ON ALGEBRAS OF 2-CYCLIC REPRESENTATION TYPE

Dedicated to Professor K. Shoda on his sixtieth birthday

By

Tensho YOSHII
§1. Let A be an associative algebra with a unit and of finite dimension over an algebraically closed field K and $A=\sum_{i} \sum_{j} A e_{i j}$ be a decomposition of A into a direct sum of directly indecomposable left ideals where $A e_{\kappa, i} \simeq A e_{\kappa, 1}=A e_{\kappa}$ and let N be its radical.

Now if an A-left module (or an A-right module) m is a homomorphic image of one of $A e_{i}$ (or $e_{j} A$) we call m a cyclic module and if an arbitary indecomposable A-left or right module is the sum of at most n cyclic modules we call A an algebra of n-cyclic representation type. It is known that A is generalized uniserial if and only if A is of 1 -cyclic representation type ${ }^{1)}$.

In this paper we study the structure of an algebra of 2 -cyclic representation type. In order to make the description short we give the next definitions and notations.
(i) If a module or an ideal has only one composition series then we call it uniserial.
(ii) If $\frac{N e_{1}}{N^{2} e_{1}}$ and $\frac{N e_{2}}{N^{2} e_{2}}\left(e_{1} \neq e_{2}\right)$ have simple components isomorphic to each other then we call such a component a vertice component and $\left\{\frac{N^{j_{1}} e_{1}}{N^{j_{1}+1} e_{1}}, \cdots, \frac{N^{j_{r}} e_{r}}{N^{j_{r}+1} e_{r}}\right\}$ is called a chain if, $\frac{N^{j_{\nu}} e_{\nu}}{N^{j_{\nu}+1} e_{\nu}}$ and $\frac{N^{j_{\nu+1}} e_{\nu+1}}{N^{j_{\nu+1}+1} e_{\nu+1}}$ ($\nu=1, \cdots, r-1$) have simple components isomorphic to each other and $\overline{A e_{\nu}}$ is not isomorphic to any composition factor of $\frac{A e_{\nu+1}}{N_{\nu+1}^{j_{\nu}-1} e_{\nu+1}}$ $\left(j_{v+1} \geq j_{v}\right)$.
(iii) The largest completely reducible part of an A-left (or A-right) module m is denoted by $s(m)$.

[^0]Moreover in this paper we shall assume that $A u$ is a cyclic left ideal or a cyclic A-left module.

The main result is as follows:
An algebra A is of 2 -cyclic representation type if and only if A satisfies the following conditions.
(1) Let \mathfrak{p} be an arbitrary left ideal of $N e$. Then $s\left(\frac{N e}{\mathfrak{p}}\right)$ is a direct sum of at most two simple components and if it is a direct sum of two simple components then they are not isomorphic to each other except the case where $N e=A u_{1}+A u_{2}$ and there is an integer λ such that $N^{\lambda} u_{2}=A u_{1} u_{\lambda}$ where $N^{\lambda-1} u_{2}=A u_{\lambda} \varsubsetneqq A u_{1} \cap A u_{2}$ and $\frac{A u_{1}}{A u_{1} \cap A u_{2}}$ has no composition factor isomorphic to $\overline{A e}$.
(2) (i) Assume that $N e_{1}=A u+A v$ (or $\left.N e_{1}=A u\right)$ and $\frac{A u}{\mathfrak{p}_{1}} \cong \frac{N e_{2}}{\mathfrak{p}_{2}}\left(e_{1} \neq e_{2}\right)$ where \mathfrak{p}_{1} is a left subideal in $A u$ containing $A u \cap A v$ and \mathfrak{p}_{2} a left subideal in $N e_{2}$. Then there exists no composition factor of $\frac{N e_{2}}{\mathfrak{p}_{2}}$ isomorphic to a vertice component except a simple component of $\frac{N e_{2}}{N^{2} e_{2}}$.
(ii) If $N e=A u_{1}+A u_{2}$ then at least one of $\frac{A u_{i}}{A u_{1} \cap A u_{2}}(i=1,2)$ has no composition factor isomorphic to a vertice component.
(3) Assume that $A w$ is a cyclic subideal in $N e$. If $N w=A v_{1}+A v_{2}$ then $A v_{1} \cap A v_{2}=N v_{1}=N v_{2}$.
(4) Assume that $\left\{\frac{N^{\rho} e_{1}}{N^{\rho+1} e_{1}}, \frac{N^{\rho+\nu} e_{2}}{N^{\rho+\nu+1} e_{2}}\right\}(\rho=1, \cdots, t-1, \nu \geqq 0)$ are chains.
(i) At least one of $\frac{A e_{1}}{N^{t} e_{1}}$ or $\frac{A e_{2}}{N^{t+\nu} e_{2}}$ is uniserial.
(ii) If $\nu=0$ and $N e_{1}=A u_{1}+A u_{2}$ where $\overline{A u_{2}} \cong \frac{N e_{2}}{N^{2} e_{2}}$ then
($\alpha) A u_{i}(i=1,2)$ are uniserial and $A u_{1} \cap A u_{2}=N u_{2}$
or $(\beta) N u_{2}=A w_{1}+A w_{2}, A w_{2}=A u_{1} \cap A u_{2}$ and $\frac{N e_{2}}{N^{3} e_{2}} \simeq \frac{A u_{2}}{A w_{1}+N w_{2}}$.
(5) The similar four conditions for right ideals as above are also satisfied.
$\S 2$. In this chapter we assume that A is of 2 -cyclic representation type unless otherwise stated and we shall prove that A satisfies five conditions in $\S 1$.
[2.1] The followings are the consequences of the results in (IV).

Lemma 1. $\frac{N e}{N^{2} e}$ is the direct sum of at most two simple components and if it is the direct sum of two simple components then they are not isomorphic to each other.

Lemma 2. If $\left\{\frac{N e_{1}}{N^{2} e_{1}}, \frac{N e_{2}}{N^{2} e_{2}}\right\}$ is a chain then at least one of $\frac{N e_{i}}{N^{2} e_{i}}$ $(i=1,2)$ is simple. ${ }^{2)}$

Lemma 3. If $\frac{N e_{i}}{N^{2} e_{i}}>\widetilde{A u_{i}}(i=1, \cdots, r)$ and $\widetilde{A u_{1}} \cong \widetilde{A u_{i}}$ for all i $(i=2, \cdots, r)$ then $r \leqq 2$.

This lemma is a consequence of the Lemma 1. Hence this is a consequence of the first half of the condition 1.
[2.2] Lemma 4. If $s\left(\frac{N e}{\mathfrak{p}}\right)=\widetilde{A u_{1}} \oplus \cdots \oplus \widetilde{A u_{r}}$ for an arbitrary left ideal \mathfrak{p} in Ne then $r \leqq 2$.
(This is the first half of the condition 1.)
Proof. The dual module $\left(\frac{A e}{\mathfrak{p}}\right)^{*}$ of $\frac{A e}{\mathfrak{p}}$ is also directly indecomposable and $\left(\frac{A e}{\mathfrak{p}}\right)^{*}$ is the sum of r cyclic modules. Hence if $r \geqq 2$ then A is not of 2-cyclic representation type.

Corollary 1. If the first half of the condition 1 is satisfied and $N e=A u_{1}+A u_{2}$ then $\frac{A u_{1}}{A u_{1} \cap A u_{2}}$ and $\frac{A u_{2}}{A u_{1} \cap A u_{2}}$ are uniserial.

Proof. If there is a left ideal \mathfrak{p} in $A u_{2}$ such that $\mathfrak{p} \supseteq A u_{1} \cap A u_{2}$ and $s\left(\frac{A u_{i}}{\mathfrak{p}}\right)$ is not simple then $s\left(\frac{N e}{\mathfrak{p}}\right)$ is the direct sum of at least three simple components. Next since it is proved by Köthe ${ }^{3)}$ that $\frac{N^{i} e}{N^{i+1} e}$ is the direct sum of simple components not isomorphic to each other, we have

Corollary 2. $\frac{N^{i} e}{N^{i+1} e}$ is the direct sum of at most two simple components not isomorphic to each other.

[^1][2.3] Assume that $\frac{N e}{\mathfrak{p}} \cong \frac{A u}{\mathfrak{p}_{1}}$ where $A u$ is a subideal in $N e^{\prime}\left(e \neq e^{\prime}\right)$ which is not contained in $N^{2} e^{\prime}$ and \mathfrak{p} and \mathfrak{p}_{1} are subideals in $N e$ and $A u$. Now if $\frac{N^{i} e+\mathfrak{p}}{N^{i+1} e+\mathfrak{p}}=\widetilde{A u_{1}} \oplus \widetilde{A u_{2}}$ and $\mathfrak{p} \not \subset N^{i+1} e$ then $s\left(\frac{A e}{N^{i+1} e}\right)$ is the direct sum of at least three simple components, but by the first half of the condition 1 this is a contradiction. Hence if $\frac{N^{i} e+\mathfrak{p}}{N^{i+1} e+\mathfrak{p}}=\widetilde{A u_{1}} \oplus \widetilde{A u_{2}}$ then $\mathfrak{p} \leq N^{i+1} e$ and $\frac{N^{i} e}{N^{i+1} e}=\widetilde{A u_{1}} \oplus \widetilde{A u_{2}}$. Similarly if $\frac{N^{i-1} u+\mathfrak{p}_{1}}{N^{i} u+\mathfrak{p}_{1}}=\widetilde{A v_{1}} \oplus \widetilde{A v_{2}}$ where $\widetilde{A u_{i}} \cong \widetilde{A v_{i}}(i=1,2)$ then $\mathfrak{p}_{1} \subset N^{i} u$ and $\frac{N^{i-1} u}{N^{i} u}=\widetilde{A v_{1}} \oplus \widetilde{A v_{2}}$. Hence by the following lemma $5 \frac{N e}{\mathfrak{p}}$ and $\frac{A u}{\mathfrak{p}_{1}}$ are uniserial.

Lemma 5. Assume that $A u \leqq N e^{\prime}, \Phi N^{2} e^{\prime}\left(e \neq e^{\prime}\right)$ and there exists an integer ρ such that $\frac{N^{\varphi} e}{N^{\varphi+1} e}=\widetilde{A w_{1}} \oplus \widetilde{A w_{2}}$ and $\frac{N^{\varphi-1} u}{N^{\varphi} u}=\widetilde{A v_{1}} \oplus \widetilde{A v_{2}}$ where $\widetilde{A w_{1}} \cong \widetilde{A v_{1}}$ and $\widetilde{A w_{2}} \cong \widetilde{A v_{2}}$. Then A is of unbounded representation type.

For the proof of this lemma, see [V] or [VI].
From the lemma 5 we have
Corollary 3. Assume that $A w_{i}(i=1,2)$ are cyclic, $\frac{A w_{i}}{A w_{1} \cap A w_{2}}(i=1,2)$ are simple and $\frac{A w_{1}}{A w_{1} \cap A w_{2}} \neq \frac{A w_{2}}{A w_{1} \cap A w_{2}}$. Then $A w_{1} \cap A w_{2}$ is uniserial.

Proof. Assume that $\overline{A w_{1}} \cong \overline{A e^{\prime}}$ and $\overline{A w_{2}} \cong \overline{A e^{\prime \prime}}\left(e^{\prime} \neq e^{\prime \prime}\right)$. Then there exist \mathfrak{p}_{1} and \mathfrak{p}_{2} such that $N w_{1} \cong \frac{N e^{\prime}}{\mathfrak{p}_{1}}$ and $N w_{2} \cong \frac{N e^{\prime \prime}}{\mathfrak{p}_{2}}$.
(i) If $A w_{1} \cap A w_{2}$ is cyclic and there is an integer $\nu \geqq 1$ such that $\frac{N^{\nu} e^{\prime}}{N^{\nu+1} e^{\prime}}=\overline{A \xi_{1}} \oplus \overline{A \zeta_{1}}$ and $\frac{N^{\nu} e^{\prime \prime}}{N^{\nu+1} e^{\prime \prime}}=\overline{A \xi_{2}} \oplus \overline{A \zeta_{2}}$ where $N^{\nu+1} e^{\prime} \supset \mathfrak{p}_{1}, N^{\nu+1} e^{\prime \prime} \supset \mathfrak{p}_{2}$, $\overline{A \xi_{1}} \cong \overline{A \xi_{2}}$ and $\overline{A \zeta_{1}} \cong \overline{A \zeta_{2}}$ then by the lemma $5 A$ is not of 2-cyclic representation type.
(ii) If $A w_{1} \cap A w_{2}$ is not cyclic then $\frac{N e^{\prime}}{N^{2} e^{\prime}}=\overline{A \xi_{1}} \oplus \overline{A \zeta_{1}}$ and $\frac{N e^{\prime \prime}}{N^{2} e^{\prime \prime}}$ $=\overline{A \xi_{2}} \oplus \overline{A \zeta_{2}}$ where $\overline{A \xi_{1}} \cong \overline{A \xi_{2}}$ and $\overline{A \zeta_{1}} \cong \overline{A \zeta_{2}}$. Hence this contradicts the lemma 2.

The necessity of the condition 2 follows from the following lemmas.
Lemma 6. Assume that $N e_{1}=A u_{1}+A u_{2}$. Then at least one of
$\frac{A u_{1}}{A u_{1} \cap A u_{2}}$ and $\frac{A u_{2}}{A u_{1} \cap A u_{2}}$ have no composition factor isomorphic to a vertice component.

In order to prove this lemma we shall prove the following lemma 7.
Lemma 7. Assume that $\mathrm{m}=A e_{1} m_{1}+A e_{2} m_{2}+A e_{3} m_{3}$ is an A-left module such that $e_{1} \neq e_{2} \neq e_{3}, s\left(A e_{1} m_{1}\right) \cap s\left(A e_{2} m_{2}\right)=A u_{1} m_{1}=A u_{2} m_{2} \neq 0$ and $s\left(A e_{2} m_{2}\right) \cap s\left(A e_{3} m_{3}\right)=A v_{2} m_{2}=A v_{3} m_{3} \neq 0$.

If $u_{i} r_{j} m_{j}=0$ and $v_{i} r_{j} m_{j}=0$ for $r_{j} m_{j} \in N e_{j} m_{j}$ then m is directly indecomposable.

Proof. We can put $u_{1} m_{1}=\alpha u_{2} m_{2}$ and $v_{2} m_{2}=\beta v_{3} m_{3}(\alpha, \beta \in K)$. Now suppose that \mathfrak{m} is directly decomposable. Then $\mathfrak{m}=A e_{1} n_{1}+A e_{2} n_{2}+A e_{3} n_{3}$ and some $A e_{i} n_{i}$ is a direct summand of m . Now let $n_{i}=\alpha_{i 1} m_{1}+\alpha_{i 2} m_{2}$ $+\alpha_{i 3} m_{3}(i=1,2,3)$.
Then $\alpha_{i i} \in e_{i} A e_{i}, \notin e_{i} N e_{i}$ and $\alpha_{i j} \in e_{i} N e_{j}(i \neq j)$.
Hence $u_{1} n_{1}=a_{11} u_{1} m_{1}, u_{2} n_{2}=a_{22} u_{2} m_{2}, v_{2} n_{2}=a_{22} v_{2} m_{2}$ and $v_{3} n_{3}=a_{33} v_{3} m_{3}$ where $\alpha_{i i}=a_{i i}+r_{i i}, \quad a_{i i} \in K$ and $r_{i i} \in e_{i} N e_{i}$. Therefore $A u_{1} n_{1}=A u_{1} m_{1}, A u_{2} n_{2}=$ $A u_{2} m_{2}, A v_{2} n_{2}=A v_{2} m_{2}$ and $A v_{3} n_{3}=A v_{3} m_{3}$. Thus $A e_{i} n_{i} \cap\left(A e_{j} n_{j}+A e_{k} n_{k}\right) \neq 0$ for $\{i, j, k\}=\{1,2,3\}$. But this is a contradiction.
The proof of the lemma 6.
By the corollary $1 \frac{A u_{i}}{A u_{1} \cap A u_{2}}=\widetilde{A u_{i}}(i=1,2)$ are uniserial. Now we may assume that $\frac{N^{\rho} \tilde{u}_{1}}{N^{\rho+1} \tilde{u}_{1}}$ and $\frac{N^{\mu} \tilde{u}_{2}}{N^{\mu+1} \tilde{u}_{2}}$ are isomorphic to vertice components and $\frac{A \tilde{u}_{1}}{N^{\rho} \tilde{u}_{1}}$ and $\frac{A \tilde{u}_{2}}{N^{\mu} \tilde{u}_{2}}$ have no composition factor isomorphic to a vertice component. From now on we assume that $A u_{1} \cap A u_{2}=0$.
(i) Assume that $\rho=\mu=0$. Then there exist $A e_{2}$ and $A e_{3}\left(e_{1} \neq e_{2}, e_{3}\right)$ such that $\frac{A u_{1}}{N u^{1}} \cong \frac{N e_{2}}{N^{2} e_{2}}$ and $\frac{A u_{2}}{N u_{2}} \cong \frac{N e_{3}}{N^{2} e_{3}}$ since $\frac{A u_{i}}{N u_{i}}(i=1,2)$ are isomorphic to vertice components.

Now if $e_{2}=e_{3}$ then $\frac{A u_{1}}{N u_{1}} \cong \frac{A u_{2}}{N u_{2}}$. But this contradicts the lemma 1 or the corollary 2. Hence $e_{1} \neq e_{2} \neq e_{3}$. Then $\left\{\frac{N e_{2}}{N^{2} e_{2}}, \frac{N e_{1}}{N^{2} e_{1}}, \frac{N e_{3}}{N^{2} e_{3}}\right\}$ is a chain and this contradicts the lemma 3.
(ii) Assume that $\rho>0$ or $\mu>0$.

If $\frac{N^{\rho-1} u_{1}}{N^{\rho} u_{1}} \cong \overline{A e_{2}^{\prime}}$ and $\frac{N^{\mu-1} u_{2}}{N^{\mu} u_{2}} \cong \overline{A e_{3}^{\prime}}$ then there exist $A e_{2}$ and $A e_{3}$ such that $\left\{\frac{N e_{2}}{N^{2} e_{2}}, \frac{N e_{2}^{\prime}}{N^{2} e_{2}^{\prime}}\right\}$ and $\left\{\frac{N e_{3}}{N^{2} e_{3}}, \frac{N e_{3}^{\prime}}{N^{2} e_{3}^{\prime}}\right\}$ are chains where $\frac{N e_{2}^{\prime}}{N^{2} e_{2}^{\prime}}$ and $\frac{N e_{3}^{\prime}}{N^{2} e_{3}^{\prime}}$
are assumed to be simple by the lemma 2 . Now we construct an A-left module $\mathfrak{m}=A e_{1} m_{1}+A e_{2} m_{2}+A e_{3} m_{3}$ in the following way;
(α) $N^{\rho+1} u_{1} m_{1}=N^{\mu_{+1}} u_{2} m_{1}=0$,
(β) if $\frac{N e_{2}}{N^{2} e_{2}}$ is simple then $N^{2} e_{2} m_{2}=0$ and if $N e_{2}=A v_{1}+A v_{2}$ and $\overline{A v_{1}} \cong \frac{N e_{2}^{\prime}}{N^{2} e_{2}^{\prime}}$ then $N v_{1} m_{2}=A v_{2} m_{2}=0$.
(γ) if $\frac{N e_{3}}{N^{2} e_{3}}$ is simple then $N^{2} e_{3} m_{3}=0$ and if $N e_{3}=A w_{1}+A w_{2}$ and

$$
\overline{A w_{1}} \cong \frac{N e_{3}^{\prime}}{N^{2} e_{3}^{\prime}} \text { then } N w_{1} m_{3}=A w_{2} m_{3}=0
$$

and ($\delta) N e_{2} m_{2}=N^{\rho} u_{1} m_{1}$ and $N e_{3} m_{3}=N^{\mu} u_{2} m_{1}$.
(From now on we assume that $N e_{2}=A v_{1}$ and $N e_{3}=A w_{1}$.)
Then $N^{\rho} u_{1} r_{2} m_{2} \subset N^{2} e_{2} m_{2}=0$ and $N^{\mu} u_{2} r_{2} m_{2} \subset N^{2} e_{2} m_{2}=0$ for $r_{2} \in N e_{2}$. Similary $N^{\rho} u_{1} r_{3} m_{3} \subset N^{2} e_{3} m_{3}=0$ and $N^{\mu} u_{2} r_{3} m_{3} \subset N^{2} e_{3} m_{3}=0$ for $r_{3} \in N e_{3}$.
(1) Assume that $\rho=0$ and $\mu>0$. Then $e_{2}^{\prime}=e_{1}$. If $e_{3}^{\prime} \neq e_{2}$ then $e_{3} \neq e_{1}$, $v_{1} r^{\prime} m_{1}=v_{1} r^{\prime \prime} m_{1}=0$ and $w_{1} r^{\prime} m_{1}=w_{1} r^{\prime \prime} m_{1}=0$ for $r^{\prime} \in A u_{1}$ and $r^{\prime \prime} \in A u_{2}$. Hence by the lemma 7 m is directly indecomposable and this is a contradiction. If $e_{3}^{\prime}=e_{2}$ then $e_{3}=e_{1}$. Hence $u_{1}=w_{1}$ and if we put $N^{\mu-1} u_{2}=A v^{\prime}$ then $N^{\mu} u_{2}$ $=A v_{1} v^{\prime}$ and by the assumption $A u_{2}$ have no composition factor isomorphic to $\overline{A e_{1}}$ and $\overline{A e_{2}}$ except $\frac{N^{\mu-1} u_{2}}{N^{\mu} u_{2}}$.

