ‘F,_.—iB, by f ¥ ., j,])
={J,, ***, J,», for the fundamental classes ([ j,, -+, j, ] H*(:B,). Since ‘B,
is a cartesian product of Eilenberg-MacLane spaces, the map if, is well-
defined. Let ‘F, be the fiber of the fiber map if,, and let {<2 or
r<p+p—2.

Let E¥ be the subalgebra of H*(°F,) generated by «,, then

Lemma 8.1. ¥|EX | is isomorphic and E¥=Im ii¥.

Proof. It follows immediately from the definition that (Im if})NE*



56 N. YaAMAMOTO

= {0}, so that #%}|E} is isomorphic by the exactness of the sequence

‘fr i )k * ;f*

- = H*('B,) — H*(! ”)——>H*(‘ ,) H*(iB,) —> H*(‘F,) — -
While, since ‘f¥([ 7, -+, 5, 1)=<4,, -+, j,» and H*(‘F,_,) is generated by
the elements ¢, and <{j,, -+, j,>, we have Im ii¥*=FE¥*. q.ed.

Next, easily we have P(jn sy Jrpn) = if;‘k(aridr+l[jl’ >jr+1]) in
H*(iF,_,). But, by inductive assumption, we have p(j;, :**, j,.,)=0, hence
there are elements {Jj,, -+, J,.o="1F e, d, [ Ji, **, J,+.]) in H*({F,). The
degree of <{j,,**,J,4> 18 2(p7+ -+ +pir+1—r)—1, because that of
[Fo oo0s Fpaa] is 2(p/t4--+-+p7re1—r) and id,,, is of degree O.

Let p(Jis ==y Jrias Jria)y 0=7=--=7,,,= j,..=1, be the elements defined
as in (6. 4), then the degree of p(J,, -**; J,iz) 18 2(p1+4 oo+ pirez—7r)—2=2
(mod 4), and iT;k(P(jv ) jr+2)):ari(dr+1idr+2[jn s Jri2])=0. Hence,
0(Jis s Jri2)€ Im itk =E¥. On the other hand, by a simple calculation,
we have

Lemma 8. 2. If jI: “ee :jsx_1<js].: ‘e <... < ver =jsk—1<jsk= '"=jr+3’

k . . . . .
)‘Z:;) Q[]Q]P(]v s Isa-10 Isat1r ""]r+3) =0

without assuming p(jy, -+, j,+2)=0, where j, =j, and Q[ j1=Q;.

Now, since p(s, «+, 1) =Q<7, -+, i) EE?**, k%0 (mod 4), and Q,q,=0
for j<i, there is an element a<L;,, such that p(i, ---,i)=aa,. Then,
we have Q,aa,=0 because Q;p(i, ---,7)=0, and this implies that Q,x=0
(mod M;). But, by Lemma 5.7, there is an element B€A* such that
Q;8=a (mod M;). Thus, if we replace <, --,i> by <, -+, i>—Ba,, then
we have Q i, ---,i>=0 and still ¥, .-, D)=a,d, [1, -+, 7].

For (r+2)-tuples (j,, ***, j,+2) and (ji, -+, jryp) With 0=j,<---<j,,,
=i, 0§]{§§]7{+2§Z’ we define that (]{’ 5 Jra2) > (s o jr+2) if there
is an integer s, 1=<s=<7+2, such that j,;=j, for s<k=r+2 and j;>j,.

If P(j{’ ""jy,'+2)=0 for any (]{’ ) j;‘+2)>(j1> St jr+2)’ then le(ju Tty
Jrio)=0 for any [/=j,.,. For, by Lemma 8.2, @Q;p(j,, ", Jr:2)
= ?Q[]‘”\JP(]}: H] js)\—u js}\ﬂ’ T jr+2, 1): for any IZJ}H, and the terms

in the right hand side >(j,, ***, j,..), so they vanish.

Assume, inductively, that p(j{, -, j/.,, 1)=0 for any (ji, -, jlis, 0),
> (7. *** Jrirs 1), then we have Qup(j,, -+, j,.1, 1)=0. But, we may put
p(Fis =+ Jrir» 1) =aa, for some acL;.,, and we have Q=0 (mod M,).
Again, by Lemma 5.7, there is an element B A* such that Q,8=«
(mod M;). Replace <{j,,**,j,> by <ji, ", j,ir>—Ba,, then we have
P(ju 0y Jriw l)=0 and still } (<.71’ Tt j,+1>)=a,id,+l[j1, tty jr+1]'

Thus, we have p(j,, ***, 7,4.)=0 provided that j, ,=i
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If i=1, p(Jys =5 Jrsz) Without 7, ,=i is only P(0> -, 0)=Q0, ---, 0>
eE7?"*=0. Hence, p(j,, ' j»,)=0 for any (j,, --*, j,1z). (The fact that
p(0, ---,0)=0 shows that the admissibility of (6.1),.)