Now suppose that \mathfrak{m} is directly decomposable. Then $\mathfrak{m}=A e_{1} n_{1}+A e_{1} n_{2}$ $+A e_{2} n_{3}$ and some $A e_{i} n_{j}$ is the direct summand of \mathfrak{m}. Now let $n_{i}=\alpha_{i 1} m_{1}$ $+\alpha_{i 2} m_{2}+\alpha_{i 3} m_{3}(i=1,2,3)$. Then $\alpha_{11}, \alpha_{22} \in e_{1} A e_{1}, \notin e_{1} N e_{1}, \alpha_{33} \in e_{2} A e_{2}, \notin e_{2} N e_{2}$, $\alpha_{13}, \alpha_{23} \in e_{2} N e_{1}$ and $\alpha_{31}, \alpha_{32} \in e_{2} N e_{1}$.
Hence $w_{1} n_{1}=a_{11} w_{1} m_{1}+a_{12} w_{1} m_{2} \quad\left(\alpha_{i j}=a_{i j}+r_{i j}, \quad a_{i j} \in K\right.$ and $\left.r_{i j} \in e_{i} N e_{j}\right), v_{1} v^{\prime} n_{1}$ $=a_{11} v_{1} v^{\prime} m_{1} \quad\left(\right.$ since $\left.\quad v_{1} v^{\prime} m_{2}=0\right), w_{1} n_{2}=a_{21} w_{1} m_{1}+a_{22} w_{1} m_{2} \quad$ and $\quad v_{1} n_{3}=a_{31} v_{1} v^{\prime} m_{1}$ $+a_{33} v_{1} m_{3}$.
Therefore $a_{21} w_{1} n_{1}-a_{11} w_{1} n_{2}=\left(a_{12} a_{21}-a_{11} a_{22}\right) w_{1} m_{2}=\left(a_{12} a_{21}-a_{11} a_{22}\right) v_{1} v^{\prime} m_{1}=$ $\frac{a_{12} a_{21}-a_{11} a_{22}}{a_{11}} v_{1} v^{\prime} n_{1}$ and $v_{1} n_{3}=\frac{a_{31}}{a_{11}} v_{1} v^{\prime} n_{1}+a_{33} w_{1} m_{1}=\frac{a_{31}}{a_{11}} v_{1} v^{\prime} n_{1}+\frac{a_{33} a_{22} w_{1} n_{1}-a_{33} a_{11} w_{1} n_{2}}{\left(a_{11} a_{22}-a_{21} a_{12}\right)}$. Thus $A e_{1} n_{1} \cap\left(A e_{1} n_{2}+A e_{2} n_{3}\right) \neq 0, A e_{1} n_{2} \cap\left(A e_{1} n_{1}+A e_{2} n_{3}\right) \neq 0$ or $A e_{2} n_{3} \cap\left(A e_{1} n_{1}\right.$ $\left.+A e_{1} n_{2}\right) \neq 0$. But this is a contradiction.

If $\rho>0$ and $\mu=0$ then similarly as above we can show that this lemma is true.
(2) Assume that $\rho>0$ and $\mu>0$. Then we can assume that $e_{1} \neq e_{2}$, $e_{2}^{\prime}, e_{3}, e_{3}^{\prime}$.
(2.1) Assume that $e_{2} \neq e_{3}^{\prime}$ (accordingly $e_{2}^{\prime} \neq e_{3}$) and $e_{2}^{\prime} \neq e_{3}^{\prime}$. If $v_{1} r_{1} m_{1} \neq 0$ for $r_{1} \in A u_{1}$ then there exists an integer ν such that $\frac{N^{\nu-1} u_{1}}{N^{\nu} u_{1}}$ $\approx \overline{A e_{2}}$ and $\frac{N^{\nu} u_{1}}{N^{\nu+1} u_{1}} \cong \overline{A v_{1}}$. But this contradicts the assumption since $e_{2} \neq e_{2}^{\prime}$ and $\nu \varsubsetneqq \rho$. Hence $v_{1} r_{1} m_{1}=0$. Next if $v_{1} r_{2} m_{1} \neq 0$ for $r_{2} \in A u_{2}$ then there exists an integer ν such that $\frac{N^{\nu-1} u_{2}}{N^{\nu} u_{2}} \cong \overline{A e_{2}}$ and $\frac{N^{\nu} u_{2}}{N^{\nu+1} u_{2}} \cong \overline{A v_{1}}$. But if $\nu \nRightarrow \mu$ then this contradicts the assumption and if $\nu=\mu$ then $e_{3}^{\prime}=e_{2}$. But this contradicts the assumption. Thus $v_{1} r_{2} m_{1}=0$ for $r_{2} \in A u_{2}$.

Similarly $w_{1} r^{\prime} m_{1}=0$ for $r^{\prime} \in N e_{1}$. Moreover $N^{\rho} u_{1} r_{1} m_{1} \subset N^{\rho+1} u_{1} m_{1}=0$ for $r_{1} \in A u_{1}$ and if $N^{\rho} u_{1} r_{2} m_{1} \neq 0$ for $r_{2} \in A u_{2}$ then $N^{\rho} u_{1} r_{2} m_{1}=N^{\mu} u_{2} m_{1}$ and $e_{2}^{\prime}=e_{3}^{\prime}$. But this is a contradiction. Thus $N^{\rho} u_{1} r_{2} m_{1}=0$. Similarly $N^{\mu} u_{2} r^{\prime} m_{1}=0$ for $r^{\prime} \in N e_{1}$. Therefore by the lemma 7 m is directly indecomposable since $e_{1} \neq e_{2} \neq e_{3}$.
(2.2) Assume that $e_{2}=e_{3}^{\prime}$ (accordingly $e_{3}=e_{2}^{\prime}$). Then there exist $r_{1} \in A u_{1}$ and $r_{2} \in A u_{2}$ such that $N^{\rho} u_{1} m_{1}=A w_{1} r_{1} m_{1}$ and $N^{\mu} u_{2} m_{1}=A v_{1} r_{2} m_{1}$. In this case $N^{\rho} u_{1} r m_{1}=0\left(r \in N e_{1}\right)$ and $N^{\mu} u_{2} r^{\prime} m_{1}=0\left(r^{\prime} \in N e_{1}\right)$ since $e_{2}^{\prime} \neq e_{3}^{\prime}$. Now suppose that \mathfrak{m} is directly decomposable. Then $\mathfrak{m}=A e_{1} n_{1}+A e_{2} n_{2}$ $+A e_{3} n_{3}$ and some $A e_{i} n_{i}$ is the direct summand of m. Now let

$$
n_{i}=\alpha_{i 1} m_{1}+\alpha_{i 2} m_{2}+\alpha_{i 3} m_{3} \quad(i=1,2,3)
$$

Then $\alpha_{i i} \in e_{i} A e_{i}, \notin e_{i} N e_{i}$ ann $\alpha_{i j} \in e_{i} N e_{j}(i \neq j)$ since $e_{1} \neq e_{2} \neq e_{3}$.
Now $N^{\rho} u_{1} n_{1}=N^{\rho} u_{1} m_{1}$ and $N^{\mu} u_{2} n_{1}=N^{\mu} u_{2} m_{1}$. Next $v_{1} n_{2}=a_{22} v_{1} m_{2}+a_{21} v_{1} r_{2} m_{1}$ $\left(r_{2} \in A u_{2}, a_{22}, a_{21} \in K\right)$. Then $A e_{2} n_{2} \cap A e_{1} n_{1} \neq 0$ since $v_{1} m_{2} \in N^{\rho} u_{1} m_{1}=N^{\rho} u_{1} n_{1}$ and $v_{1} r_{2} m_{1} \in N^{\mu} u_{2} m_{1}=N^{\mu} u_{2} n_{1}$. Similarly $A e_{3} n_{3} \cap A e_{1} n_{1} \neq 0$. But this is a contradiction and m is directly indecomposable.
(2.3) Assume that $e_{2}^{\prime}=e_{3}^{\prime}$ (accordingly $e_{2}=e_{3}$ add $v_{1}=w_{1}$). Then we can assume that there exists $r \in A u_{2}$ such that $N^{\mu} u_{2} m_{1}=N^{\rho} u_{1} r m_{1}$. Therefore $N^{\mu} u_{2} r^{\prime} m_{1} \subset N^{\mu_{+1}} u_{1} m_{1}=0$ for $r^{\prime} \in A u_{1}$ since $\mu \geqq \rho$. Moreover $v_{1} r m_{1}=0$ and $w_{1} r^{\prime} m_{1}=0$ for $r, r^{\prime} \in N e_{1}$ since $e_{2} \neq-e_{3}^{\prime}$ and $e_{2}^{\prime} \neq e_{3}$.

Now suppose that \mathfrak{m} is directly decomposable. Then $m=A e_{1} n_{1}+A e_{2} n_{2}$ $+A e_{3} n_{3}$ and some $A e_{i} n_{i}$ is the direct summand of m . Now let

$$
n_{i}=\alpha_{i 1} m_{1}+\alpha_{i 2} m_{2}+\alpha_{i 3} m_{3} \quad(i=1,2,3)
$$

Then $\alpha_{i 1} \in e_{1} A e_{1}, \notin e_{1} N e_{1}, \alpha_{22}, \alpha_{33} \in e_{2} A e_{2}, \notin e_{2} N e_{2}, \alpha_{1 j} \in e_{1} N e_{j}$ and $\alpha_{j 1} \in e_{j} N e_{1}$ ($j \neq 1$). Now $N^{\rho} u_{1} n_{1} \subset N^{\rho} u_{1} m_{1}+N^{\mu} u_{2} m_{1}$ and $N^{\mu} u_{2} n_{1}=N^{\mu} u_{2} m_{1}$. Next $v_{1} n_{2}$ $=a_{22} v_{1} m_{2}+a_{22} v_{1} m_{3}$ and $v_{1} n_{3}=a_{32} v_{1} m_{2}+a_{33} v_{1} m_{3}\left(a_{i j} \in K\right)$.
Hence $v_{1} m_{2}=\frac{a_{33} v_{1} n_{2}-a_{22} v_{1} n_{3}}{\left(a_{22} a_{33}-a_{32} a_{23}\right)}$ and $v_{1} m_{3}=\frac{a_{22} v_{1} n_{3}-a_{32} v_{1} n_{2}}{\left(a_{22} a_{33}-a_{23} a_{32}\right)}$. Thus $\frac{a_{22} v_{1} n_{3}-a_{32} v_{1} n_{2}}{\left(a_{22} a_{33}-a_{23} a_{32}\right)}$
$\in N^{\mu} u_{2} n_{1}$ since $v_{1} m_{3} \in N^{\mu} u_{2} m_{1}$ and $\frac{a_{33} v_{1} n_{2}-a_{23} v_{1} n_{3}}{\left(a_{22} a_{33}-a_{32} a_{23}\right)} \in N^{\rho} u_{1} n_{1}+N^{\mu} u_{2} n_{1} \quad$ since $v_{1} m_{2} \in N^{\rho} u_{1} m_{1}$ and $N^{\rho} u_{1} m_{1} \subset N^{\rho} u_{1} n_{1}+N^{\mu} u_{2} m_{1}=N^{\rho} u_{1} n_{1}+N^{\mu} u_{2} n_{1}{ }^{4]}$.
Therefore $A e_{i} n_{i} \cap\left(A e_{j} n_{j}+A e_{k} n_{k}\right) \neq 0$. But this is a contradiction.
By this lemma 6 we have
Corollary 4. If $\left\{\frac{N e_{2}}{N^{2} e_{2}}, \cdots, \frac{N e_{r}}{N^{2} e_{r}}\right\}$ is a chain then $r=2$.
Proof. Assume that $r=3$. If $\frac{N e_{i}}{N^{2} e_{i}} \supset \overline{A u}_{i}(i=1,2,3)$ and $\overline{A u_{1}} \cong \overline{A u_{2}}$ $\cong \overline{A u_{3}}$ then this contradicts the lemma 3 and if $\frac{N e_{2}}{N^{2} e_{2}}=\overline{A u_{1}} \oplus \overline{A u_{2}}, \overline{A u_{1}}$ is isomorphic to a simple component of $\frac{N e_{1}}{N^{2} e_{1}}$ and $\overline{A u_{2}}$ is isomorphic to a simple component of $\frac{N e_{3}}{N^{2} e_{3}}$ then this contradicts the lemma 6.

Lemma 8. Assume that $\frac{N e_{1}}{\mathfrak{p}_{1}} \simeq \frac{A u}{\mathfrak{p}_{2}}$ where $N e_{2}=A u+A v\left(\right.$ or $\left.N e_{2}=A u\right)$, $\left(e_{1} \neq e_{2}\right), \mathfrak{p}_{1}$ is a left subideal in $N e_{1}$ anc \mathfrak{p}_{2} is a left subideal in $A u$ which contains $A u \cap A v$. Then $\frac{N e_{1}}{\mathfrak{p}_{1}}=\widetilde{N e_{1}}$ has no composition factor isomorphic to a vertice component except $\frac{\widetilde{N e_{1}}}{\widetilde{N^{2} e_{1}}}$.

Proof. By the corollary $1, \frac{N e_{1}}{\mathfrak{p}_{1}}$ is uniserial. From now on we assume that $\mathfrak{p}_{1}=0$ and $\mathfrak{p}_{2}=0$. Now suppose that $\frac{N^{\rho+1} e_{1}}{N^{\rho+2} e_{1}}(\rho \geqq 1)$ is isomorphic to a vertice component. Then there exist $A e_{3}$ and $A e_{3}^{\prime}$ such that $\left\{\frac{N e_{3}}{N^{2} e_{3}}, \frac{N e_{3}^{\prime}}{N^{2} e_{3}^{\prime}}\right\}$ is a chain $\left(\frac{N e_{3}^{\prime}}{N^{2} e_{3}^{\prime}}\right.$ is assumed to be simple $), \frac{N^{\rho} e_{1}}{N^{\rho+1} e_{1}} \simeq \overline{A e_{3}^{\prime}}$ (accordingly $\frac{N^{\rho+1} e_{1}}{N^{\rho+2} e_{1}} \simeq \frac{N e_{3}^{\prime}}{N^{2} e_{3}^{\prime}}$). Now we put $N^{\rho+1} e_{1}=A u_{1}, N^{\rho} u=A u_{2}, N e_{3}$ $=A w$ (or $\left.N e_{3}=A w+A w^{\prime}\right)$ and $N e_{3}^{\prime}=A w^{\prime \prime}$. Then $A u_{1}=A w^{\prime \prime} u^{\prime}$ where $N^{\rho} e_{1}$ $=A u^{\prime}$. Moreover we may assume that any composition factor of $\frac{N^{2} e_{1}}{N^{\rho+1} e_{1}}$ is not isomorphic to a vertice component.

Now we construct an A-left module $\mathfrak{m}=A e_{1} m_{1}+A e_{2} m_{2}+A e_{3} m_{3}$ in the following way:

[^2](α) $N^{\rho+2} e_{1} m_{1}=N^{\rho+1} u m_{2}=N^{2} e_{3} m_{3}=v m_{2}=0$. (If $N e_{3}=A w+A w^{\prime}$ then $N w m_{3}=A w^{\prime} m_{3}=0$.)
(β) $N^{\rho+1} e_{1} m_{1}=N^{\rho} u m_{2}=N e_{3} m_{3}$.
(1) Assume that $e_{1} \neq e_{3}$ and $e_{2} \neq e_{3}$. Then $N^{\rho+1} e_{1} r m_{1} \subset N^{\rho+2} e_{1} m_{1}=0$ for $r \in N e_{1}, N^{\rho+1} e_{1} r^{\prime} m_{2} \subset N^{\rho+1} u m_{2}=0$ for $r^{\prime} \in N e_{2}, N^{\rho+1} e_{1} r^{\prime \prime} m_{3} \subset N^{\rho+1} e_{3} m_{3}=0$ for $r^{\prime \prime} \in N e_{3}, N^{\rho} u p m_{1} \subset N^{\rho+2} e_{1} m_{1}=0$ for $p \in N e_{1}, N^{\rho} u p^{\prime} m_{2} \subset N^{\rho+1} u m_{2}=0$ for $p^{\prime} \in N e_{2}$, and $N^{\rho} u p^{\prime \prime} m_{3} \subset N^{\rho+1} e_{3} m_{3}=0 \quad$ for $p^{\prime \prime} \in N e_{3}$. Next $N e_{3} p m_{1}=0$ $\left(p \in N e_{1}\right)$ and $N e_{3} p^{\prime} m_{2}=0\left(p^{\prime} \in N e_{2}\right)$ since $e_{1} \neq e_{3}, e_{2} \neq e_{3}$ and $\frac{N e_{1} m_{1}}{N^{\rho+1} e_{1} m_{1}}$ has no composition factor isomorphic to a vertice component. Then by the lemma 7 m is directly indccomposable.
(2) Assume that $e_{1}=e_{3}$. Then $N e_{1} m_{1}=A w m_{1}, A w m_{3}=N^{\rho+1} e_{1} m_{1}=N^{\rho} u m_{2}$ and we put $N^{\rho+1} e_{1} m_{1}=A u_{1} m_{1}$ and $N^{\rho} u m_{2}=A u_{2} m_{2}$.

Now suppose that \mathfrak{m} is directly decomposable. Then $\mathfrak{m}=A e_{1} n_{1}+A e_{2} n_{2}$ $+A e_{3} n_{3}$ and some $A e_{i} n_{i}$ is the direct summand of \mathfrak{m}. Now let $n_{i}=\alpha_{i 1} m_{1}$ $+\alpha_{i 2} m_{2}+\alpha_{i 3} m_{3}(i=1,2,3)$. Then $\alpha_{11}, \alpha_{33} \in e_{1} A e_{1}, \notin e_{1} N e_{1}, \alpha_{22} \in e_{2} A e_{2}, \notin e_{2} N e_{2}$, $\alpha_{21}, \alpha_{23} \in e_{2} N e_{1}$ and $\alpha_{12}, \alpha_{32} \in e_{1} N e_{2}$. Now $u_{1} n_{1}=a_{11} u_{1} m_{1}$ and $u_{2} n_{2}=a_{22} u_{2} m_{2}$ $\left(a_{i i} \in K\right)$ since $e_{1} \neq e_{2}$ and $\rho \geq 1$. Next $w n_{3}=a_{31} w m_{1}+a_{33} w m_{3}$ and $w n_{1}$ $=a_{11} w m_{1}+a_{13} w m_{3}$.
Hence $w m_{1}=\frac{a_{13} w n_{3}-a_{23} w n_{1}}{a_{31} a_{13}-a_{11} a_{33}}$ and $w m_{3}=\frac{a_{11} w n_{3}-a_{31} w n_{1}}{a_{11} a_{33}-a_{13} a_{31}}$. Thus $\frac{a_{11} w n_{3}-a_{31} w n_{1}}{a_{11} a_{33}-a_{13} a_{31}}$ $=\frac{u_{1} n_{1}}{a_{11}}=\frac{u_{2} n_{2}}{a_{22}}$. Therefore $A e_{1} n_{1} \cap\left(A e_{1} n_{3}+A e_{2} n_{2}\right) \neq 0, A e_{1} n_{3} \cap\left(A e_{1} n_{1}+A e_{2} n_{2}\right) \neq 0$ or $A e_{2} n_{2} \cap\left(A e_{1} n_{1}+A e_{1} n_{3}\right) \neq 0$. But this is a contradiction. If $e_{3}=e_{2}$ then similarly as this we can show that this is true.

By the condition 1 and 2 we have the following corollary.
Corollary 5. Assume that $N e=A u_{1}+A u_{2}$ and $A u_{1} \cap A u_{2} \neq 0$. If $A u_{1} \cap A u_{2} \subset N \xi_{i}, \not \subset N^{2} \xi_{i}$ where $A \xi_{i} \subset A u_{i}(i=1,2)$ then $\overline{A \xi_{1}} \neq \overline{A \xi_{2}}$.

Proof. By the condition 1 (accordingly by the corollary 1) $\frac{A u_{i}}{A u_{1} \cap A u_{2}}$ $(i=1,2)$ are uniserial. Now suppose that $\overline{A \xi_{1}} \simeq \overline{A \xi_{2}}$. If we put $N^{\lambda} u_{1}=A \xi_{1}$ and $N^{\mu} u_{2}=A \xi_{2}$ and assume that $\frac{N^{\lambda-1} u_{1}}{N^{\lambda} u_{1}} \cong \frac{N^{\mu-1} u_{2}}{N^{\mu} u_{2}}$ then $\overline{A \xi_{1}}\left(\cong \overline{A \xi_{2}}\right)$ is isomorphic to a vertice component but this contradicts the condition 2. Thus we may assume that $\frac{A u_{1}}{N^{\lambda+1} u_{1}} \cong \frac{N^{\mu+\lambda} u_{2}}{N^{\mu_{+1}} u_{2}}$.

Next if $\frac{N^{\mu-\lambda-1} u_{2}}{N^{\mu-\lambda} u_{2}} \neq \overline{A e}$ then $\frac{N^{\mu-\lambda} u_{2}}{N^{\mu-\lambda+1} u_{2}}$ is isomorphic to a vertice component but this contradicts the condition 2. Therefore $\frac{N^{\mu-\lambda-1} u_{2}}{N^{\mu-\lambda} u_{2}} \simeq \overline{A e}$,

Hence $\frac{A e}{A u_{2}}$ is homomorphic onto $N^{\mu-\lambda-1} u_{2}$. If $u_{2} N^{\mu-\lambda-1} u_{2} \neq 0$ then $N^{\mu-\lambda} u_{2}$ $=A \zeta_{1}+A \zeta_{2}$ where $A \zeta_{1}=A u_{1} \cap A u_{2}$. Hence $N^{\mu-\lambda-1} u_{2}=A \xi_{2}$ and $\overline{A \xi_{1}} \cong \overline{A \xi_{2}}$ $\approx \overline{A e}$. But in this case similarly as above we can see that this is a contradiction. \quad Therefore $\quad N^{\mu+1} u_{2}=0 \quad$ since $\frac{A u_{1}}{N^{\lambda+1} u_{1}} \cong \frac{N^{\mu-\lambda} u_{2}}{N^{\mu+1} u_{2}}$ and $N^{\lambda+1} u_{1}$
[2.4] In order to prove that the rest conditions are satisfied we shall prove the following lemmas.

Lemma 9. Assume that there exist \mathfrak{p}_{1} and \mathfrak{p}_{2} such that $s\left(\frac{A e_{1}}{\mathfrak{p}_{1}}\right)>\widetilde{A u_{1}}$, $s\left(\frac{A e_{2}}{\mathfrak{p}_{2}}\right) \supset \widetilde{A u_{2}}$ and $\widetilde{A u_{1}} \cong \widetilde{A u_{2}}$ where $\mathfrak{p}_{i}(i=1,2)$ are left subideals in $N e_{i}$ and $\frac{A e_{i}}{\mathfrak{p}_{i}}=\widetilde{A e_{i}}$. If there exist $\widetilde{A w}_{i}(i=1,2)$ which are left subideals in $\widetilde{N e_{i}}(i=1,2)$ such that $\widetilde{A u_{i}} \subset \widetilde{N w_{i}}, \not \subset \widetilde{N}^{2} w_{i}(i=1,2)$ and the isomorphism $\widetilde{A u_{1}} \cong \widetilde{A u_{2}}$ cannot be extended to any homomorphism of $\widetilde{A w_{1}}$ onto $\widetilde{A w_{2}}$ and of $\widetilde{A w_{2}}$ onto $\widetilde{A w_{1}}$ then $\frac{\widetilde{A w}_{1}}{\widetilde{N w}_{1}} \neq \frac{\widetilde{A w}_{2}}{\widetilde{N w_{2}}}$.

Proof. Suppose that $\frac{\widetilde{A w_{1}}}{\widetilde{N w_{1}}} \cong \frac{\widetilde{A w_{2}}}{\widetilde{N w_{2}}} \cong \overline{A e^{\prime}}$. If $\widetilde{N w_{1}}=\widetilde{A u_{1}}$ and $\widetilde{N w_{2}}=\widetilde{A u_{2}}$ then this is a contradiction since $\widetilde{A w_{1}} \cong \widetilde{A w_{2}}$. If $\widetilde{N w_{1}}=\widetilde{A v_{1}} \oplus \widetilde{A u_{1}}$ and $\widetilde{N w_{2}}=\widetilde{A u_{2}}$ then this is a contradiction since $\frac{\widetilde{A w_{1}}}{\widetilde{A v_{1}}} \cong \widetilde{A w_{2}}$. If $\widetilde{N w_{1}}=\widetilde{A v_{1}} \oplus$ $\widetilde{A u_{1}}, \widetilde{N w_{2}}=\widetilde{A v_{2}} \oplus \widetilde{A u_{2}}$ and $\widetilde{A v_{i}}(i=1,2)$ are simple then this is a contradiction since $\widetilde{A w_{1}} \cong \widetilde{A w_{2}}$. If $\widetilde{N w_{1}}=\widetilde{A v_{1}} \oplus \widetilde{A u_{1}}, \widetilde{N w_{2}}=\widetilde{A v_{2}} \oplus \widetilde{A u_{2}}$ and there exists $\mathfrak{p}^{\prime} \subset \widetilde{A v_{1}}$ such that $\widetilde{A v_{2}} \simeq \frac{\widetilde{A v_{1}}}{\mathfrak{p}^{\prime}}$ then this is a contradiction since $\widetilde{A w_{2}} \cong \frac{\widetilde{A w_{1}}}{\mathfrak{p}^{\prime}}$.

By this lemma we can see that these $\widetilde{A u_{i}}(i=1,2)$ are isomorphic to a vertice component.

Next let A be an algebra (not necessarily of 2 -cyclic representation type) satisfying the condition (1) and (2).
5) In this corollary if $\overline{A \xi_{1}} \neq \overline{A \xi_{2}}$ and $A u_{1} \cap A u_{2} \neq 0$ then no composition factor of $\frac{A u_{1}}{A u_{1} \cap A u_{2}}$ is not isomorphic to any composition factor of $\frac{A u_{2}}{A u_{1} \cap A u_{2}}$. (The proof is as similarly as above,)

Corollary 6. Assume that $\left\{\frac{N^{\rho} e_{1}}{N^{\rho+1} e_{1}}, \frac{N^{\rho+\nu} e_{2}}{N^{\rho+\nu+1} e_{2}}\right\}(\rho=1, \cdots, t-1, \nu \geqq 0)$ are chains. If there exist $A u_{i}(i=1,2)$ such that $A u_{1} \subset N^{t-1} e_{1}, \not \subset N^{t} e_{1}$, $A u_{2} \subset N^{t+\nu-1} e_{2}, \not \subset N^{t+\nu} e_{2}$ and $\frac{A u_{1}}{A u_{1} \cap N^{t} e_{1}} \cong \frac{A u_{2}}{A u_{2} \cap N^{t+v} e_{2}}$ then there exist Aw $\left(\subset A e_{i}\right)(i=1,2)$ such that $\frac{A e_{1}}{N^{t} e_{1}}>\widetilde{A w_{1}}>\widetilde{A u_{1}}, \frac{A e_{2}}{N^{t+\nu} e_{2}}>\widetilde{A w_{2}}>\widetilde{A u_{2}}, A w_{1} \subset$ $N e_{1}, \not \subset N^{2} e_{1}, A w_{2} \subset N^{\nu+1} e_{2}, \not \subset N^{\nu+2} e_{2}$ and the homomorphism of $\widetilde{A w_{1}}$ onto $\widetilde{A w_{2}}$ (or of $\widetilde{A w_{2}}$ onto $\widetilde{A w_{1}}$) is the extension of the isomorphism $\widetilde{A u_{1}} \cong \widetilde{A u_{2}}$.

Proof. Let $A w_{1}^{\prime}$ and $A w_{2}^{\prime}$ be maximal subideals in $A e_{1}$ and $A e_{2}$ such that $\widetilde{A w_{1}^{\prime}}>\widetilde{A u_{1}}, \widetilde{A w_{2}^{\prime}}>\widetilde{A u_{2}}$ and $\widetilde{A w_{i}^{\prime}}(i=1,2)$ are uniserial. If $\widetilde{N e_{1}}$ $=\widetilde{A w_{1}^{\prime}}$ and $\overparen{N^{v+1} e_{2}}=\widetilde{A w_{2}^{\prime}}$ then this is trivial. Now assume that $\widetilde{N e_{1}}=\widetilde{A w_{1}^{\prime \prime}} \oplus$ $\widetilde{A w_{1}^{\prime}}, \widetilde{N e_{2}}=\widetilde{A w_{2}^{\prime}}, \widetilde{A u_{1}}=\widetilde{N^{\rho_{1}} w_{1}^{\prime}}$ and $\widetilde{A u_{2}}=\widetilde{N^{\rho_{2} w_{2}^{\prime}}}$. If $\frac{\widetilde{N^{\rho_{2}-1} w_{2}^{\prime}}}{\widetilde{N^{\rho_{2} w_{2}^{\prime}}}}$ is not isomorphic to $\frac{\overparen{N^{\rho_{1-1} w_{1}^{\prime}}}}{\overparen{N^{\rho_{1} w_{1}^{\prime}}}}$ then $\widetilde{A u_{1}}$ is isomorphic to a vertice component. Now assume that there exists an integer λ_{1} such that $\frac{\overparen{N^{\rho_{2}-1} w_{2}^{\prime}}}{\overparen{N^{\rho_{2} w_{2}^{\prime}}}} \simeq \frac{\overparen{N^{\lambda_{1}-1} w_{1}^{\prime \prime}}}{\widetilde{N^{\lambda_{1}} w_{1}^{\prime \prime}}}$. Then there exists an integer μ such that $\frac{\overparen{A w_{2}^{\prime \prime}}}{\overparen{N^{\lambda} w_{1}^{\prime \prime}}} \approx \frac{\overparen{N^{\nu} w_{1}^{\prime}}}{\overparen{N^{\mu} w_{2}^{\prime}}}$. . Otherwise $\overparen{A w_{2}^{\prime \prime}}$ has a composition factor isomorphis to a vertice component but this contradicts the condition 2. Now from the assumption that $\left\{\frac{N e_{1}}{N^{2} e_{1}}, \frac{N^{\nu+1} e_{2}}{N^{\nu+2} e_{2}}\right\}$ is a chain $\overline{A e_{1}}$ is not isomorphic to any composition factor of $\frac{A e_{2}}{N^{\nu+1} e_{2}}$. Hence $\frac{\widetilde{A w_{1}^{\prime \prime}}}{\widetilde{N w_{1}^{\prime \prime}}}$ is a vertice component. But this contradicts the condition 2. Thus $\widetilde{A w_{1}^{\prime}} \cong \widetilde{A w_{2}^{\prime}}$ and this isomorphism is the extension of $\widetilde{A u_{1}} \cong \widetilde{A u_{2}}$.

If $\widetilde{N e_{1}}=\widetilde{A w_{1}^{\prime}}+\widetilde{A w_{1}^{\prime \prime}}, \widetilde{N e_{2}}=\widetilde{A w_{2}^{\prime}}$ and $\widetilde{A w_{1}^{\prime}} \cap \widetilde{A w_{1}^{\prime \prime}}=\widetilde{A u_{1}}$, then by the same way as above $\widetilde{A w_{1}^{\prime}} \cong \widetilde{A w_{2}^{\prime}}$ and this isomorphism is the extension of $\widetilde{A u_{1}} \cong \widetilde{A u_{2}}$.

Next assume that $\widetilde{N e_{1}}=\widetilde{A w}, \widetilde{N^{\varphi} w}=\widetilde{A w_{1}^{\prime}} \oplus \widetilde{A w_{1}^{\prime \prime}}, \widetilde{N e_{2}}=\widetilde{A w_{2}^{\prime}}$ and $\widetilde{A w_{2}^{\prime}}$ $\not \approx \widetilde{A w_{1}^{\prime}}$. If we put $\frac{\overparen{N^{\varphi-1} w}}{\widetilde{N^{\varphi} w}} \cong \overline{A e^{\prime}}$ and assume that $\widetilde{A w_{1}^{\prime \prime}} \cong \frac{\widetilde{A w_{2}^{\prime}}}{\widetilde{N^{\rho} w_{2}^{\prime}}}$ and
$\widetilde{N^{\mathrm{p}_{2} w_{2}^{\prime}}} \simeq \widetilde{N^{\mathrm{p}_{1}} w_{1}^{\prime}}$ then there exists a subideal \mathfrak{p} in $N e^{\prime}$, such that $\frac{N e^{\prime}}{\mathfrak{p}}=\widetilde{A v_{1}} \oplus$ $\widetilde{A v_{2}}, \widetilde{A v_{1}} \cong \widetilde{A \widetilde{w}_{1}^{\prime}}$ and $\widetilde{A v_{2}} \cong \widetilde{A w_{2}^{\prime}}$. In this case $\widetilde{N^{\rho_{2} v_{2}}} \cong \widetilde{A u_{2}}$ and $\widetilde{N^{\rho_{1} v_{1}}} \cong \widetilde{A u_{1}}$. But this contradicts the condition 2 since $\widetilde{A u_{1}}\left(\cong \widetilde{A u_{2}}\right)$ is isomorphic to a vertice component.

If $\widetilde{N e_{1}}=\widetilde{A w_{1}} \supseteq \widetilde{A w_{1}^{\prime}}+\widetilde{A w_{1}^{\prime \prime}}$ and $\widetilde{N e_{2}}=\widetilde{A w_{2}} \supseteq \widetilde{A w_{2}^{\prime}}+\widetilde{A w_{2}^{\prime \prime}}$ where $\widetilde{A u_{1}} \subset \widetilde{A w_{1}^{\prime}}$ and $\widetilde{A u_{2}} \subset \widetilde{A w_{2}^{\prime}}$ then similarly as above we can see that the corollary holds.

As we can see from the proof of this corollary there does not exist any homomorphism of $\widetilde{A e_{1}}$ into $\widetilde{A e_{2}}$ which is the extension of the isomorphism $\widetilde{A u_{1}} \cong \widetilde{A u_{2}}$.

Now let A be an algebra (not necessarily 2 -cyclic representation type) satisfying the condition (1) and (2). Then we have

Lemma 10. If $\left\{\frac{N^{j_{1}} e_{1}}{N^{j_{1}+1} e_{1}}, \cdots, \frac{N^{j_{r}} e_{r}}{N^{j_{r}+1} e_{r}}\right\}$ is a chain then $r=2$.
Proof. Suppose that $r=3$ and $\left\{\frac{N^{j_{1}-\nu} e_{1}}{N^{j_{1}-\nu+1} e_{1}}, \frac{N^{j_{2}-\nu} e_{2}}{N^{j_{2}-\nu+1} e_{2}}, \frac{N^{j_{3}-\nu} e_{3}}{N^{j_{3}-\nu+1} e_{3}}\right\}$ is not a chain for all $\nu \geqq 0$.
(1) Assume that $\frac{N^{j_{1} e_{1}}}{N^{j_{1}+1} e_{1}} \supset \widetilde{A u_{1}}, \frac{N^{j_{2}} e_{2}}{N^{j_{2}+1} e_{2}}>\widetilde{A u_{2}}, \frac{N^{j_{3}} e_{3}}{N^{j_{3}+1} e_{3}}>\widetilde{A u_{3}}$, and $\widetilde{A u_{1}}$ $\cong \widetilde{A u_{2}} \cong \widetilde{A u_{3}}$. Then $\widetilde{A u_{1}}$ is assumed to be isomorphic to a vertice component.
(Namely we assume that $\left\{\frac{N^{j_{1}-\nu} e_{1}}{N^{j_{1}-\nu+1} e_{1}}, \frac{N^{j_{i}-\nu} e_{i}}{N^{j_{i}^{-\nu+1}} e_{i}}\right\}(i=2,3)$ is not a chain for all ν.
$(1,1)$ Assume that $\left\{\frac{N^{j_{2}-\nu} e_{2}}{N^{j_{2}-\nu+1} e_{2}}, \frac{N^{j_{3}-\nu} e_{3}}{N^{j_{3}-\nu+1} e_{3}}\right\}$ is not a chain for all ν. If there exist $\xi_{i}(i=1,2,3)$ such that $\widetilde{A u_{i}} \subset \widetilde{N \xi_{i}}$ and $\not \subset \widetilde{N^{2 \xi}}{ }_{i}(i=1,2,3)$ then by the lemma $9 \bar{A} \bar{\xi}_{i}(i=1,2,3)$ are not isomorphic to each other. If we put $\overline{A \xi_{i}} \cong \overline{A e_{\xi_{i}}}$ then $\left\{\frac{N e_{\xi_{1}}}{N^{2} e_{\xi_{1}}}, \frac{N e \xi_{\xi_{2}}}{N^{2} e_{\xi_{2}}}, \frac{N e_{\xi_{3}}}{N^{2} e_{\xi_{3}}}\right\}$ is a chain but this contradicts the corollary 4.
(1.2) Assume that $\widetilde{A w_{2}}$ and $\widetilde{A w_{3}}$ are the largest left subideals of $\widetilde{A e_{2}}=\frac{A e_{2}}{N^{j_{2}+1} e_{2}}$ and $\widetilde{A e_{3}}=\frac{A e_{3}}{N^{j_{3}+1} e_{3}}$ such that the homomorphism of $\widetilde{A w_{i}}$ onto $\widetilde{A w_{j}}(i, j=2,3)$ is the extension of the isomorphism $\widetilde{A u_{2}} \cong \widetilde{A u_{3}}$. Then
by the lemma $9 \frac{\widetilde{A w}_{1}}{\widetilde{N w}_{2}}$ is isomorphic to a vertice component.
(1.2.1) If $\widetilde{A w_{2}}$ is uniserial or $\widetilde{A w_{2}}>\widetilde{A \eta_{2}} \oplus \widetilde{A \eta_{2}^{\prime}}$ where $\widetilde{A \eta_{2}}>\widetilde{A u_{2}}$ then this contradicts the lemma 8.
(1.2.2) Assume that $\widetilde{A w_{2}}>\widetilde{A \eta_{2}}+\widetilde{A \eta_{2}^{\prime}}$ and $\widetilde{A \eta_{2}} \cap \widetilde{A \eta_{2}^{\prime}}>\widetilde{A u_{2}}$. If we take $\widetilde{A \xi_{2}}$ and $\widetilde{A \xi_{3}}$ such that $\widetilde{A w_{2}} \subset \widetilde{N \xi_{2}}, \not \subset \widetilde{N^{2} \xi_{2}}$ and $\widetilde{A w_{3}} \subset \widetilde{N \xi_{3}}, \not \subset \widetilde{N^{2} \xi_{3}}$, then by the assumption the isomorphism of $\widetilde{A u_{2}} \cong \widetilde{A u_{3}}$ cannot be extended to the homomorphism of $\widetilde{A \xi_{2}}$ onto $\widetilde{A \xi_{3}}$ (or of $\widetilde{A \xi_{3}}$ onto $\widetilde{A \xi_{2}}$) and by the lemma $9 \frac{\widetilde{A \xi_{2}}}{\widetilde{N \xi_{2}}} \neq \frac{\widetilde{A \xi_{3}}}{\widetilde{N \xi_{3}}}$.

Now from the assumption there exist $\widetilde{A \mathcal{P}_{3}}$ and $\widetilde{A \mathcal{P}_{3}^{\prime}}$ such that $\widetilde{A w_{3}} \subset$ $\widetilde{A \mathcal{P}_{3}}+\widetilde{A \mathcal{P}_{3}^{\prime}}, \widetilde{A \mathcal{P}_{3}} \cap \widetilde{A \mathcal{P}_{3}^{\prime}}>\widetilde{A u_{3}}$ and the homomorphism of $\widetilde{A \mathcal{P}_{3}}$ onto $\widetilde{A \eta_{2}}$ (or of $\widetilde{A \eta_{2}}$ onto $\widetilde{A \mathcal{P}_{3}}$) and that of $\widetilde{A \mathcal{P}_{3}^{\prime}}$ onto $\widetilde{A \eta_{2}^{\prime}}$ (or of $\widetilde{A \eta_{2}^{\prime}}$ onto $A \rho_{3}^{\prime}$) are the extension of the isomorphism $\widetilde{A u_{2}} \cong \widetilde{A u_{3}}$. Then by the following lemma 11 this is a contradiction.
(2) Assume that $\frac{N^{j_{1}} e_{1}}{N^{j_{1}+1} e_{1}}>\widetilde{A u_{1}}, \frac{N^{j_{2}} e_{2}}{N^{j_{2}+1} e_{2}}=\widetilde{A u_{2}} \oplus \widetilde{A u_{2}^{\prime}}, \frac{N^{j_{3}} e_{3}}{N^{j_{3}+1} e_{3}}>\widetilde{A u_{3}}$, $\widetilde{A u_{1}} \cong \widetilde{A u_{2}}$ and $\widetilde{A u_{2}^{\prime}} \cong \widetilde{A u_{3}}$. Similarly as (1) we can assume that $\widetilde{A u_{1}}$ is isomorphic to a vertice component. If $\widetilde{A u_{2}}$ and $\widetilde{A u_{2}^{\prime}}$ are isomorphic to vertice components then this contradicts the lemma 6. Hence we assume that $\widetilde{A w_{2}}$ and $\widetilde{A w_{3}}$ are the largest left subideals in $\widetilde{A e_{2}}$ and $\widetilde{A e_{3}}$ such that the homomorphism of $\widetilde{A w_{2}}$ onto $\widetilde{A w_{3}}$ (or of $\widetilde{A w_{3}}$ onto $\widetilde{A w_{2}}$) is the extension of $\widetilde{A u_{2}} \cong \widetilde{A u_{3}}$. Hence $\frac{\widetilde{A w_{2}}}{\widetilde{N w_{2}}}$ is isomorphic to a vertice component. If $\widetilde{A w_{2}} \subset \widetilde{A u_{2}}$ then by the same way as (1) this is a contradiction.