If i=2, p(4,, ) Jrip) without j,.,=¢ and of the maximal degree
is p(6—1, -+, i—1)=Q;_¢—1, --+,i—1>. We may put p(i—1, ---, i—1)=aaq,
for some acsL?.,. Since Qp(i—1, -, i—1)=Q; p(i—1,---,i—1)=0, we
have Q;x=0 (mod M;) and Q;_,a=0 (mod M,). Hence, by Lemma 5.8,
we can find an element B A* such that @;8=0 (mod M;) and Q;_,B=«
(mod M;). Replace {t—1,---,i—1> by <&—1,+--,7—1>—Ba,, then we have
p(i—1,-,i—1)=0 and still p(i—1, -+-,i—1, {)=0 and *r}¥(G—1,-,i—1))
=a,'d, Ji—1, -, i—1].

Similarly, we can reduce p(j,, -**,7,.1,2—1) to zero without altering
p(Jrs ***s Jri1> 1) and e CO/PRITNY S X

If i=2, p(4,, ***) Jrse) With 7, ,<i—1 is only p(0, ---,0)=0.

If i=3, p(4;» +**» Jrye) With 7,,,<i—1 and of the maximal degree
is p(i—2,--+,i—2) and its degree is 2((» +2)p* *—(r+1)), and hence any
p(Jss +*5 Jrye) With 7,.,<i—1 has degree not greater than 2((r+2)p**—
(r+1)). On the other hand, we may put p(J,, :**, j,..) =aa, for some
acsL?, ,, and since r<p'+p°'—2,

d)=2((r+2)p 7 —(r+ 1) <2(p* 2+ p" —1) = d(Q:4,Qs-2) -
Hence, we conclude that a=0 (mod M,).
Thus, if /=2 or r<p'+p’—2, we have p(j,, -+, jriz)=0 for any
(.7.1’ T jr+2)-

Similarly to the proof of Lemma 6.2, it is easily verified that any
element in H*(°F,) can be written in the form

2 B(jn Tty jr+1)<jn B jr+1>+18¢)ao ’

and that all relations in H*(‘F,) are generated by (6. 3),.
This completes the proof of Lemma 6. 3.

CHAPTER 3. NON-TRIVIALITY OF STABLE HOMOTOPY ELEMENTS

9. Some stable homotopy elements

Let S, 'M and *M be S-spectrum [10] such that S={S"|m=1},
M= {M"=S"]e""'\m=2} and ‘M= {M"="M"|) T(M""**"%)m=2p—1},
b a

respectively, where « is the stable homotopy element defined in [9]
which corresponds to the element o, E7,,.,, ,(S™) of the stable homotopy
group of sphere [6].

The (stable) mod p (where p is an odd prime) cohomology structures
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of 'M¥ and *M¥ (where N is a sufficiently large integer) are as follows:
H*(MPN) = {eV, eN*'| AeN = eV},
H*(zMN) — {eN, eN+1’ eN+zp—1, eN+2p,AeN — eN+1’ AeN+2p—1 — eN+21:’
@1eN+1 — (_1)N+leN+2p—l} .
Let G,=lim [S™*%, S™], 'z,=lim [*"M™**, 'M™] and Z%z,=lim [2M™"*,
M™], and Gy= >\ Gy, 'my= > 'ms, x¥= D)?z,. Then we have the fol-
lowing exact sequences

ix = k
©.1) . = G, (Do) G, _]"i.) Ge —> Gy, _(ﬂﬁ Goy — -
~ (pd* k* ()
e —> Gk+1 —> Gk+1 > 177.’], > Gy, > Gk > ees
1 Ay Jk , kL ) oy
(9‘2) e > ”k~2p+2 Tk T ”k—2p+1 —_— Wp, >

a* k/* j/* a*
o By, —> 177k+2p—1 — Iy —> 7y ——> 17?k+2p—2 -
where G,=lim [S™%, ‘M™], '=z,=lim [*"M™**, *M™], and j:S™—>'M"™, j:
M™—2*M™ are injections and & :'M”—S™, B :2M™>'M™*?7* are shrink-
ing maps.