If $\widetilde{A w_{2}} \searrow \widetilde{A u_{2}}$ then $\widetilde{A w_{2}} \cap \widetilde{A u_{2}}=0$ and this contradicts the lemma 6.
Lemma 11. Assume that $s\left(\frac{A e_{1}}{\mathfrak{p}_{1}}\right)>\widetilde{A u_{1}}, s\left(\frac{A e_{2}}{\mathfrak{p}_{2}}\right)>\widetilde{A u_{2}}$ and $\widetilde{A u_{1}} \cong \widetilde{A u_{2}}$ where each $\mathfrak{p}_{i}(i=1,2)$ is a left subideal in $A e_{i}$ and there is no homomorphism of $\frac{A e_{1}}{\mathfrak{p}_{1}}$ into $\frac{A e_{2}}{\mathfrak{p}_{2}}$ (or of $\frac{A e_{2}}{\mathfrak{p}_{2}}$ into $\frac{A e_{1}}{\mathfrak{p}_{1}}$) which is the extension of the isomorphism $\widetilde{A u_{1}} \simeq \widetilde{A u_{2}}$. Then at least one of $s\left(\frac{A e_{i}}{\mathfrak{p}_{i}}\right)$ is simple.

Proof. Assume that $s\left(\frac{A e_{1}}{\mathfrak{p}_{1}}\right)=\widetilde{A u_{1}} \oplus \widetilde{A v_{1}}$ and $s\left(\frac{A e_{2}}{\mathfrak{p}_{2}}\right)=\widetilde{A u_{2}} \oplus \widetilde{A v_{2}}$. Now we construct an A-left module $\mathfrak{m}=A e_{1} m_{1}+A e_{2} m_{2}$ where $\mathfrak{p}_{i} m_{i}=0$ and $u_{1} m_{1}=u_{2} m_{2}$ and suppose that m is directly decomposable. Then $\mathfrak{m}=A e_{1} n_{1} \oplus$ $A e_{2} n_{2}$ where $n_{i}=\alpha_{i_{1}} m_{1}+\alpha_{i 2} m_{2}(i=1,2)$. Now we may assume that $e_{i} n_{i}=n_{i}$, $\alpha_{i i} \in e_{i} A e_{i}, \notin e_{i} N e_{i}$ and $\alpha_{i j} \in e_{i} N e_{j}$ for $i \neq j$. Then $u_{i} n_{i} \neq 0$ and $v_{j} n_{j} \neq 0$ since by the assumption that there does not exist any homomorphism of $\frac{A e_{1}}{\mathfrak{p}_{1}}$ into $\frac{A e_{2}}{\mathfrak{p}_{2}}$ and of $\frac{A e_{2}}{\mathfrak{p}_{2}}$ into $\frac{A e_{1}}{\mathfrak{p}_{1}}$ which is the extension of $\widetilde{A u_{1}} \cong \widetilde{A u_{2}}$, there does not exist $r \in N e_{1}$ or $r^{\prime} \in N e_{2}$ such that $u_{1}=u_{2} r$ or $u_{2}=u_{1} r^{\prime}$. Hence $A e_{1} n_{1} \sim A e_{1} m_{1}$ and $A e_{2} n_{2} \sim A e_{2} m_{2}{ }^{6}$) Now if t_{i} is the length of the composition series of $A e_{i} m_{i}$ then the length of m is $t_{1}+t_{2}-1$. But from $\mathfrak{m}=A e_{1} n_{1} \oplus A e_{2} n_{2}$, the length of \mathfrak{m} is $t_{1}+t_{2}$ and this is a contradiction.

Therefore m is directly indecomposable and $s(\mathrm{~m})$ is the direct sum of at least three simple components. Thus the dual module \mathfrak{m}^{*} of \mathfrak{m} is directly indecomposable and is the sum of at least three cyclic Iight modules and A is not of 2-cyclic representation type. Hence this is a contradiction and at least one of $s\left(\frac{A e_{i}}{\mathfrak{p}_{i}}\right)$ is simple.

From the lemma 10 we have the following lemma 12.
Lemma 12. If $\left\{\frac{N^{j_{1}} e_{1}}{N^{j_{1}{ }^{+1}} e_{1}}, \frac{N^{j_{2}} e_{2}}{N^{j_{2}+1} e_{2}}\right\}$ is a chain for a pair of integers $\left(j_{1}, j_{2}\right)$ then there does not exist $A e_{3}$ such that $\left\{\frac{N^{i_{2}} e_{2}}{N^{i_{2}+1} e_{2}}, \frac{N^{i_{3}} e_{3}}{N^{i_{3}+1} e_{3}}\right\}$ is a chain for any integers i_{2} and i_{3}.

Proof. Suppose that $\left\{\frac{N^{i_{2}} e_{2}}{N^{i_{2}+1} e_{2}}, \frac{N^{i_{3}} e_{3}}{N^{i_{3}+1} e_{3}}\right\}$ is a chain. If $i_{2}=j_{2}$ then this contradicts the lemma 10. Hence we assume that $i_{2} \nsupseteq j_{2}$. Moreover similarly as the lemma 10 we can assume that the simple component $\widetilde{A u_{1}}$ of $\frac{N^{j_{2}} e_{2}}{N^{j_{2}+1} e_{2}}$ which is isomorphic to a simple component $\widetilde{A v_{1}}$ of $\frac{N^{j_{1}} e_{1}}{N^{j_{1}+1} e_{1}}$, is isomorphic to a vertice component.

Next we can assume that the simple component $\widetilde{A u_{2}}$ of $\frac{N^{i_{2}} e_{2}}{N^{i_{2}+1} e_{2}}$, which is isomorphic to a simple component $\widetilde{A w_{3}}$ of $\frac{N^{i_{3}} e_{3}}{N^{i_{3}+1} e_{3}}$, is also isomorphic to a vertice component. If it is not isomorphic to a vertice component then we can extend this isomorphism to the homomorphism

[^3]$A \xi_{2}$ onto $A \xi_{3}$ (or of $\widetilde{A \xi_{3}}$ onto $\widetilde{A \xi_{2}}$) such that $\frac{\widetilde{A \xi_{2}}}{\widetilde{N \xi_{2}}}$ is isomorphic to a vertice compount and we may only take it instead of $\widetilde{A u_{2}}$. Therefore by the same way as the lemma 10 this is a contradiction.
[2.5] Now assume that $\left\{\frac{N^{\rho} e_{1}}{N^{\rho+1} e_{1}}, \frac{N^{\rho+\nu} e_{2}}{N^{\rho+\nu+1} e_{2}}\right\} \quad(\nu \geqq 0, \rho=1, \cdots, t-1)$ are chains.
(1) First we shall show that if $\nu=0$ then at least one of $\frac{A e_{i}}{N^{t} e_{i}}$ $(i=1,2)$ is uniserial. By the lemma 2 we can assume that $\frac{N e_{1}}{N^{2} e_{1}}$ is simple and $\frac{N e_{2}}{N^{2} e_{2}}$ is not simple. If $\frac{N^{2} e_{1}}{N^{3} e_{1}}$ is not simple then $s\left(\frac{A e_{2}}{N^{3} e_{2}}\right)$ is simple. Hence if $N e_{2}=A w_{1}+A w_{2}$ then $N^{2} e_{2}=N w_{1}=N w_{2}$. Now we assume that $\overline{A w_{1}} \cong \overline{A e^{\prime}}$ and $\overline{A w_{2}} \cong \overline{A e^{\prime \prime}} \cong \frac{N e_{1}}{N^{2} e_{1}}$. Then $\frac{N e^{\prime \prime}}{N^{2} e^{\prime \prime}}$ is not simple and $\left\{\frac{N e^{\prime}}{N^{2} e^{\prime}}\right.$, $\left.\frac{N e^{\prime \prime}}{N^{2} e^{\prime \prime}}\right\}$ is a chain. Hence by the following lemma 13 we can show that this is a contradiction. Thus $\frac{N^{2} e_{1}}{N^{3} e_{1}}$ is simple and in this way we can show that $\frac{N e_{1}}{N^{t} e_{1}}$ is uniserial.

Lemma 13. Assume that $\frac{N^{\rho} e_{1}}{N^{\rho+1} e_{1}}=\widetilde{A u_{1}} \oplus \widetilde{A u_{2}}, \frac{N e_{1}}{N^{\rho} e_{1}}$ is uniserial, $\frac{\widetilde{N^{\mu} e_{2}}}{\overparen{N^{\mu+1} e_{2}}} \cong \widetilde{A u_{2}}$ and $\frac{N e_{2}}{\mathfrak{p}_{2}} \cong \frac{\widetilde{N^{\mu} e_{1}}}{\widetilde{A u_{1}}}\left(e_{1} \neq e_{2}\right)$. Then $\overline{A e_{2}} \cong \frac{N^{\mu+1} e_{1}}{N^{\mu} e_{1}}$ or $\mu=1$.

Proof. Assume that $\mu \geqq 1$ and $\overline{A e_{2}} \neq \frac{N^{\mu-1} e_{1}}{N^{\mu} e_{1}}$. Now if we put $\frac{N^{\mu-1} e_{1}}{N^{\mu} e_{1}}$ $\cong A e_{1}^{\prime}$ and we take $A e_{1}^{\prime}$ instead of $A e_{1}$ then $\frac{N e_{2}}{\mathfrak{p}_{2}} \cong \frac{\widehat{N^{2} e_{1}^{\prime}}}{\widehat{A u_{1}}}$. Hence we may assume that $\mu=2$.

Next assume that $\frac{N e_{1}}{N^{2} e_{1}} \cong \overline{A e_{3}}$. Then there exists a subideal \mathfrak{p}_{3} in $N e_{3}$ such that $\frac{A e_{3}}{\mathfrak{p}_{3}} \simeq \frac{N e_{1}}{\widetilde{A u_{2}}+\widetilde{N u_{1}}}$.

Now if we put $\frac{\overparen{N^{\rho-1} e_{3}}}{\widetilde{N^{\rho} e_{3}}}=\widetilde{A w_{1}} \oplus \widetilde{A w_{2}}$ then there exist $r \in N e_{1}, \notin N^{2} e_{1}$ such that $\tilde{u}_{1}=\widetilde{w_{1} r}$ and $\tilde{u}_{2}=\widetilde{w_{2} r}$ and by the assumption $A w_{2} \subset \mathfrak{p}_{3}$.

In order to show that this is a contradiction we construct an A-left module $\mathfrak{m}=A e_{1} m_{1}+A e_{2} m_{2}+A e_{3} m_{3}$ in the following way and show that this is directly indecomposable.

$$
\begin{gather*}
N^{\rho+1} e_{1} m_{1}=N^{\rho} e_{2} m_{2}=\mathfrak{p}_{3} m_{3}=0 \tag{1}\\
\left(\text { or } N^{\rho} v m_{1}=N^{\rho} e_{2} m_{2}=\mathfrak{p}_{3} m_{3}=0\right) .
\end{gather*}
$$

$$
\begin{equation*}
w_{1} m_{3}=u_{1} m_{1} \quad \text { and } \quad A u_{2} m_{1}=N^{\rho-1} e_{2} m_{2} \tag{2}
\end{equation*}
$$

Now suppose that \mathfrak{m} is directly decomposable. Then $\mathfrak{m}=A e_{1} n_{1}$ $+A e_{2} n_{2}+A e_{3} n_{3}$ and some $A e_{i} n_{i}$ is a direct summand of m. Now let $n_{i}=\alpha_{i_{1}} m_{1}+\alpha_{i 2} m_{2}+\alpha_{i 3} m_{3} \quad(i=1,2,3)$.
(i) Assume that $e_{1} \neq e_{2} \neq e_{3}$. Then $\alpha_{i i} \in e_{i} A e_{i}, \notin e_{i} N e_{i}$ and $\alpha_{i j} \in e_{i} N e_{j}$ ($i \neq j$).
Now $u_{1} \alpha_{12} m_{2} \in N^{\rho} e_{2} m_{2}=0$ and $u_{1} \alpha_{13} m_{3} \in N^{\rho} e_{3} m_{3} \subset \mathfrak{p}_{3} m_{3}=0$ since $A e_{1}$ is not isomorphic into $A e_{2}$ and into $A e_{3}$.
Next if $r_{11} \in e_{1} N e_{1}$ then $u_{1} r_{11} m_{1} \in N^{\rho+1} e_{1} m_{1}=0$. Thus $u_{1} n_{1}=a_{11} u_{1} m_{1}\left(a_{11} \in K\right)$. Similarly $u_{2} n_{1}=a_{11} u_{2} m_{1}$.
Next $N^{\rho} e_{2} r_{1} m_{1} \subset N^{\rho+1} e_{1} m_{1}=0$ for $r_{1} \in N e_{1}$ since $\frac{N e_{1}}{N^{2} e_{1}} \neq \overline{A e_{2}}$ and $N^{\rho} e_{2} r_{3} m_{3} \in$ $N^{\rho+1} e_{3} m_{3}=0$ for $r_{3} \in N e_{3}$ and $N^{\rho} e_{2} r_{2} m_{2} \in N^{\rho+1} e_{2} m_{2}=0$ for $r_{2} \in N e_{2}$. Hence $N^{\rho} e_{2} n_{2}=N^{\rho} e_{2} m_{2}$ and $s\left(A e_{2} n_{2}\right) \cap s\left(A e_{1} n_{1}\right) \neq 0$.

Lastly we shall show that if $w_{1} n_{3}=0$ then $w_{2} n_{3} \neq 0$.
Now suppose that $w_{1} n_{3}=0$ and $w_{2} n_{3}=0$. Then $w_{1} \alpha_{31} m_{1}+w_{1} \alpha_{33} m_{3}=0$ and $w_{2} \alpha_{31} m_{1}+w_{2} \alpha_{33} m_{3}=0$ since $w_{i} \alpha_{32} m_{2} \in N^{\rho} e_{2} m_{2}=0$ for $\alpha_{32} \in e_{3} N e_{2}$. Now from the assumption $w_{2} \alpha_{33} m_{3}=0$. Hence $w_{2} \alpha_{31} m_{1}=0$. If $\alpha_{31} \in N e_{1}, \notin N^{2} e_{1}$, then $w_{2} \alpha_{31} m_{1} \neq 0$. Thus $w_{1} \alpha_{33} m_{3}=0$. But this is a contradiction. Hence $w_{1} n_{3} \neq 0$ or $w_{2} n_{3} \neq 0$. Now assume that $w_{2} n_{3} \neq 0$. Then $w_{2} n_{3}=w_{2} \alpha_{31} m_{1}=u_{2} m_{1} \neq 0$ and $w_{2} \alpha_{31} n_{1}=a_{11} w_{2} \alpha_{31} m_{1}+w_{2} \alpha_{31} \alpha_{13} m_{3} \neq 0$. But $w_{2} \alpha_{31} \alpha_{13} m_{3} \in N^{\rho+1} e_{3} m_{3}=0$ since $w_{2} \alpha_{31} \in N^{\rho} e_{1}$. Thus $w_{2} \alpha_{31} m_{1}=u_{2} m_{1}=\frac{1}{a_{11}} w_{2} \alpha_{31} n_{1} \quad$ and $\quad w_{2} n_{3}=\frac{1}{a_{11}} w_{2} \alpha_{31} n_{1}$ $=\frac{1}{a_{11}} u_{2} n_{1}$. If $w_{1} n_{3} \neq 0$ then $w_{1} n_{3}=w_{1} \alpha_{31} m_{1}+w_{1} \alpha_{33} m_{3}=a_{31} w_{1} r m_{1}+a_{33} w_{1} m_{3}$ $=a_{31} u_{1} m_{1}+a_{33} u_{1} m_{1}=\left(a_{31}+a_{33}\right) u_{1} m_{1}=\frac{a_{31}+a_{33}}{a_{11}} u_{1} n_{1}\left(a_{i j} \in K\right)$. Therefore $s\left(A e_{1} n_{1}\right)$ $\cap s\left(A e_{3} n_{3}\right) \neq 0$. Thus $A e_{i} n_{i} \cap\left(A e_{j} n_{j}+A e_{k} n_{k}\right) \neq 0$ where $\{i, j, k\}=\{1,2,3\}$. But this is a contradiction and \mathfrak{m} is directly indecomposable.
(ii) Assume that $e_{1}=e_{2}$. Then $\alpha_{i i} \in e_{i} A e_{i}, \in e_{i} N e_{i}, \alpha_{13} \in e_{1} N e_{3}$ and $\alpha_{31} \in e_{3} N e_{1}$. Now if we put $N^{\rho-1} e_{1}=A v$ then $\widetilde{A u_{2}} \cong \widetilde{A v}$ and $u_{2} m_{1}=v m_{2}$. Similarly as (i) $u_{i} n_{1}=a_{11} u_{i} m_{1}(i=1,2)$. Next $v n_{2}=a_{21} v m_{1}+a_{22} v m_{2}\left(a_{i j} \in K\right)$ since $\overline{A e_{3}} \cong \frac{N e_{1}}{N^{2} e_{1}} \nsubseteq \overline{A e_{1}}$. On the other hand $v n_{1}=a_{11} v m_{1}+a_{12} v m_{2}$. Hence
$v n_{1}=a_{11} v m_{1}+a_{12} u_{2} m_{1}=a_{11} v m_{1}+\frac{a_{12}}{a_{11}} u_{2} n_{1}$ and $v m_{1}=\frac{a_{11} v n_{1}-a_{12} u_{2} n_{1}}{a_{11}^{2}}$. Moreover $v n_{2}=a_{21} v m_{1}+a_{22} u_{2} m_{1}=a_{21} v m_{1}+\frac{a_{22}}{a_{11}} u_{2} n_{1}$ and $v m_{1}=\frac{a_{11} v n_{2}-a_{22} u_{2} n_{1}}{a_{11} a_{21}}\left(a_{21} \neq 0\right)$. (If $a_{21}=0$ then $v n_{2}=\frac{a_{22}}{a_{11}} u_{2} n_{1}$ and $A e_{1} n_{2} \cap A e_{1} n_{1} \neq 0$.)
Thus $\frac{a_{11} v n_{1}-a_{12} u_{2} n_{1}}{a_{11}^{2}}=\frac{a_{11} v n_{2}-a_{22} u_{2} n_{1}}{a_{11} a_{21}}$ and $\left(s A e_{1} n_{1}\right) \cap s\left(A e_{1} n_{2}\right) \neq 0$. Similarly as (i) $s\left(A e_{1} n_{1}\right) \cap s\left(A e_{3} n_{3}\right) \neq 0$ and $A e_{i} n_{i} \cap\left(A e_{j} n_{j}+A e_{k} n_{k}\right) \neq 0$. But this is a contradiction and m is directly indecomposable.
(iii) Assume that $e_{1}=e_{3}$. Then $N e_{1}$ is uniserial and this is a contradiction. This lemma is equivalent to the condition (4, ii, α).

The following lemma is necessary for the proof of the condition (4, ii, β).

Lemma 14. Assume that $N e_{1}=A v+A w, \quad \frac{N^{\rho-1} v}{N^{\rho} v}=\widetilde{A u_{1}} \oplus \widetilde{A u_{2}}, \widetilde{A u_{2}}$ $=\widetilde{N^{\nu} w}$ and $\frac{N^{\rho-2} v}{N^{\rho-1} v} \neq \frac{\overparen{N^{\nu-1} w}}{\overparen{N^{\nu} w}}$. Then there does not exist $A e_{2}$ such that $\frac{\overparen{N^{\mu} e_{2}}}{\overparen{N^{\mu+1} e_{2}}}$ $\cong \widetilde{A u_{2}}$ and $\frac{N^{\rho-2} v}{N^{\rho-1} v} \neq \frac{\widetilde{N^{\mu-1} e_{2}}}{\widetilde{N^{\mu} e_{2}}}$ where $\widetilde{N e_{2}}=\frac{N e_{2}}{\mathfrak{p}}$ is uniserial (\mathfrak{p} is a subideal in $N e_{2}$).

Proof. (i) Assume that there exists $A e_{2}$ such that $\frac{\widetilde{N^{\mu} e_{2}}}{\overparen{N^{\mu+1} e_{2}}} \cong \widetilde{A u_{2}}$ and $\frac{N^{\rho-2} v}{N^{\rho-1} v} \neq \frac{\widetilde{N^{\mu-1} e_{2}}}{\widetilde{N^{\mu} e_{2}}} \neq \frac{\widetilde{N^{\nu-1} w}}{\widetilde{N^{\nu} w}}$ where $\widetilde{N e_{2}}=\frac{N e_{2}}{\mathfrak{p}}$ is uniserial. But this contradicts the lemma 3.
(ii) Assume that there exists $A e_{2}$ such that $\frac{\widetilde{N^{\mu} e_{2}}}{\widetilde{N^{\mu+1} e_{2}}} \cong \widetilde{A u_{2}}$ and $\frac{\widetilde{N^{\mu-1} e_{2}}}{\widetilde{N^{\mu} e_{2}}}$ $\cong \frac{\widetilde{N^{\nu-1} w}}{\widetilde{N^{\nu} w}}$ where $\widetilde{N e_{2}}=\frac{N e_{2}}{\mathfrak{p}}$ is uniserial. Now we put $\frac{N^{\rho-2} v}{N^{\rho-1} v} \cong \widetilde{A e_{3}}$ and $N e_{3}=A w_{1}+A w_{2}$. Then there exists $r \in N^{\rho-2} v$ such that $w_{1} r=u_{1}$ and $w_{2} r=u_{2}$. Now we construct an A-left module $\mathfrak{m}=A e_{1} m_{1}+A e_{2} m_{2}+A e_{3} m_{3}$ in the following way:

$$
\begin{gather*}
N u_{1} m_{1}=N u_{2} m_{1}=N^{\mu_{\mid 1}} e_{2} m_{2}=A w_{2} m_{3}=N w_{1} m_{3}=0 . \tag{1}\\
w_{1} m_{3}=u_{1} m_{1} \quad \text { and } \quad A u_{2} m_{1}=N^{\mu} e_{2} m_{2} . \tag{2}
\end{gather*}
$$

Then by the same way as the lemma 13 m is directly indecomposable.

Next we shall show that if $\nu \neq 0$ then at least one of $\frac{A e_{1}}{N^{t} e_{1}}$ and $\frac{A e_{2}}{N^{t+\nu} e_{2}}$ is uniserial.

Assume that $\nu \neq 0$ and $N e_{1}=A w_{1}+A w_{2}$. Then $s\left(\frac{A e_{2}}{N^{\nu+2} e_{2}}\right)$ is simple by the lemma 11 where $s\left(\frac{A e_{2}}{N^{v+2} e_{2}}\right) \cong \overline{A w_{2}}$.
 simple.
(i) Assume that $s\left(\frac{A \xi_{1}}{A \xi_{1} \cap A \xi_{2}}\right) \not \approx s\left(\frac{A \xi_{2}}{A \xi_{1} \cap A \xi_{2}}\right)$. If we put $s\left(\frac{A \xi_{1}}{A \xi_{1} \cap A \xi_{2}}\right)$ $\cong \overline{A e^{\prime}}$ and $s\left(\frac{A \xi_{2}}{A \xi_{1} \cap A \xi_{2}}\right) \cong \overline{A e^{\prime \prime}}$ then $e^{\prime} \neq e^{\prime \prime} \neq e_{1}$ and $\left\{\frac{N e^{\prime}}{N^{2} e^{\prime}}, \frac{N e^{\prime \prime}}{N^{2} e^{\prime \prime}}, \frac{N e_{1}}{N^{2} e_{1}}\right\}$ is a chain. But this contradicts the lemma 11.
(ii) Assume that $s\left(\frac{A \xi_{1}}{A \xi_{1} \cap A \xi_{2}}\right) \cong s\left(\frac{A \xi_{2}}{A \xi_{1} \cap A \xi_{2}}\right)$. If $\frac{N^{\mu_{1} \xi_{1}}}{A \xi_{1} \cap A \xi_{2}} \cong \frac{N^{\mu_{2} \xi_{2}}}{A \xi_{1} \cap A \xi_{2}}$ and $\frac{N^{\mu_{1}-1} \xi_{1}}{A \xi_{1} \cap A \xi_{2}} \neq \frac{N^{\mu_{2}-1} \xi_{2}}{A \xi_{1} \cap A \xi_{2}}$ then $\frac{N^{\mu_{i}-1} \xi_{i}}{N^{\mu_{i} \xi_{i}}}(i=1,2)$ are isomorphic to a vertice component but this contradicts the lemma 6. Thus there exists an integer μ such that $\frac{A \xi_{1}}{A \xi_{1} \cap A \xi_{2}} \cong \frac{N^{\mu \xi_{2}}}{A \xi_{1} \cap A \xi_{2}}$.

Next assume that $\frac{N^{\mu-1} \xi_{2}}{N^{\mu} \xi_{2}} \neq \overline{A e_{2}}$. Then $\frac{N^{\mu} \xi_{2}}{N^{\mu+1} \xi_{2}}$ and $\overline{A \xi_{1}}$ are isomorphic to a vertice component but this contradicts the lemma 6. Hence $\frac{N^{\mu-1} \xi_{2}}{N^{\mu \xi_{2}}}$ $\cong \overline{A e_{2}}$. Thus $N^{\mu} \xi_{2}=A \xi_{1} \eta_{\mu}$ and $\xi_{2} \eta_{\mu}=0$ since if $\xi_{2} \eta_{\mu} \neq 0$ then $A \xi_{2} \eta_{\mu}$ $=A \xi_{1} \cap A \xi_{2}$ and $A \xi_{1} \eta_{\mu} \cap A \xi_{2} \eta_{\mu} \varsubsetneqq A \xi_{1} \cap A \xi_{2}$ but this contradicts the above assumption.

Moreover if $\frac{A \xi_{1}}{A \xi_{1} \cap A \xi_{2}}$ has a composition factor isomorphic to $\overline{A \xi_{1}}$ then $\frac{A \xi_{1}}{A \xi_{1} \cap A \xi_{2}}$ has a composition factor isomorphic to $\overline{A e_{2}}$ but similarly as above this is a contradiction. Hence $A \xi_{1} \cap A \xi_{2}=0$. But this contradicts the assumption.

Thus $\frac{N e_{1}}{N^{2} e_{1}}$ is simple.
(β) Next assume that $N e_{2}=A \xi_{1}+A \xi_{2}, A \xi_{1} \cap A \xi_{2}=A \eta=N^{\nu} e_{2}$ and $\frac{N \eta}{N^{2} \eta} \cong \overline{A w_{2}}$ where $N e_{1}=A w_{1}+A w_{2}$ and $\overline{A \eta} \nsubseteq \overline{A e_{1}}$.
(i) If $s\left(\frac{A \xi_{1}}{A \xi_{1} \cap A \xi_{2}}\right) \cong \overline{A e^{\prime}}, s\left(\frac{A \xi_{2}}{A \xi_{1} \cap A \xi_{2}}\right) \cong \overline{A e^{\prime \prime}}$ and $e^{\prime} \neq e^{\prime \prime}$ then $\frac{N e^{\prime}}{N^{2} e^{\prime}}$ $\left(\right.$ or $\left.\frac{N e^{\prime \prime}}{N^{2} e^{\prime \prime}}\right)$ is isomorphic to a vertice component since $\left\{\frac{N e^{\prime}}{N^{2} e^{\prime}}, \frac{N e^{\prime \prime}}{N^{2} e^{\prime \prime}}\right\}$ is
a chain and $\frac{N^{2} e^{\prime}}{N^{3} e^{\prime}}\left(\right.$ or $\left.\frac{N^{2} e^{\prime \prime}}{N^{3} e^{\prime \prime}}\right)$ is isomorphic to a vertice component since $\left\{\frac{N^{2} e^{\prime \prime}}{N^{3} e^{\prime \prime}}, \frac{N e_{1}}{N^{2} e_{1}}\right\}$ is a chain. But this contradicts the lemma 8.
(ii) Next if $s\left(\frac{A \xi_{1}}{A \xi_{1} \cap A \xi_{2}}\right) \cong s\left(\frac{A \xi_{2}}{A \xi_{1} \cap A \xi_{2}}\right)$ then similarly as above this contradicts the corollary 5. Hence we can see that the condition (4, i) is true.

Next we shall show that the condition (4, ii) is true. Now assume that $\left\{\frac{N^{\rho} e_{1}}{N^{\rho+1} e_{1}}, \frac{N^{\rho} e_{2}}{N^{\rho+1} e_{2}}\right\}(\rho=1, \cdots, t-1)$ are chains and $\frac{N e_{2}}{N^{t} e_{2}}$ is uniserial.
(i) Assume that $N e_{1}=A u_{1}+A u_{2}$ where $A u_{i}(i=1,2)$ are uniserial, $\overline{A u_{2}} \cong \frac{N e_{2}}{N^{2} e_{2}}$ and $\frac{A u_{2}}{A u_{1} \cap A u_{2}}$ is not simple. If we put $N u_{2}=A v u_{2}$ and $N e_{2}=A \xi$ then $N^{2} e_{2}=A v \xi$ since $\overline{A u_{2}} \cong \overline{A \xi}$. Now we put $\overline{A u_{1}} \cong \overline{A e^{\prime}}, \overline{A u_{2}} \cong \overline{A e^{\prime \prime}}$ and $A v u_{2}$ $\cong \overline{A e^{\prime \prime \prime}}$. Then $e^{\prime} \neq e^{\prime \prime}$ and $e^{\prime \prime \prime} N=v A$. If $e^{\prime \prime \prime} N=v A+v^{\prime} A$ and $v^{\prime} e=v^{\prime}$ then $e \neq e^{\prime \prime}\left(v e^{\prime \prime}=v\right)$. Hence $N e=A v^{\prime}+A \alpha$ and $\overline{A v^{\prime}} \cong A v \xi$. Therefore $\overline{A \xi}$ and $\overline{A v \xi}$ are isomorphic to vertice components. But this contradicts the lemma 8. Next $e^{\prime \prime \prime} N^{2}=v u_{2} A+v \xi A$ and $e^{\prime} N=u_{1} A$ where $\overline{e^{\prime} A} \nsubseteq \overline{v A}$ and $\overline{v u_{2} A} \cong \overline{u_{1} A}$. But this contradicts the lemma 14. Thus $A u_{1} \cap A u_{2}=N u_{2}$.

Remark. From this result we can see that the following two cases are equivalent.
(1) $N e_{1}=A u_{1}+A u_{2}, N u_{2} \nleftarrow A u_{1}$ and $\frac{N e_{2}}{N^{3} e_{2}} \cong \frac{A u_{2}}{N^{2} u_{2}} \quad\left(e_{2} \neq e_{1}\right)$.
(2) $\frac{N e_{1}}{N^{2} e_{1}}$ is simple, $N^{2} e_{1}=A u_{1}+A u_{2}, \frac{N e_{1}}{N^{2} e_{1}} \neq \overline{A e_{2}}$ and $\overline{A u_{2}} \cong \frac{N e_{2}}{N^{2} e_{2}}$.
(ii) Assume that $N e_{1}=A u_{1}+A u_{2}$ where $N^{\mu} u_{1}=A w_{1}+A w_{2}$. Then $A w_{2} \subset A u_{2}$ (or $A w_{1} \subset A u_{2}$) and $s\left(\frac{A u_{1}}{A u_{1} \cap A u_{2}}\right) \nVdash s\left(\frac{A u_{2}}{A u_{1} \cap A u_{2}}\right)$ since $A u_{1} \cap A u_{2}$ $\neq 0$. Hence similarly as (i) each composition factor of $\frac{A u_{1}}{A u_{1} \cap A u_{2}}$ is not isomorphic to any composition factor of $\frac{A u_{2}}{A u_{1} \cap A u_{2}}$.

Now if $\frac{N e_{2}}{N^{t} e_{2}} \cong \frac{A u_{2}}{N^{s} u_{2}}$ where $N^{s} u_{2} \varsubsetneqq A u_{1} \cap A u_{2}$ then there exists p such that $\overline{A w_{2}} \cong \frac{N^{p} e_{2}}{N^{p+1} e_{2}}\left(\right.$ or $\left.\overline{A w_{1}} \cong \frac{N^{p} e_{2}}{N^{p+1} e_{2}}\right) . \quad$ But this contradicts the lemma 13 since $\frac{N e_{2}}{N^{2} e_{2}} \neq \frac{A u_{1}}{N u_{1}}$.

Next if $\frac{N e_{2}}{N^{t} e_{2}} \cong \frac{A u_{1}}{A w_{2}+N w_{1}}\left(\right.$ or $\left.\frac{N e_{2}}{N^{t} e_{2}} \cong \frac{A u_{1}}{A w_{1}+N w_{2}}\right)$ then $t \geqq 3$. But this contradicts the first half of the condition (4, ii). Since similarly as (i) if $\frac{N e_{2}}{N^{t} e_{2}} \cong \frac{A u_{1}}{A w_{2}+N w_{1}}$ and $t \geqq 3$ then there exist $A e^{\prime}$ and $A e^{\prime \prime}$ such that $\frac{N e^{\prime}}{N^{2} e^{\prime}}$ is simple, $N^{2} e^{\prime}=A u_{1}+A u_{2}, \frac{N e^{\prime}}{N^{2} e^{\prime}} \cong \overline{A e^{\prime \prime}}$ and $\overline{A u_{2}} \cong \frac{N e^{\prime \prime}}{N^{2} e^{\prime \prime}}$ and this contradicts the first half of the condition (4, ii). Hence $\frac{N e_{2}}{N^{3} e_{2}} \cong \frac{A u_{1}}{A w_{1}+N w_{2}}$ (or $\frac{N e_{2}}{N^{3} e_{2}} \cong \frac{A u_{1}}{N w_{1}+A w_{2}}$) and $\mu=1$. Thus the condition 4 is true.
[2.6] Next we shall prove that the condition 3 holds. For that purpose we shall prove the following lemma 15.
(2.6.1) Lemma 15. Assume that $\left\{\frac{N^{i} e_{1}}{N^{i+1} e_{1}}, \frac{N^{i} e_{2}}{N^{i+1} e_{2}}\right\}(i=1,2)$ are chains, $\frac{N e_{1}}{N^{3} e_{1}}$ is uniserial and if there exists $A e_{3}$ such that $N e_{3}=A w+A w^{\prime}$ then $N^{3} w \supseteq A w \cap A w^{\prime}$. If $A e_{1}\left(\right.$ or $\left.A e_{2}\right)$ is homomorphic onto $A w$ where $\frac{N w}{N^{2} w} \cong \frac{N e_{1}}{N^{2} e_{1}}$ then $N^{2} w=0$.

Proof. Assume that $N^{2} w \neq 0$.
(i) Assume that $\frac{N e_{2}}{N^{3} e_{2}}$ is uniserial and $A e_{2} \sim A w$. Then $\frac{N e_{1}}{N^{3} e_{1}} \cong \frac{N e_{2}}{N^{3} e_{2}}$. Now we put $\frac{N e_{1}}{N^{2} e_{1}} \cong \overline{A e^{\prime}}, \frac{N^{2} e_{1}}{N^{3} e_{1}} \simeq \overline{A e^{\prime \prime}}, N e_{1}=A u_{1}, N e_{2}=A u_{2}, N e_{3}=A w$ and $N e^{\prime}=A v$. Then $N^{2} e_{1}=A v u_{1}$ and $N^{2} e_{2}=A v u_{2}$. If $\frac{A e_{2}}{N^{3} e_{2}} \cong \frac{N e_{3}}{N^{4} e_{3}}$ then $N^{2} e_{3}$ $=A u_{2} w$ and $N^{3} e_{3}=A v u_{2} w$.
(If $N e_{3}=A w+A w^{\prime}$ and $\frac{A e_{2}}{N^{3} e_{2}} \cong \frac{A w}{N^{3} w}$ then $N w=A u_{2} w$ and $N^{2} w=A v u_{2} w$.)
Now by the condition 2 we can see that $e^{\prime} \neq e^{\prime \prime}, e_{2} \neq e^{\prime}, e_{1} \neq e^{\prime}, e_{3} \neq e_{2}$ and $e_{3} \neq e_{1}$.

If $e_{2}=e^{\prime}, e_{1}=e^{\prime}, e_{3}=e_{2}$ or $e_{3}=e_{1}$ then $e^{\prime}=e^{\prime \prime}$ and $\frac{N e_{1}}{N^{2} e_{1}}$ and $\frac{N^{2} e_{1}}{N^{3} e_{1}}$ are isomorphic to a vertice component and this contradicts the condition 2. Now we construct an A-left module $\mathfrak{m}=A e_{1} m_{1}+A e_{2} m_{2}+A e_{3} m_{3}$ where $N^{3} e_{1} m_{1}=N^{3} e_{2} m_{2}=N^{4} e_{3} m_{3}=0$, (if $N e_{3}=A w+A w^{\prime} \quad$ then $\quad N^{3} w m_{3}=w^{\prime} m_{3}=0$) $u_{1} m_{1}=u_{2} m_{2}$ and $v u_{1} m_{1}=v u_{2} m_{2}=v u_{2} w m_{3}$ and suppose that m is directly decomposable. Then $\mathfrak{m}=A e_{1} n_{1}+A e_{2} n_{2}+A e_{3} n_{3}$ and some $A e_{i} n_{i}$ is a direct summand of m . Now let

$$
n_{i}=\alpha_{i 1} m_{1}+\alpha_{i 2} m_{2}+\alpha_{i 3} m_{3} \quad(i=1,2,3),
$$

where $e_{i} n_{i}=n_{i}$. Then $\alpha_{i i} \in e_{i} A e_{i}, \notin e_{i} N e_{i}$ and $\alpha_{i j} \in e_{i} N e_{j}$ for $i \neq j$. First of all $u_{2} w n_{3}=u_{2} w \alpha_{31} m_{1}+u_{2} w \alpha_{32} m_{2}+u_{2} w \alpha_{33} m_{3}$. But $u_{2} w \alpha_{31} m_{1} \in N^{3} e_{1} m_{1}=0$ and $u_{2} w \alpha_{32} m_{2} \in N^{3} m_{2}=0$ and $u_{2} w x m_{3}=0$ for $x \ni N e_{3}$ since $\overline{A w} \nsubseteq \overline{A e_{3}}$.

Hence $u_{2} w n_{3}=a_{33} u_{2} w m_{3}\left(\alpha_{33}=a_{33}+r_{33}, a_{33} \in K\right.$ and $\left.r_{33} \in N e_{3}\right)$.
Next $u_{1} \alpha_{12} m_{2}=0$ and $u_{1} \alpha_{13} m_{3}=0$ since $e^{\prime} \neq e_{1}$ and $e_{1} \neq e_{2}$ and $u_{1} x m_{1}=0$ for $x \in N e_{1}$ since $e_{1} \neq e^{\prime} \neq e^{\prime \prime}$. Therefore $u_{1} n_{1}=a_{11} u_{1} m_{1}\left(a_{11} \in K\right)$.

Lastly assume that $u_{2} n_{2}=0$. Then $u_{2} \alpha_{21} m_{1}+u_{2} \alpha_{22} m_{2}+u_{2} \alpha_{33} m_{3}=0$. Similarly as above $u_{2} \alpha_{21} m_{1}=0$. If $u_{2} \alpha_{23} m_{3} \neq 0$ then $u_{2} \alpha_{23} m_{3}=a_{23} u_{2} w m_{3}\left(a_{23} \in K\right)$ since $\overline{A e_{2}} \simeq \overline{A w}$. Thus $a_{22} u_{2} m_{2}+a_{23} u_{2} u_{3} m_{3}=0$ since $u_{2} \alpha_{22} m_{2}=a_{22} u_{2} m_{2}\left(a_{22} \in K\right)$. But from the assumption that $A u_{2} m_{2} \neq A u_{2} w m_{3}$ this is a contradiction. Thus $u_{2} n_{2} \neq 0$ and $u_{2} n_{2}=a_{22} u_{2} m_{2}+a_{23} u_{2} w m_{3}$ and $A u_{2} n_{2} \subset A u_{2} m_{2}+A u_{2} w m_{2}$ $=A u_{1} m_{1}+A u_{2} w m_{3}=A u_{1} n_{1}+A u_{2} w n_{3}$. Hence $A e_{i} n_{i} \cap\left(A e_{j} n_{j}+A e_{k} n_{k}\right) \neq 0$ where $\{i, j, k\}=\{1,2,3\}$. This is a contradiction. Hence we can see that m is directly indecomposable.
(ii) Assume that $N e_{2}=A u_{2}, \quad N^{2} e_{2}=A v_{1} u_{2}=A v_{1} u_{2}+A v_{2} u_{2}, N e_{1}=A u_{1}$, $\overline{A u_{1}} \cong \overline{A u_{2}}, \frac{N u_{1}}{N^{2} u_{1}} \cong \overline{A v_{1} u_{2}}$ and $\overline{A e_{2}} \cong \overline{A w}$. Now if we put $N e_{3}=A w$ and assume that $\overline{A e_{2}} \cong \frac{N e_{3}}{N^{2} e_{3}}$ then $N^{2} e_{3}=A u_{2} w$ and $N^{-3} e_{3}=A v_{1} u_{2} w+A v_{2} u_{2} w$.
(If $N e_{3}=A w+A w^{\prime}$ then $\frac{A w}{N w} \cong \overline{A e_{2}}$ and $N w=A u_{2} w$ and $N^{2} w=A v_{1} u_{2} w$ $+A v_{2} u_{2} w$.)