Since proa,=a,0te=0 in G4 and @} eN=(—1)NeN***"* for the genera-
tors eNe HY(SN) and eN**?-*c HN*20-3(SN+22-%) 6], we have a nontrivial
element a=j;*"kz'(a,)E'r,,_, such that
9.3) FLeNtt = (—1)Ntighter-2
for the generators eV HY''(*MY) and eN*2?~'e HN* 1AM N+22-2) Also,
since aoB,=B,ca=0 in ‘ry and @4eNT'=(—1)N"eN#?Y for the
generators eN+1EHN+1(1MN) and eN+2p(p—1)EHN+2p(p—1)(1MN+2p(p—1)41) [6], [9]’
we have a non-trivial element 8=j*"'k{(8,)E"r, 2., such that
9.4) @ggNHP = (_1)Ne1v+2p2—1

for the generators eN+t??< HN**2(*MN) and eNt?#*-1e HN P12 NNTIEE),

10. A non-vanishing theorem

We shall say that an r-admissible chain complex

(10. 1) C, » - = C, » C,
with a realization
B, B, B,
i ) 1

F, > F,, » - — F, > F,

is canomical if there are injections j,:Q ®F,—-QB,, j,:Q *B,—B,,, for
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1=<¢=<r—1, and a fixed integer k>0 such that

Q-kt
Q*F, 27 Q*B,

i i
U foem

OB, —— t+1

is commutative. Then, the following diagram is commutative up to a
homotopy

Q—kt Q—kt‘ Q
awp, 20 goup, 20 gowp O g

Q—.l l . ' l , l -
I¢ Tt,t+1 It L t+1 a It ft,t+1 7

t+1 > t,t+1 > Bf >

(10. 2),

t+1°

An S-spectrum M= {My} is said to be of the type / for an integer
=0, if HY"(M,)=+0 and H(My)=0 for i<N, i>N-+I.

Then, we have the following non-vanishing theorem for the iterated
powers of a certain stable homotopy element.

Therem 10.1. Let M be an S-spectrum of the type I, and acn=, (M,
M) (i.e. lim [My,s My]), k>, be an element such that

DLo%™ = xe”tF (mod zero)

for the elements "= H™(My) and e™*c H™ "*(My..), m=N-+1, correspond-
ing to the same element ec H¥(M) (i.e., s**(e™*)=e™ for the suspension
isomorphism s* : H¥*(My.,)—H*(My)), and x+0, where ®° is a stable
cohomology operation associated with an r—admissible canonical chain
complex (10.1). Then we have a*=+0 for t =<r.

Proof. There is a map ¢:My—F, representing ¢”, ie., @*(t)=e"
for the fundamental class .= H*(F,). Since, by the assumption, ®%°%"™
=2xe¢™**, a map r: My, ,—QB, representing ®%%™ can be factored into
jio’ by a map ' : My, ,—Q*F, which is homotopic to Q*p, and the
injection j,:Q*F,—QB,. Hence, by the commutativity of (10.2), we
conclude that ®%le™ = (Qj,)*DL %™ = xe™ *,

On the other hand, since ¢”"*=s*"#¢™) and H'(My)=0 for i>m,
a*®L%e” =xa*e™*=0 and ®*°¢"=0. Hence, ®>¢” is defined and, by
Proposition 4.3, we have

q)iéoem = @i lcbz,oem — xq)ilemrk — xzem+2/¢:*:0

mod a*[ My, e, Bol+ Q) My 2k, F.]. But, since aEnx,(M, M) and M is
of the type / for /<k, we have a*[My ., B,]1=0 and (Qf)«[My.om F,l
=0. Therefore we have o*=0.
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Assume, inductively, that ®°;1%¢™=x?""¢"** % (mod zero), for the
elements ¢”= H™(M,) and ¢”*¢ Pk H™ ¢~VR(M, ., ) corresponding to
the same element e H*(M). Then, a map representing ®.;1%™ is
factored into j,_,-\vi_, by a map i, : My, ;- pe—Q ¢ PkF, which is
homotopic to Q"% p, and the injection j,_,:Q ¢ P*F,—QB,_,. Hence,
we have @5 1" ¢ PE=(QO], )*DL %" " Pk=ge™ k by the commutativity
of (10.2),_,.