If $\frac{N e_{1}}{N^{2} e_{1}} \cong \overline{A e^{\prime}}$ and $\frac{N^{2} e_{1}}{N^{3} e_{1}} \cong \overline{A e^{\prime \prime}}$ then similarly as (i) we can see that $e^{\prime} \neq e^{\prime \prime}, e^{\prime} \neq e_{1}, e^{\prime} \neq e_{2}, e_{2} \neq e_{3}$ and $e_{3} \neq e_{1}$. Now we construct an A-left module $\mathrm{m}=A e_{1} m_{1}+A e_{2} m_{2}+A e_{3} m_{3}$ where $N^{3} e_{1} m_{1}=N^{3} e_{2} m_{2}=N^{4} e_{3} m_{3}=0, v_{2} u_{2} m_{2}$ $=v_{2} u_{2} w m=0$ (if $N e_{3}=A w+A w^{\prime}$ then $N^{3} w m_{3}=w^{\prime} m_{3}=0$), $u_{1} m_{1}=u_{2} m_{2}$ and $v_{1} u_{1} m_{1}=v_{1} u_{2} m_{2}=v_{1} u_{2} w m_{3}$. Then similarly as (i) we can see that m is directly indecomposable.
(iii) Assume that $N e_{2}=A u_{1}+A u_{2}$ and $\overline{A u_{1}} \cong \frac{N e_{1}}{N^{2} e_{1}}$. Then by the condition (4, ii) $A u_{1} \cap A u_{2}=N u_{1}$. If $N e_{3}=A w+A w^{\prime}$ and $\overline{A e_{2}} \cong \overline{A w}$ then $N w$ $=A u_{1} w$. If $A u_{2} w \neq 0$ then $s\left(\frac{N e_{3}}{N^{2} w}\right)$ is the direct sum of at least three simple components and this contradicts the condition 1 since $A u_{1} w \neq 0$ and $N^{2} w \supset A w+A w^{\prime}$. Hence $u_{2} w=0$ and $N^{2} w=N u_{1} w=0$. Thus if $N e_{3}$ $=A w+A w^{\prime}$ then we assume that $\overline{A e_{1}} \cong \overline{A w}$.
(iii. 1) Assume that $N e_{3}=A w$ and $\overline{A e_{2}} \simeq \overline{A w}$. Now we put $N e_{1}=A v_{1}$, $\overline{A v_{1}} \simeq \overline{A u_{1}} \simeq \overline{A e^{\prime}}, \quad N e^{\prime}=A v \quad$ and $\quad \frac{N^{2} e_{1}}{N^{3} e_{1}} \cong \frac{N u_{1}}{N^{2} u_{1}} \simeq \overline{A e^{\prime \prime}} . \quad$ Then $\quad N^{2} e_{1}=A v v_{1}$, $A u_{1} \cap A u_{2}=A v u_{1}, N^{2} e_{3}=A u_{1} w+A u_{2} w$ and $N^{3} e_{3}=A v u_{1} w$. Now similarly as
(i) we can see that $e^{\prime} \neq e^{\prime \prime}, e_{1} \neq e^{\prime}, e_{2} \neq e^{\prime}, e_{1} \neq e_{3}$ and $e_{2} \neq e_{3}$ and we construct an A-left module $\mathrm{m}=A e_{1} m_{1}+A e_{2} m_{2}+A e_{3} m_{3}$ where $N^{3} e_{1} m_{1}=N^{3} e_{2} m_{2}$ $=N^{4} e_{3} m_{3}=0, v_{1} m_{1}=u_{1} m_{2}$ and $v v_{1} m_{1}=v u_{1} m_{2}=v u_{1} u_{3} m_{3}$. Then similarly as (i) \mathfrak{m} is directly indecomposable.
(iii. 2) Assume that $N e_{3}=A w+A w^{\prime}$. Then $\overline{A e_{1}} \cong \overline{A w}$. Now we put $N e_{1}=A v_{1}, \overline{A v_{1}} \cong \overline{A u_{1}} \cong \overline{A e^{\prime}}, \frac{N v_{1}}{N^{2} v_{1}} \cong \frac{N u_{1}}{N^{2} u_{1}} \cong \overline{A e^{\prime \prime}}, N e^{\prime}=A v$. Then $N^{2} e_{1}=A v v_{1}$, $A u_{1} \cap A u_{2}=A v u_{1}, N w=A v_{1} w$ and $N^{2} w=A v v_{1} w$. Now similarly as (i) we can see that $e^{\prime} \neq e^{\prime \prime}, e_{1} \neq e^{\prime}, e_{2} \neq e^{\prime} \quad e_{2} \neq e^{\prime} \quad e_{1} \neq e_{3}$ and $e_{2} \neq e_{3}$ and we construct an A-left module $\mathfrak{m}=A e_{1} m_{1}+A e_{2} m_{2}+A e_{3} m_{3}$ where $N^{3} e_{1} m_{1}=N^{3} e_{2} m_{2}$ $=N^{3} w m_{3}=w^{\prime} m_{3}=0, v_{1} m_{1}=u_{1} m_{2}$ and $v v_{1} m_{1}=v u_{1} m_{2}=v v_{1} w m_{3}$. Then \mathfrak{m} is directly indecomposable.
(iv) Assume that $N e_{2}=A u_{2}, N^{2} e_{2}=A v_{1} u_{2}+A v_{2} u_{2}, \frac{N^{2} e_{1}}{N^{3} e_{1}} \cong \overline{A v_{1} u_{2}}$ and $A e_{1} \sim A w$. Now we put $N e_{1}=A u_{1}$. Then $N u_{1}=A v_{1} u_{1}, N w=A u_{1} w$ and $N^{2} w$ $=A v_{1} u_{1} w$. Hence if we construct an A-left module $\mathfrak{m}=A e_{1} m_{1}+A e_{2} m_{2}$ $+A e_{3} m_{3}$ where $N^{3} e_{1} m_{1}=N v_{1} u_{2} m_{2}=A v_{2} u_{2} m_{2}=N^{3} w m_{3}=0$ (if $N e_{3}=A w+A w^{\prime}$ then $\left.N^{3} w m_{3}=w^{\prime} m_{3}=0\right), u_{1} m_{1}=u_{2} m_{2}$ and $v_{1} u_{1} m_{1}=v_{1} u_{2} m_{2}=v_{1} u_{1} w m_{3}$ then similarly as (i) m is directly indecomposable. Thus this is a contradiction. Therefore $N^{2} w=0$.
(2.6.2) Now we shall show that if $\frac{N e}{N^{2} e}$ is simple and $N^{2} e=A u_{1}$ $+A u_{2}$ then $A u_{1} \cap A u_{2}=N u_{1}=N u_{2}$. For that purpose assume that $N u_{2} \varsubsetneqq A u_{1}$ $\cap A u_{2}$. First $\frac{N e}{N^{2} e} \not \approx \overline{A e}$. If $\frac{N e}{N^{2} e} \cong \overline{A e}$ then $N e$ is uniserial. Hence we $\operatorname{put} \frac{N e}{N^{2} e} \simeq A e^{\prime}\left(e \neq e^{\prime}\right)$.
(α) Assume that $\overline{A u_{1}} \cong \frac{N u_{2}}{N^{2} u_{2}}$. Now we construct an A-left module $\mathfrak{m}=A e m_{1}+A e m_{2}+A e m_{3}$ where $N u_{1} m_{i}=N^{2} u_{i} m_{i}=0(i=1,2,3), A u_{1} m_{1}=N u_{2} m_{2}$ and $A u_{1} m_{2}=N u_{2} m_{3}$. Then $u_{1} r m_{i} \subset N^{4} e m_{i}=0$ for $r \in N e$ since $\frac{N e}{N^{2} e} \neq \overline{A e}$ and $N u_{2} r^{\prime} m_{i} \subset N^{4} e m_{i}=0$ for $r^{\prime} \in N e$. Thus by the lemma 7 m is directly indecomposable and this is a contradiction.
(β) Assume that $\overline{A u_{1}} \neq \frac{N u_{2}}{N^{2} u_{2}}$. Now we put $N e=A w, A u_{1}=A v_{1} w$, $A u_{2}=A v_{2} w \quad$ and $\quad N u_{2}=N v_{2} w=A v v_{2} w \quad\left(v \neq v_{1}\right) \quad$ where $\frac{N e}{N^{2} e} \simeq \overline{A e^{\prime}}, N e^{\prime}=A v_{1}$ $+A v_{2}, \overline{A u_{2}} \cong \overline{A e_{1}}, \frac{N u_{2}}{N^{2} u .} \cong \overline{A e_{2}}$ and $\overline{A u_{1}} \cong \overline{A e_{3}}$.
(i) Assume that there does not exist $A e^{\prime \prime}$ such that $\left\{\frac{N^{\rho} e^{\prime \prime}}{N^{\rho+1} e^{\prime \prime}}\right.$,
$\left.\frac{N^{\rho: \nu} e}{N^{\rho+\nu+1} e}\right\}(\nu \geqq 0, \rho=1,2,3)$ are chains and $A e$ (or $A e^{\prime \prime}$) is not homomorphic into $A e^{\prime \prime}$ (or $A e$). Then $e_{3} N=v_{1} A$. If $e_{3} N=v_{1} A+v_{1}{ }^{\prime} A$ and $v_{1}^{\prime} f=v_{1}^{\prime}$ then $\left\{\frac{N e^{\prime}}{N^{2} e^{\prime}}, \frac{N f}{N^{2} f}\right\}$ is a chain. Hence $\left\{\frac{N^{2} e}{N^{3} e}, \frac{N f}{N^{2} f}\right\}$ is a chain. But this contradicts the above assumption. Similarly as this, $e_{3} N^{2}=v_{1} w A, e_{1} N=v_{2} A$, $e_{1} N^{2}=v_{2} w A, e_{2} N=v A, e_{2} N^{2}=v v_{2} A$ and $e_{2} N^{3}=v v_{2} w A$. Hence $\frac{e_{3} N}{e_{3} N^{3}} \cong \frac{e_{1} N}{e_{1} N^{3}}$ and $\frac{e_{1} A}{e_{1} N^{3}} \cong \frac{e_{2} N}{e_{2} N^{4}}$. But this contradicts the lemma 15.
(ii) Assume that there exists $A e^{\prime \prime}$ such that $\left\{\frac{N^{\rho} e^{\prime \prime}}{N^{\rho+1} e^{\prime \prime}}, \frac{N^{\rho} e}{N^{\rho+1} e}\right\}$ ($\rho=1,2,3$). Then by the condition $4 \frac{A e^{\prime \prime}}{N^{4} e^{\prime \prime}}$ is uniserial.
(ii.1) Assume that $\frac{A v_{2} w}{N^{2} v_{2} w} \cong \frac{N^{2} e^{\prime \prime}}{N^{4} e^{\prime \prime}}$. If we put $N e^{\prime \prime}=A w^{\prime}$ then $N^{2} e^{\prime \prime}$ $=A v_{2} w^{\prime}$ and $N^{3} e^{\prime \prime}=A v v_{2} w^{\prime}$. Then $e_{3} N=v_{1} A, e_{3} N^{2}=v v_{1} w A, e_{1} N=v_{2} A, e_{1} N^{2}$ $=v_{2} w A+v_{2} w^{\prime} A, e_{3} N=v A, e_{3} N^{2}=v v_{2} A$ and $e_{3} N^{3}=v v_{2} w A+v v_{2} w^{\prime} A$. Hence $\frac{e_{3} N}{e_{3} N^{2}} \cong \frac{e_{1} N}{e_{1} N^{2}}, \frac{e_{3} N^{2}}{e_{3} N^{3}} \cong \overline{v_{2} w A}$ and $\frac{e_{2} N}{e_{2} N^{4}} \cong \frac{e_{1} A}{e_{1} N^{3}}$. But this contradicts the lemma 15.
(ii. 2) Assume that $\frac{N^{2} e^{\prime \prime}}{N^{3} e^{\prime \prime}} \simeq \overline{A v_{1} w}$. Now if we put $N e^{\prime \prime}=A w^{\prime}$ then $N^{2} e^{\prime \prime}=A v_{1} w^{\prime}$. Hence $e_{3} N=v_{1} A, e_{3} N^{2}=v_{1} w A+v_{1} w^{\prime} A, e_{1} N=v_{2} A, e_{1} N^{2}=v_{2} w A$, $e_{2} N=v A, e_{2} N^{2}=v v_{2} A$ and $e_{2} N^{3}=v v_{2} w A$. Therefore $\overline{v_{2} A} \cong \overline{v_{1} A}, \overline{v_{1} w A} \cong \overline{v_{2} w A}$ and $\frac{e_{1} A}{e_{1} N^{3}} \cong \frac{e_{2} N}{e_{2} N^{4}}$. But this is a contradiction.
(iii) Assume that there exists $A e^{\prime \prime}$ such that $\left\{\frac{N^{\rho} e^{\prime \prime}}{N^{\rho+1} e^{\prime \prime}}, \frac{N^{\rho+1} e}{N^{\rho+2} e}\right\}$ $(\rho=1,2)$ are chains. But this contradicts the lemma 14.
(iv) Assume that there exists $A e^{\prime \prime}$ such that $\frac{N e^{\prime \prime}}{N^{2} e^{\prime \prime}} \simeq \overline{A v v_{2} w}$. Now if we put $N e^{\prime \prime}=A v^{\prime}$ then $e_{2} N=v^{\prime} A+v A, v N=v v_{2} A, v N^{2}=v v_{2} w A\left(v^{\prime} A \cap v A \subset\right.$ $\left.v N^{2}\right), e_{1} N=v_{2} A, e_{1} N^{2}=v_{2} w A, e_{3} N=v_{1} A$ and $e_{3} N^{2}=v_{1} w A$. Hence $\frac{e_{1} N}{e_{1} N^{3}} \cong \frac{e_{3} N}{e_{3} N^{3}}$ and $\frac{e_{1} A}{e_{1} N^{3}} \cong \frac{v A}{v N^{3}}$. But this contradicts the lemma 15. Thus $N u_{2} \subset A u_{1}$ $\cap A u_{2}$. Similarly as this $N u_{1} \subset A u_{1} \cap A u_{2}$. Therefore $A u_{1} \cap A u_{2}=N u_{1}=N u_{2}$. Generally if $\frac{N e}{N^{\rho} e}$ is uniserial and $N^{\rho} e=A u_{1}+A u_{2}$ then $A u_{1} \cap A u_{2}=N u_{1}$ $=N u_{2}$.
(2.6.3) Next we shall show that if $N e=A u_{1}+A u_{2}$ and $N^{\rho} u_{1}=A w_{1}$
$+A w_{2}$ then $A w_{1} \cap A w_{2}=N w_{1}=N w_{2}$. For that purpose we assume that $N w_{1} \mp A w_{1} \cap A w_{2}$.
(i) Assume that $A u_{1} \cap A u_{2}=A w_{1}+A w_{2}$. If $s\left(\frac{A u_{1}}{A u_{1} \cap A u_{2}}\right) \not \equiv s\left(\frac{A u_{2}}{A u_{1} \cap A u_{2}}\right)$ then this contradicts the corollary 3.
If $N^{\rho} u_{1}=A w_{1}+A w_{2}, N^{\mu} u_{2}=A w_{1}+A w_{2}$ and $\rho=\mu=1$ then similarly as above this contradicts the corollary 3 since $\overline{A u_{1}} \nRightarrow \overline{A u_{2}}$ by the lemma 1 . Hence we assume that $\rho \varsubsetneqq 1$ or $\mu \geqq 1$. Then if $\rho \geqq 1$ and $\overline{A u_{1}} \cong \overline{A e^{\prime}}$ then $\widetilde{N^{\rho} e^{\prime}}$ $=\widetilde{A w_{1}^{\prime}}+\widetilde{A w_{2}^{\prime}}$ where $\widetilde{A e^{\prime}}=\frac{A e^{\prime}}{\mathfrak{p}^{\prime}} \cong A u_{1}\left(\mathfrak{p}^{\prime}\right.$ is a subideal in $\left.A e^{\prime}\right)$ and $A w_{i} \simeq \widetilde{A w_{i}^{\prime}}$ $(i=1,2)$ and $\frac{\widetilde{N e^{\prime}}}{\widetilde{N^{\rho} e^{\prime}}}$ is uniserial. Hence by (2.6.2) $\widetilde{A w_{1}^{\prime}} \cap \widetilde{A w_{2}^{\prime}}=\widetilde{N w_{1}^{\prime}}=\widetilde{N w_{2}^{\prime}}$ Thus $A w_{1} \cap A w_{2}=N w_{1}=N w_{2}$.
(ii) Assume that $N^{\rho} u_{1}=A w_{1}+A w_{2}$ and $A u_{2}>A w_{2}$. By the result of (i) we can see that $\rho=1$ and $A u_{2}$ is uniserial. Hence $A w_{2}=N^{\mu} u_{2}$.
(ii.1) Assume that $s\left(\frac{A u_{1}}{A u_{1} \cap A u_{2}}\right) \cong s\left(\frac{A u_{2}}{A u_{1} \cap A u_{2}}\right)$. Then similarly as (2.5) we can see that $A u_{1} \cap A u_{2}=0$.
(ii.2) Assume that $s\left(\frac{A u_{1}}{A u_{1} \cap A u_{2}}\right) \nVdash s\left(\frac{A u_{2}}{A u_{1} \cap A u_{2}}\right)$. Now if we put $\overline{A u_{1}} \cong \overline{A e^{\prime}}$ and $\frac{N^{\mu-1} u_{2}}{N^{\mu} u_{2}} \cong \overline{A e^{\prime \prime}}$ then $\widetilde{N e^{\prime}}=\widetilde{A v_{1}}+\widetilde{A v_{2}}$ where $\widetilde{A e^{\prime}}=\frac{A e^{\prime}}{\mathfrak{p}^{\prime}} \cong A u_{1}$ (\mathfrak{p}^{\prime} is a subideal in $A e^{\prime}$) and $\widetilde{A v_{i}} \cong A w_{i}(i=1,2)$.

From now on we assume that $\mathfrak{p}^{\prime}=0$.
(α) Assume that there does not exist $A f$ such that $\left\{\frac{N^{\rho} f}{N^{\rho+1} f}, \frac{N^{\rho+\nu} e}{N^{\rho+\nu+1} e}\right\}$ $(\nu \geqq 0, \rho=1,2,3)$ are chains. Now we put $N u_{1}=A v_{1} u_{1}+A v_{2} u_{1}$ where $v_{1} u_{1}=w_{1}$ and $v_{2} u_{1}=w_{2}, N v_{1} u_{1}=A w v_{1} u_{1}, N^{\mu} u_{2}=A v^{\prime} u_{2}, v_{2} u_{1}=v^{\prime} u_{2}, \overline{A v_{1} u_{1}} \cong \overline{A e_{1}}$, $\overline{A v v_{1} u_{1}} \cong \overline{A e_{2}}$ and $\overline{A v_{2} u_{1}}=\overline{A v^{\prime} u_{2}} \cong \overline{A e_{3}}$. Then similarly as (2.6.2) $e_{2} N=w A$, $e_{2} N^{2}=w v_{1} A, \quad e_{2} N^{3}=w v_{1} u_{1} A, \quad e_{1} N=v_{1} A, \quad e_{1} N^{2}=v_{1} u_{1} A, \quad e_{3} N=v_{2} A+v^{\prime} A, \quad e_{3} N^{2}$ $=v_{2} u_{1} A=v^{\prime} u_{2} A$. Thus $\frac{e_{2} N}{e_{2} N^{4}} \cong \frac{e_{1} A}{e_{1} N^{3}}$ and $\frac{e_{1} N}{e_{1} N^{3}} \cong \frac{v_{2} A}{v_{2} N^{2}}$. But this contradicts the lemma 15.
(β) Assume that there exists $A e^{\prime}$ such that $\frac{N e^{\prime}}{N^{3} e^{\prime}} \cong \frac{A u_{1}}{A w_{1}+N w_{2}}$. Now we put $w_{1}=v_{1} u_{1}, w_{2}=v_{2} u_{1}$ and $N e^{\prime}=A w^{\prime}$. Then $N^{2} e^{\prime}=A v_{2} w^{\prime}$. Hence similarly as above $e_{2} N=w A, e_{2} N^{2}=w v_{1} A, e_{2} N^{3}=w v_{1} u_{1} A, e_{1} N=v_{1} A, e_{1} N^{2}=v_{1} u_{1} A$, $e_{3} N=v_{2} A+v^{\prime} A$ and $v_{2} N=v_{2} w_{1} A+v_{2} u_{1} A \quad\left(v_{2} u_{1}=v^{\prime} u_{2}\right)$. Thus $\frac{e_{2} N}{e_{2} N^{4}} \cong \frac{e_{1} A}{e_{1} N^{3}}$ and
$\frac{e_{1} N}{e_{1} N^{3}} \sim \frac{v_{2} A}{v_{2} w_{1} A+v_{2} u_{1} N} . \quad$ But this contradicts the lemma 15.
(γ) Assume that there exists $A e^{\prime}$ such that $\frac{N e^{\prime}}{N^{\mu+2} e^{\prime}} \cong \frac{A u_{2}}{N^{\mu+1} u_{2}}$. But this contradicts the condition (4.ii. β).
(δ) Assume that there exists $A e^{\prime}$ such that $\frac{N e^{\prime}}{N^{\nu} e^{\prime}} \cong \frac{N^{\rho} u_{2}}{N^{\mu+1} u_{2}}(\rho \geqq 1)$ and $\overline{A e^{\prime}} \nsubseteq \overline{A u_{2}}$. Now if we put $\overline{A u_{2}} \cong \overline{A e^{\prime \prime}}$ and $\overline{A u_{1}} \cong \overline{A e^{\prime \prime \prime}}$ then $\left\{\frac{N^{j_{1}} e^{\prime}}{N^{j_{1}+1} e^{\prime}}\right.$, $\left.\frac{N^{j_{2}} e^{\prime \prime}}{N^{j_{2}+1} e^{\prime \prime}}, \frac{N^{j_{3}} e^{\prime \prime \prime}}{N^{j_{3}+1} e^{\prime \prime \prime}}\right\}$ is a chain. But this contradicts the lemma 11.
(ع) Assume that there exists $A e^{\prime}$ such that $\frac{N e^{\prime}}{N^{3} e^{\prime}} \cong \frac{A u_{1}}{A v_{2} u_{1}+N v_{1} u_{1}}$ ($e^{\prime} \neq e$). But this contradicts the condition (4. ii. α).
($\mathcal{P})$ Assume that there exists $A e^{\prime}$ such that $\frac{N e^{\prime}}{N^{2} e^{\prime}} \cong \overline{A v_{1} u_{1}}$ or $\frac{N e^{\prime}}{N^{2} e^{\prime}}$ $\simeq \overline{A w v_{1} u_{1}}$. Then $\overline{A v_{1} u_{1}}$ or $\overline{A w v_{1} u_{1}}$ and $\overline{A v_{2} u_{1}}$ are isomorphic to vertice components since $\overline{A e^{\prime}} \not \approx \overline{A u_{1}}$ (or $\overline{A e^{\prime}} \not \approx \overline{A v_{1} u_{1}}$) and $\overline{A u_{1}} \neq \frac{N^{\mu-1} u_{2}}{N^{\mu} u_{2}}$. But this contradicts the condition 2. Thus $N w_{1} \subset A w_{1} \cap A w_{2}$. Similarly as this $N w_{2} \subset A w_{1} \cap A w_{2} . \quad$ Generally if $\frac{N e}{N^{2} e}$ is simple then it is clear by (2.6.2) and if $N e=A u_{1}+A u_{2}$ then $A u_{i}(i=1,2)$ are uniserial or $N^{\rho} u_{1}=A w_{1}+A w_{2}$.

If $N^{\rho} u_{1}=A w_{1}+A w_{2}$ then $A w_{2} \subset A u_{2}$ and $A u_{2}$ is uniserial since the first half of the condition 1 , the condition 2 and the condition 4 are true. Hence we can reduce to the above case (2.6.3).
Therefore we can see that the condition 3 is true.
[2.7] Lastly we shall show that latter half of the condition (1) holds.
(2.7.1) Assume that $N e=A u_{1}+A u_{2}$. If $\overline{A u_{1}}$ is not isomorphic to any composition factor of $\frac{A u_{2}}{A u_{1} \cap A u_{2}}, \overline{A u_{2}}$ is not isomorphic to any composition factor of $\frac{A u_{1}}{A u_{1} \cap A u_{2}}$ and $\frac{N^{\rho} u_{1}}{N^{\rho+1} u_{1}} \cong \frac{N^{\mu} u_{2}}{N^{\mu+1} u_{2}}\left(N^{\rho+1} u_{1} \supset A u_{1} \cap A u_{1}\right.$ and $\left.N^{\mu_{+1}} u_{2} \supseteq A u_{1} \cap A u_{2}\right)(\rho \geqq 1, \mu \geqq 1)$ then $\frac{N^{\rho} u_{1}}{N^{\rho+1} u_{1}}$ is isomorphic to a vertice component since we may assume that $\frac{N^{\rho-1} u_{1}}{N^{\rho} u_{1}} \not \frac{N^{\mu-1} u_{2}}{N^{\mu} u_{2}}$.

Next if $\overline{A u_{1}} \cong \frac{N^{\mu} u_{2}}{N^{\mu+1} u_{2}}\left(N^{\mu_{+1}} u_{2} \supset A u_{1} \cap A u_{2}\right)$ and $\overline{A u_{1}}$ is not isomorphic to any composition factor of $\frac{A u_{2}}{N^{\mu} u_{2}}$ then $\frac{N^{\mu-1} u_{2}}{N^{\mu} u_{2}} \simeq \overline{A e}$. If $\frac{N^{\mu-1} u_{2}}{N^{\mu} u_{2}} \cong \overline{A e^{\prime}}$
($e \neq e^{\prime}$) then $\frac{N^{\mu} u_{2}}{N^{\mu_{+1}} u_{2}}$ is isomorphic to a vertice component since $\bar{A} \overline{u_{1}} \cong \frac{N^{\mu} u_{2}}{N^{\mu+1} u_{2}} . \quad$ But this contradicts the condition 2. Thus $\frac{N^{\mu-1} u_{2}}{N^{\mu} u_{2}} \cong \overline{A e}$. Now we put $N^{\mu_{-1}} u_{2}=A w$. Then $N w=A u_{1} w$ or $A u_{2} w$ since $\frac{A u_{2}}{A u_{1} \cap A u_{2}}$ is uniserial. If $N w=A u_{2} w$ then $\overline{A u_{2} w} \cong \overline{A u_{2}}$ and $\overline{A u_{1}} \nVdash \overline{A u_{2} w}$. But this contradicts the assumption that $\overline{A u_{1}} \cong \frac{N^{\mu} u_{2}}{N^{\mu+1} u_{2}}$. Thus $N w=A u_{1} w$.

Therefore if there does not exist an integer μ or ρ such that $N^{\mu} u_{2}$ $=A u_{1} w$ or $N^{\rho} u_{1}=A u_{2} w^{\prime}$ then $\frac{A u_{1}}{A u_{1} \cap A u_{2}}$ and $\frac{A u_{2}}{A u_{1} \cap A u_{2}}$ have no composition factor isomorphic to each other.
(2.7.2) If there exists an integer ρ or μ such that $N^{\rho} u_{1}=A u_{2} w$ or $N^{\mu} u_{2}=A u_{1} w^{\prime}$ then there exists a left subideal \mathfrak{p} of $N e$ such that $s\left(\frac{N e}{\mathfrak{p}}\right)$ is the direct sum of two simple components isomorphic to each other.

Conversely if there does not exists ρ or μ such that $N^{\rho} u_{1}=A u_{2} w$ or $N^{\mu} u_{2}=A u_{1} w^{\prime}$ then $\frac{A u_{1}}{A u_{1} \cap A u_{2}}$ and $\frac{A u_{2}}{A u_{1} \cap A u_{2}}$ have no composition factor isomorphic to each other.
(α) Assume that $A u_{1}$ and $A u_{2}$ are uniserial. Then an arbitrary left ideal \mathfrak{p} of $N e$ is $N^{-\nu} u_{2}+N^{\mu} u_{2}$. Hence $s\left(\frac{N e}{\mathfrak{p}}\right)$ is the direct sum of two simple component not isomorphic to each other.
(β) Assume that $N u_{1}=A w_{1}+A w_{2}$ and $A w_{2}=N^{\mu} u_{2}$. Then by the condition $3 A w_{1} \cap A w_{2}=N w_{1}=N w_{2}$. Hence an arbitrary left ideal \mathfrak{p} of $N e$ is $N^{\nu} u_{1}+N^{\mu} u_{2}$. Hence $s\left(\frac{N e}{p}\right)$ is the direct sum of two simple components not isomorphic to each other.

Thus we proved that if A is of 2 -cyclic representation type then five conditions of $\S 1$ hold.
§3. In this chapter we shall show that if A satisfies five conditions in $\S 1$ then A is of 2 -cyclic representation type.

First if A satisfies five conditions in $\S 1$ then the following results are proved to be true in the same way as in $\S 2$.
(a) If $N e=A u_{1}+A u_{2}$ then $\frac{A u_{1}}{A u_{1} \cap A u_{2}}(i=1,2)$ are uniserial. (This is the corollary 1 and a consequence of the condition 1.)
(b) $\frac{N^{i} e}{N^{i+1} e}$ is the direct sum of at most two simple components not isomorphic to each other.
(This is a consequence of the condition 1.)
(c) If $s\left(\frac{A w_{1}}{A w_{1} \cap A w_{2}}\right) \not \approx s\left(\frac{A w_{2}}{A w_{1} \cap A w_{2}}\right)$ where $A w_{i}(i=1,2)$ are uniserial subideals in $N e$ then $A w_{1} \cap A w_{2}$ is uniserial. (This is a consequence of the condition (4.i). ${ }^{7}$)
(d) Assume that $s\left(\frac{A e_{1}}{\mathfrak{p}_{1}}\right)>\widetilde{A u_{1}}, s\left(\frac{A e_{2}}{\mathfrak{p}_{2}}\right)>\widetilde{A u_{2}}$ and $\widetilde{A u_{1}} \cong \widetilde{A u_{2}}$. If $\widetilde{A u_{i}} \subset \widetilde{N w_{i}}, \not \subset \widetilde{N^{2} w_{i}}(i=1,2)$ and this isomorphism $\widetilde{A u_{1}} \cong \widetilde{A u_{2}}$ cannot be extended to any homomorphism of $\widetilde{A w_{1}}$ into $\widetilde{A w_{2}}$ and of $\widetilde{A w_{2}}$ into $\widetilde{A w_{1}}$ then $\frac{\widetilde{A w_{1}}}{\widetilde{N w_{1}}} \neq \frac{\widetilde{A w_{2}}}{\widetilde{N w_{2}}}$ and $\widetilde{A u_{i}}$ is isomorphic to a vertice component.
(This is the lemma 10 and a consequence of the condition 1.)
(e) The condition 3 is equivalent to the lemma 15. (The proof is as same as [2.6].)
(f) The condition (4. ii. α) is equivalent to the first half of the lemma 14.
(The proof is as same as [2.5.])
(g) If $\left\{\frac{N^{j_{1}} e_{1}}{N^{j_{1}+1} e_{1}}, \cdots, \frac{N^{j} e_{r}}{N^{j_{r}+1} e_{r}}\right\}$ is a chain then $r=2$.
(The proof is as same as the lemma 11 and this is the consequence of the condition 1 and 2.)
(h) If $\left\{\frac{N^{j_{1}} e_{1}}{N^{j_{1}+1} e_{1}}, \frac{N^{j_{2}} e_{2}}{N^{j_{2}+1} e_{2}}\right\}$ is a chain then there does not exist $A e_{3}$ such that $\left\{\frac{N^{i_{2}} e_{2}}{N^{i_{2}+1} e_{2}}, \frac{N^{i_{3}} e_{3}}{N^{i_{3}+1} e_{3}}\right\}$ is a chain and at least one of $\frac{A e_{i}}{N^{j_{i}+1} e_{i}}(i=1,2)$ is uniserial.
(The proof is as same as the lemma 13 and this is the consequence of the condition 1 and 2).
(i) Assume that $\widetilde{A u}<s\left(\frac{A e}{\mathfrak{p}}\right), \widetilde{A u^{\prime}}<s\left(\frac{A e^{\prime}}{\mathfrak{p}^{\prime}}\right)$ and $\widetilde{A u} \cong \widetilde{A u^{\prime}}$ where $s\left(\frac{A e}{\mathfrak{p}}\right)$ and $s\left(\frac{A e^{\prime}}{\mathfrak{p}^{\prime}}\right)$ are simple. If this isomorphism $\widetilde{A u} \cong \widetilde{A u^{\prime}}$ cannot be extended to any homomorphism of $\widetilde{A w}(\widetilde{A u})$ into $\widetilde{A w^{\prime}}\left(\supset \widetilde{A u^{\prime}}\right)$ and of $\widetilde{A w^{\prime}}$ into $\widetilde{A w}$ then it is not true that there exist $A x, A y \leq A e$ and
7) cf. Lemma 6 or Corollary 3 ,
$A x^{\prime}, A y^{\prime} \subseteq A e^{\prime}$ such that $A x \cap A y=A u$ and $A x^{\prime} \cap A y^{\prime}=A u^{\prime}$. If $A u^{\prime} \subset N v^{\prime}$ and $\subset N^{2} v^{\prime}$ and there exist $A x$ and $A y$ such that $A x \cap A y=A u$ and $s\left(\frac{A x}{A u}\right) \not \approx s\left(\frac{A y}{A u}\right)$ then by (g) or (h) $\overline{A v^{\prime}} \cong s\left(\frac{A x}{A u}\right)$ or $\overline{A v^{\prime}} \cong s\left(\frac{A y}{A u}\right)$. But this contradicts the assumption that the isomorphism $A u \simeq A u^{\prime}$ is not extended to any homomorphism of $A w(>A u)$ into $A w^{\prime}\left(\supset A u^{\prime}\right)$ and of $A w^{\prime}$ into $A w$.

Now assume that $s\left(\frac{A x}{A u}\right) \cong s\left(\frac{A y}{A u}\right)$. Then there exists $A e^{\prime}$ such that $N e^{\prime}=A u_{1}+A u_{2}, \quad A u_{1} \cap A u_{2}=A s, \quad s\left(\frac{A u_{1}}{A s}\right) \cong s\left(\frac{A x}{A u}\right) \quad$ and $\quad s\left(\frac{A u_{2}}{A s}\right) \cong s\left(\frac{A y}{A u}\right)$. Hence by the condition $1 N^{\rho} u_{2}=A u_{1} v$ where $N^{\rho-1} u_{2}=A v$ and $A u_{1} \cap A u_{2}$ $=A s=A s v$ since $\frac{A u_{1}}{A s} \approx \frac{N^{\rho} u_{2}}{A s}$. If $v v \neq 0$ then $N^{\rho-1} u_{2} v \neq 0$ since $A v=N^{\rho-1} u_{2}$. But $u_{2} v=0$ since $N^{\rho} u_{2}=A u_{1} v$ and $A e^{\prime} \sim N^{\rho-1} u_{2}$. Hence $N^{\rho-1} u_{2} v=0$ and $v^{2}=0$. Thus $A s v=A s v^{2}=0$ and $A s=0$. Therefore $A u_{1} \cap A u_{2}=0$.

Next we shall consider indecomposable modules which are the sum of at most two cyclic modules
[3.1] First Aem has one of the following structures:
(3.1.1) Assume that $\frac{N e m}{N^{2} e m}$ is simple.
(i) Nem is uniserial.
(ii) If $N^{\rho} e m=A u_{1} m+A u_{2} m(\rho \geqq 1)$ then by the condition $3, N^{\rho+1} e m$ $=N u_{1} m=N u_{2} m$ and by the condition $1 \overline{A u_{1} m} \nsupseteq \overline{A u_{2} m}$. Hence by (c) $A u_{1} m \cap A u_{2} m$ is uniserial.
(3.1.2) Assume that $N e m=A u_{1} m+A u_{2} m$. Then similarly as above if $A u_{1} m \cap A u_{2} m \neq 0$ then $s\left(\frac{A u_{1} m}{A u_{1} m \cap A u_{2} m}\right) \neq s\left(\frac{A u_{2} m}{A u_{1} m \cap A u_{2} m}\right)$ and $A u_{1} m \cap$ $A u_{2} m$ is uniserial.
(i) $A u_{i} m(i=1,2)$ are uniserial.
(ii) $N u_{1} m=A v_{1} u_{1} m+A v_{2} u_{1} m, A u_{2} m$ is uniserial, $A u_{2} m>A v_{2} u_{1} m$ and $N^{2} u_{1} m=N v_{1} u_{1} m=N v_{2} u_{1} m$. Hence we put $N^{\mu} u_{2} m=A v_{2} u_{1} m$. Now assume that $N^{\rho} u_{1} m=A v_{1} u_{1} m+A v_{2} u_{1} m$. If $A u_{2} m>N^{\rho} u_{1} m$ then this contradicts (c)
 Hence we may assume that $A v_{2} u_{1} m \subset A u_{2} m$ and $A v_{1} u_{1} m \subset A u_{2} m$.

Next assume that $\overline{A u_{1} m} \cong \overline{A e^{\prime}}$ and $\overline{A u_{2} m} \cong \overline{A e^{\prime \prime}}$. Then there exists an integer μ such that $\left\{\frac{N^{\rho} e^{\prime}}{N^{\rho+1} e^{\prime}}, \frac{N^{\mu} e^{\prime \prime}}{N^{\mu+1} e^{\prime \prime}}\right\}$ is a chain. Hence by (h) $\frac{N e^{\prime \prime}}{N^{\mu+1} e^{\prime \prime}}$ is uniserial since $\frac{N e^{\prime}}{N^{\rho+1} e^{\prime}}$ is not uniserial. Thus $A v_{2} u_{1} m=N^{\mu} u_{2} m$.

Moreover assume that $\rho \geqq 1(\rho=2)$. Now if we put $\frac{N^{\mu-1} u_{2} m}{N^{\mu} u_{2} m} \cong \overline{A e^{\prime \prime \prime}}$ then $\overline{A e^{\prime \prime \prime}}$ is not isomorphic to any composition factor of $A u_{1} m$ from the assumption and $\left\{\frac{N^{2} e^{\prime}}{N^{3} e^{\prime}}, \frac{N e^{\prime \prime \prime}}{N^{2} e^{\prime \prime \prime}}\right\}$ is a chain. But by (f) this contradicts the condition (4. ii. α) since $\frac{N^{2} e^{\prime}}{N^{3} e^{\prime}}$ is not simple. Thus $\rho=1$.

Lastly by the condition $3 N^{2} u_{1} m=N v_{1} u_{1} m=N v_{2} u_{1} m=N^{\mu_{+1}} u_{2} m$.
[3.2] Assume that $\mathfrak{m}=A e_{1} m_{1}+A e_{2} m_{2}$ is directly indecomposable and take m_{1} and m_{2} such that $l\left(A e_{1} m_{1}\right)+l\left(A e_{2} m_{2}\right)$ is minimal where $l\left(A e_{i} m_{i}\right)$ is the length of composition series of $A e_{i} m_{i}$. Then $A e_{1} m_{1} \cap A e_{2} m_{2} \neq 0$ and there exist $A u_{1} m_{1}$ and $A u_{2} m_{2}$ such that $s\left(A e_{1} m_{1}\right)>A u_{1} m_{1}, s\left(A e_{2} m_{2}\right)>A u_{2} m_{2}$ and $A u_{1} m_{1}=A u_{2} m_{2}$ where $\left.u_{1} m_{1}=\alpha u_{2} m_{2}(\alpha \in K)\right)$.
(3.2.1) Assume that $s\left(A e_{i} m_{i}\right)(i=1,2)$ are simple. If there exists a homomorphism of $A e_{1} m_{1}$ into $A e_{2} m_{2}$ which is the extension of the isomorphism of $A u_{1} m_{1} \cong A u_{2} m_{2}$ then there exists $v \in N e_{2}$ such that $u_{2} m_{2}=\beta u_{1} v m_{2}(\beta \in K)$. Now if we take $n_{1}=m_{1}-\alpha \beta v m_{2}$ nstead of m_{1} then $A u_{1} n_{1}=0$. But this contradicts the assumption on l. Similarly there does not exist a homomorphism of $A e_{2} m_{2}$ into $A e_{1} m_{1}$ which is the extension of the isomorphism $A u_{1} m_{1} \simeq A u_{2} m_{2}$. Hence by (d) $N e_{1} m_{1}$ and $N e_{2} m_{2}$ have composition factors isomorphic to vertice components and by (h) we may assume that $A e_{2} m_{2}$ is uniserial.
(i) Assume that $A e_{1} m_{1}$ is uniserial.