On the other hand, similarly to the above argument, we have
a*®!1%™ =0 and ®*%™=0. Hence ®.%™ is defined and, by Proposi-

tion 4.3, we have
CIDZ’,,Oem = @Z,f“l@;?lioem = xtTIPL Tl Dk . ytpmitk ()

mod a*[ My, ;- pr> OB, 1+ (Qf ) My.sr, Fi]. But, since M is of the type /,
and /<k, we have a*[ My, e, QB,]=0 and (Qf,)s[ My, F,]=0.
Thus, we have at=+0 for t<7. q.ed.

ReMmark. The assumption that the chain complex (10. 1) is canonical
and that M is of type / are not essential, but they simplify the proof.

11. Non-triviality of a’ and B¢

It follows immediately from the definition that

Lemma 11.1. The chain complex (6.1); is canonical for all i=0.
As a direct consequences of Theorem 10.1, we have the following

non-triviality theorems for «f and @G-

Theorem 11.2. For all i=1, a'+0 in ‘zy, where a€'n,, , is the
element defined by (9. 3).

Proof. The S-spectrum ‘M is of type 1 and a=xz,('M, ‘M) for k=
2p—2>1. While, since 'f#(¢;)=@Qj, 7=0, 1, by (9. 3) and Proporition 3. 3,
we have

DL%" = Q) 4"+ Q) " = Aye”+(PA—APY),e”
= PlA"—ARL” = (—1)" ™k

for m=N+k+1, mod (Q,+ Q) H"(MN*¥)+ P H" '(*MN*¥)+ AC*H™(* MN**)
+a*H™ (' MN)=0. (The fact that (6 +6"),(u)=6,,(«)+ 0/(u) mod Im 6+ Im ¢’
+Im o* for operations of the first kind 6, 6’ is easily verified).

Hence, the condition of Theorem 10.1 is satisfied by the chain

complex (6.1), and the element «. Thus, we have a’=+0 for all £=1.
q.ed.

Theorem 11.3. For all t=1, B*+0 in *zy, where BE"x, >, is the
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element defined by (9.4).

Proof. The S-spectrum °M is of type 2p and B < =M, *M) for
k=2p"—2>2p. Since *f§(;)=Qj, j=0,1, 2, similarly to the proof of the
above Theorem, we have

Py ™ = (—1)"e™*  for m=N+2p,
mod (QO +Q,+ QZ)H'”(2MN+I¢) 4+ G)pHm+zp—1(zMN+k) +PA® pHm(zMN+k)
+ AP ®TH™C M)+ G¥H™HMN) = 0.

Thus, the condition of Theorem 10.1 is fulfilled by the chain com-
plex (6.1), and the element 3. Hence, we have 8*=+0 for all =1, in *zy.
q.e.d.
Finally, we have the following direct consequences of Theorems
11.2 and 11. 3.
Let §='7_, be the elements such that §*e{=e) for the generators
eNe HN('MY) and ¥ HV('M" ") [9]. In [9], we proved that 2ada=
a’5+8a? and this implies that a”?§=8a"?. Then, :

Proposition 11.4. For all t=1, da*=+0 and o!8+0 in 'm,.

Proof. By Theorem 11.2 and Proposition 3.2, we have

IDLOEN T = DL = DI = (—1)NeN RN

for the generators eM™'eHNT(MYN™), e¥y'e HVNT'(*MY) and eN*'**te
HN* e AFNTR) - Hence, we have Saf=0 for all {=1. If a’6=0 for some
t>1, then we have O=a"?"ta’§=8a’?+0 for » such that rp>¢. This
is a contradiction. q.ed.

REMARK. By making use of the result of Toda [7], [8], we can
conclude that a’8ad=+0 for all #=1 [9]. But, we can not prove this
fact using our method only.

Let Sezn,_zp be the element such that §*eMN*ti=el*i, ;=0, 1, for the
generators el e HYNY(CMYN) and e i HNYI(MN-2#*"), Then,

Lemma 11.5. 2888=R%+83% if p=b.

Proof. By the structure of 'z, [9] and the exactness of (9.2),
Tip-2p-s= 1080} + {887}, if p=5. So that the proof is carried out
similarly to that of Proposition 5.1 of [9] using the Adem’s relation
20202 =F?*@*@ '+ P*®?®* instead of 20'AP'=F'C'A+AP'®'. q.ed.

By the above Lemma, easily we have 87?6=83"?. So that similarly
to Proposition 11.4, we have

Proposition 11.6. For all t=1, 38*+0 and B'5+0 in’ny, if p=5.
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REMARK. It seems true that B:585<+0 for all £=1, but we have no

idea to prove it.
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