Then by the condition 3 (accordingly the lemma 15) $\frac{N e_{1} m_{1}}{N^{2} e_{1} m_{1}}\left(\cong \frac{N e_{2} m_{2}}{N^{2} e_{2} m_{2}}\right)$ is isomorphic to a vertice component or if $\frac{N^{\rho} e_{1} m_{1}}{N^{\rho+1} e_{1} m_{1}}(\rho ¥ 1)$ (or $\frac{N^{\mu} e_{2} m_{2}}{N^{\mu+1} e_{2} m_{2}}$ $(\mu \nVdash 1)$) is isomorphic to a vertice component then $N^{\rho+1} e_{1} m_{1}=0$ (or $N^{\mu_{+1}} e_{2} m_{2}=0$). Hence $A e_{1} m_{1} \cap A e_{2} m_{2}=N^{\varphi} e_{1} m_{1}=N^{\varphi} e_{2} m_{2}$ where $N e_{1} m_{1} \simeq N e_{2} m_{2}$ or $A e_{1} m_{1} \cap A e_{2} m_{2}=N^{\rho} e_{1} m_{1}=N^{\mu} e_{2} m_{2}$ where $\frac{N^{\rho-1} e_{1} m_{1}}{N^{\rho} e_{1} m_{1}} \neq \frac{N^{\mu-1} e_{2} m_{2}}{N^{\mu} e_{2} m_{2}}$ and $N^{\rho+1} e_{1} m_{1}$ $=N^{\mu+1} e_{2} m_{2}=0$. In the first case if we put $N^{\varphi-1} e_{1} m_{1}=A u_{1}^{\prime} m_{1}$ and $N^{\varphi-1} e_{2} m_{2}$ $=A u_{2}{ }^{\prime} m_{2}$ then $N\left(u_{1}^{\prime} m_{1}-u_{2}^{\prime} m_{2}\right)=0$ since $N u_{1}^{\prime} m_{1}=N u_{2}{ }^{\prime} m_{2}$.
(ii) Assume that $N e_{1} m_{1}=A u_{1}^{\prime} m_{1}+A u_{2}^{\prime} m_{1}$ where $A u_{i}^{\prime} m_{1}(i=1,2)$ are uniserial and $\frac{N e_{2} m_{2}}{N^{2} e_{2} m_{2}} \cong \frac{N^{\nu} u_{2}^{\prime} m_{1}}{N^{\nu+1} u_{2}^{\prime} m_{1}}(\nu \geqq 0) \quad$ or $\quad \frac{N^{\varphi} e_{2} m_{2}}{N^{\varphi+1} e_{2} m_{2}} \cong \frac{A u_{2}^{\prime} m_{1}}{N u_{2}^{\prime} m_{1}}$. Now $A u_{1}^{\prime} m_{1} \cap A u_{2}^{\prime} m_{1} \neq 0$ since $s\left(N e_{1} m_{1}\right)$ is assumed to be simple. Moreover by the same way as (i) $s\left(\frac{A u_{1}^{\prime} m_{1}}{A u_{1}^{\prime} m_{1} \cap A u_{2}^{\prime} m_{1}}\right) \cong s\left(\frac{A u_{2}^{\prime} m_{1}}{A u_{1}^{\prime} m_{1} \cap A u_{2}^{\prime} m_{1}}\right)$. Hence if we
put $A u_{1}^{\prime} m_{1} \cap A u_{2}^{\prime} m_{1}=N^{\rho} u_{2}^{\prime} m_{1}$ then $\frac{N^{\rho} u_{2}^{\prime} m_{1}}{N^{\rho+1} u_{2}^{\prime} m_{1}}$ is isomorphic to a vertice component and similarly as (i) $N^{\rho+1} u_{2}{ }^{\prime} m_{1}=0$.

Next if $N e_{2} m_{2} \simeq A u_{2}^{\prime} m_{1}$ then by the condition (4.ii. α) $A u_{1}^{\prime} m_{1} \cap A u_{2}^{\prime} m_{1}$ $=N u_{2}^{\prime} m_{1}$ since $e_{1} \neq e_{2}$. If $N^{\varphi} e_{2} m_{2} \cong A u_{2}^{\prime} m_{1}(\mathcal{P} \geqq 1)$ then $N^{\varphi+1} e_{2} m_{2}=N u_{2}^{\prime} m_{1}$ $=0$. If $N e_{2} m_{2} \cong N^{\rho^{\prime}} u_{2}^{\prime} m_{1}\left(\rho^{\prime} \varsubsetneqq 1\right)$ and $N^{\rho^{\prime}} u_{2}^{\prime} m_{1} \supsetneq A u_{1}^{\prime} m_{1} \cap A u_{2}^{\prime} m_{1}$ then this contradicts (h) since if we put $\frac{N^{\rho^{\prime}-1} u_{2}^{\prime} m_{1}}{N^{\rho^{\prime}} u_{2}^{\prime} m_{1}} \cong \overline{A e^{\prime}}$ then $e^{\prime} \neq e_{2}$ and $\frac{N e^{\prime}}{\mathfrak{p}^{\prime}} \cong N e_{2} m_{2}$ (\mathfrak{p}^{\prime} is a subideal in $N e^{\prime}$) and $\frac{N e^{\prime}}{\mathfrak{p}^{\prime}}$ has two composition factor isomorphic to vertice components since $\frac{N^{\rho^{\prime}} u_{2}^{\prime} m_{1}}{N^{\rho^{\prime}+1} u_{2}^{\prime} m_{1}}$ and $\frac{N^{\rho} u_{2}^{\prime} m_{1}}{N^{\rho+1} u_{2}^{\prime} m_{1}}$ are isomorphic to vertice components.

If $N e_{2} m_{2} \cong N^{\rho} u_{2}^{\prime} m_{1}$ and we assume that $s\left(\frac{A u_{1}^{\prime} m_{1}}{A u_{1}^{\prime} m_{1} \cap A u_{2}^{\prime} m_{1}}\right) \simeq \overline{A e^{\prime \prime}}$ and $s\left(\frac{A u_{2}^{\prime} m_{1}}{A u_{1}^{\prime} m_{1} \cap A u_{2}^{\prime} m_{1}}\right) \cong \overline{A e^{\prime}}$ then $\left\{\frac{N e^{\prime}}{N^{2} e^{\prime}}, \frac{N e^{\prime \prime}}{N^{2} e^{\prime \prime}}, \frac{N e_{2}}{N^{2} e_{2}}\right\}$ is a chain but this contradicts (g). Thus in this case by the same way as (i) if $A u_{2}^{\prime} m_{1} \cong N^{\varphi} e_{2} m_{2}$ ($\mathcal{P} \nsupseteq 1$) then $A e_{1} m_{1} \cap A e_{2} m_{2}=A u_{2}^{\prime} m_{1}, N u_{2}^{\prime} m_{1}=N^{\varphi+1} e_{2} m_{2}=0$ and if $A u_{2}^{\prime} m_{1}$ $\cong N e_{2} m_{2}$ then $A e_{1} m_{1} \cap A e_{2} m_{2}=A u_{2}^{\prime} m_{1}=N e_{2} m_{2} \quad$ or $A e_{1} m_{1} \cap A e_{2} m_{2}=N u_{2}^{\prime} m_{1}$ $=N^{2} e_{2} m_{2}$ and $N^{2} u_{2}^{\prime} m_{1}=N^{3} e_{2} m_{2}=0$.
(iii) Assume that $N e_{1} m_{1}=A u_{1}^{\prime} m_{1}+A u_{2}^{\prime} m_{1}$. If $N^{\rho} u_{1}^{\prime} m_{1}=A v_{1} u_{1}^{\prime} m_{1}$ $+A v_{2} u_{1}^{\prime} m_{1}$ then similarly as (3.1.2, ii) we can see that $\rho=1$, $A v_{2} u_{1}^{\prime} m_{1}$ $=N^{\mu} u_{2}^{\prime} m_{1}$ and $A v_{1} u_{1}^{\prime} m_{1} \cap A v_{2} u_{1}^{\prime} m_{1}=N v_{1} u_{1}^{\prime} m_{1}=N v_{2} u_{1}^{\prime} m_{1}=N^{\mu_{+1}} u_{2}^{\prime} m_{1}$. Hence by the condition (4. ii. β) $\frac{N e_{2} m_{2}}{N^{3} e_{2} m_{2}} \cong \frac{A u_{1}^{\prime} m_{1}}{A v_{1} u_{1}^{\prime} m_{1}+N v_{2} u_{1}^{\prime} m_{1}}$ and $N^{3} e_{2} m_{2}=0$ since $A v_{1} u_{1}^{\prime} m_{1} \cap A v_{2} u_{1}^{\prime} m_{1}=N v_{1} u_{1}^{\prime} m_{1}=N v_{2} u_{1}^{\prime} m_{1}$.
(iv) Assume that $N^{\rho} e_{1} m_{1}=A u_{1}^{\prime} m_{1}+A u_{2}^{\prime} m_{1}(\rho \supseteqq 1)$. Then by the condition $3 A u_{1}^{\prime} m_{1} \cap A u_{2}{ }^{\prime} m_{1}=N u_{1}{ }^{\prime} m_{1}=N u_{2}^{\prime} m_{1}$. In this case $N e_{2} m_{2} \cong A u_{2}{ }^{\prime} m_{1}$ or by the condition (4. ii. α) $\frac{N e_{1} m_{1}}{A u_{1}^{\prime} m_{1}} \cong N e_{2} m_{2}$. If $N e_{2} m_{2} \cong A u_{2}^{\prime} m_{1}$ then $N^{-3} e_{2} m_{2}$ $=0$ since $\frac{N^{2} e_{2} m_{2}}{N^{3} e_{2} m_{2}}$ is isomorphic to a vertice component. If $\frac{N e_{1} m_{1}}{A u_{1}^{\prime} m_{1}} \cong N e e_{2} m_{2}$ then $N^{\rho+1} e_{2} m_{2}=0$.
(3.2.2) Assume that $s\left(A e_{2} m_{2}\right)=A u_{2} m_{2}$ and $s\left(A e_{1} m_{1}\right)=A v_{1} m_{1} \oplus A u_{1} m_{1}$.
(i) Assume that there exists a homomorphism of $A e_{2} m_{2}$ into $A e_{1} m_{1}$ which is the extension of the isomorphism $A u_{1} m_{1} \cong A u_{2} m_{2}$.

If $A e_{1} m_{1}$ is homomorphic onto $A e_{2} m_{2}$ then $u_{2}=u_{1}$ and if we take $n_{1}=m_{1}-\alpha m_{2}$ instead of m_{1} then $A u_{1} n_{1}=0$ and this contradicts the assumption on l. Similarly as this if there exists a homomorphism of $A e_{1} m_{1}$ into $A e_{2} m_{2}$ which is the extension of the isomorphism $A u_{1} m_{1} \sim A u_{2} m_{2}$
then this is a contradiction. If $\frac{N e_{1} m_{1}}{N^{2} e_{1} m_{1}}$ is simple then by the condition 3 $s\left(N e_{1} m_{1}\right)=N^{\rho} e_{1} m_{1}=\mathrm{A} v_{1} m_{1} \oplus A u_{1} m_{1}, \frac{N e_{1} m_{1}}{N^{\rho} e_{1} m_{1}}$ is uniserial and $A e_{2} m_{2} \cong \frac{N^{\mu} e_{1} m_{1}}{A v_{1} m_{1}}$ $(\mu \nsupseteq \rho)$. Hence there exists a left subideal \mathfrak{p}_{2} in $N e_{2}$ such that $\frac{A e_{2}}{\mathfrak{p}_{2}}$ $\cong N^{\mu} e_{1} m_{1}$. Then we can assume that $s\left(\frac{\widetilde{A e_{2}}}{\mathfrak{p}_{2}}\right)=\widetilde{A v_{1}} \oplus \widetilde{A u_{2}}$ and $\frac{\widetilde{A e_{2}}}{s\left(\widetilde{\left.A e_{2}\right)}\right.}$ is uniserial where $\widetilde{A e_{2}}=\frac{A e_{2}}{\mathfrak{p}_{2}}$.

Now by the assumption $v_{2} m_{2}=0$ and there exists $w \in N e_{1}$ such that $v_{1}=\gamma v_{2} w$ and $u_{1}=\delta u_{2} w(\gamma, \delta \in K)$. Thus in this case we can see that m is directly indecomposable.

Now suppose that $\mathrm{m}=A e_{1} n_{1} \oplus A e_{2} n_{2}$. Then $n_{i}=\alpha_{i 1} m_{1}+\alpha_{i 2} m_{2}$ where $\alpha_{i i} \in e_{i} A e_{i}, \notin e_{i} N e_{i}$ and $\alpha_{i j} \ni N(i \neq j)$ since $e_{1} \neq e_{2}$ similarly as the lemma 14.

First if $u_{1} n_{1}=0$ then $u_{1} \alpha_{11} m_{1}+u_{1} \alpha_{12} m_{2}=0$. But $u_{1} r_{11} m_{1} \in N^{\rho+1} e_{1} m_{1}=0$ for $r_{11} \in e_{1} N e_{1}$ and $u_{1} \alpha_{12} m_{2} \in N^{\rho} e_{2} m_{2}=0$ since $N^{\rho} e_{2} m_{2}=0$. Thus $a_{11} u_{1} m_{1}=0$ ($a_{11} \in K$) but this is a contradiction. Therefore $u_{1} n_{1} \neq 0$. Similarly as this $v_{1} n_{1} \neq 0$.

Next we shall show that $u_{2} n_{2} \neq 0$ or $v_{2} n_{2} \neq 0$. Now suppose that $u_{2} n_{2}=0$ and $v_{2} n_{2}=0$. Then $v_{2} \alpha_{21} m_{1}+v_{2} \alpha_{22} m_{2}=0$ but $v_{2} \alpha_{2} m_{2}=0$. Hence $v_{2} \alpha_{21} m_{1}=0$. Thus $u_{2} \alpha_{21} m_{1}=0$ and $u_{2} \alpha_{22} m_{2}=0$ since $u_{2} n_{2}=0$. But this is a contradiction. Therefore $u_{2} n_{2} \neq 0$ or $v_{2} n_{2} \neq 0$ and if we consider about the length of the composition series it is a contradiction that $A e_{1} n_{1} \cap A e_{2} n_{2}$ $=0$. Thus \mathfrak{m} is directly indecomposable.

Next assume that $N e_{1} m_{1}=A w_{1} m_{1} \oplus A w_{2} m_{1}$ and $A u_{1} m_{1} \subset A w_{1} m_{1}$. If $A e_{2} m_{2} \cong N^{\mu} w_{1} m_{1}$ then there exists $v \in A w_{1}$ such that $u_{1}=u_{2} v$. Hence if we take $n_{2}=\alpha m_{2}-v m_{1}$ instead of m_{2} then $u_{2} n_{2}=0$ and the length of $A e_{2} n_{2}$ is smaller than that of $A e_{2} m_{2}$ since $A w_{1} m_{1}$ is uniserial, and this is a contradiction.

Lastly assume that $N e_{1} m_{1}=A w_{1} m_{1}+A w_{2} m_{1}$ and $A w_{1} m_{1} \cap A w_{2} m \neq 0$. Then by the same way as (3.2.1) $s\left(A w_{1} m_{1}\right)=N w_{1} m_{1}=A v_{1} m_{1} \oplus A u_{1} m_{1}, A u_{1} m_{1}$ $=A w_{1} m_{1} \cap A w_{2} m_{1}$ and $A w_{2} m_{1}$ is uniserial.

If $A e_{2} m_{2} \cong \frac{A w_{1} m_{1}}{A v_{1} m_{1}}$ then by the same way as above $m=A e_{1} m_{1}+$ $A e_{2} m_{2}$ is directly indecomposable but if $A e_{2} m_{2} \simeq N^{\nu} w_{2} m_{1}$ then m is directly decomposable similarly as above.
(ii) Assume that there does not exist any homomorphism of $A e_{1} m_{1}$ into $A e_{2} m_{2}$ and of $A e_{2} m_{2}$ into $A e_{1} m_{1}$ which is the extension of the isomorphism $A u_{1} m_{1} \cong A u_{2} m_{2}$. Then by the same way as (3.2.1) $A e_{2} m_{2}$ is
uniserial and $A e_{1} m_{1}$ has one of the following types:
(a) $s\left(A e_{1} m_{1}\right)=N^{\rho} e_{1} m_{1}=A v_{1} m_{1} \oplus A u_{1} m_{1}$ and $\frac{A e_{1} m_{1}}{N^{\rho} e_{1} m_{1}}$ is uniserial.
(b) $N e_{1} m_{1}=A w_{1} m_{1} \oplus A w_{2} m_{1}$ where $A w_{1} m_{1}>A u_{1} m_{1}$.
(c) $\quad N e_{1} m_{1}=A w_{1} m_{1}+A w_{2} m_{1}, \quad N w_{1} m_{1}=A u_{1} m_{1}+A v_{1} m_{1}, \quad A w_{2} m_{1}>A u_{1} m_{1}$ and $A w_{2} m_{1}$ is uniserial.

In the case (a) by the condition (4. ii. α) $\frac{N e_{1} m_{1}}{A v_{1} m_{1}} \simeq N e_{2} m_{2}$ and $A e_{1} m_{1}$ $\cap A e_{2} m_{2}=A u_{1} m_{1}=A u_{2} m_{2}$ and $s\left(A e_{1} m_{1}+A e_{2} m_{2}\right)=A v_{1} m_{1} \oplus A u_{1} m_{1}$.

In the case (b) if $\frac{N^{\mu} e_{2} m_{2}}{N^{\mu+1} e_{2} m_{2}}(\mu \geqq 1)$ or $\left.\frac{N^{\nu} w_{1} m_{1}}{N^{\nu+1} w_{1} m_{1}} \nu \geqq 1\right)$ is isomorphic to a vertice component then $N^{\mu_{+1}} e_{2} m_{2}=0$ or $N^{\nu+1} w_{1} m_{1}=0$. Thus unless $A w_{1} m_{1} \cong N e_{2} m_{2}$ then $A e_{1} m_{1} \cap A e_{2} m_{2}=A u_{1} m_{1}=A u_{2} m_{2}$ is isomorphic to a vertice component.
If $A w_{1} m_{1} \cong N e_{2} m_{2}$ then $A e_{1} m_{1} \cap A e_{2} m_{2}=N^{\varphi} w_{1} m_{1}=N^{\varphi+1} e_{2} m_{2}$ and if we put $N^{\varphi-1} w_{1} m_{1}=A u_{1}^{\prime} m_{1}$ and $N^{\varphi} e_{2} m_{2}=A u_{2}^{\prime} m_{2}(\mathcal{P} \ngtr 1)$ then $N\left(u_{1}^{\prime} m_{1}-\xi u_{2}^{\prime} m_{2}\right)=0$.

In the case (c) $N e_{2} m_{2} \cong \frac{A w_{1} m_{1}}{A v_{1} m_{1}}$ and $N^{2} w_{1} m_{1}=0$. Hence $A e_{1} m_{1} \cap A e_{2} m_{2}$ $=A u_{1} m_{1}=A u_{2} m_{2}$ and $s\left(A e_{1} m_{1}+A e_{2} m_{2}\right)=A v_{1} m_{1} \oplus A u_{1} m_{1}$.
(3.2.3) Assume that $s\left(A e_{1} m_{1}\right)=A v_{1} m_{1} \oplus A u_{1} m_{1}$ and $s\left(A e_{2} m_{2}\right)=A v_{2} m_{2} \oplus$ $A u_{2} m_{2}$ and $A u_{1} m_{1}=A u_{2} m_{2}$. If there does not exist any homomorphism of $A e_{1} m_{1}$ into $A e_{2} m_{2}$ and of $A e_{2} m_{2}$ into $A e_{1} m_{1}$ which is the extension of the isomorphism $A u_{1} m_{1} \cong A u_{2} m_{2}$ then this contradicts the condition (4. i). Hence there exists a homomorphism of $A e_{1} m_{1}$ into $A e_{2} m_{2}$ (or of $A e_{2} m_{2}$ into $A e_{1} m_{1}$) which is the extension of the isomorphism $A u_{1} m_{1} \simeq A u_{2} m_{2}$. Therefore there exists $v \in N e_{2}$ (or $\in N e_{1}$) such that $u_{2}=u_{1} v$ (or $u_{1}=u_{2} v$). Then if we take $n_{1}=m_{1}-\alpha v m_{2}$ instead of m_{1} (or $n_{2}=\alpha m_{2}-v m_{1}$ instead of m_{2}) then $u_{1} n_{1}=0$ (or $u_{2} n_{2}=0$) and this contradicts the assumption on l.
[3.3] Assume that $\mathrm{m}=\sum_{i=1}^{\lambda} \sum_{j=1}^{s_{i}} A e_{i} m_{i j}$ is directly indecomposable and $\sum_{i=1}^{\lambda} s_{i}=s \geqq 3$.

Now if $l_{i j}$ is the length of the composition series of $A e_{i} m_{i j}$ then we assume that $\sum_{i, j} l_{i j}=l$ is minimal and we put $\mathfrak{m}=A e_{\lambda} m_{\lambda, s_{\lambda}}+\mathfrak{m}^{\prime}$ where m^{\prime} is the sum of $s-1$ cyclic A-left modules $A e_{i} m_{i j}\left(\neq A e_{\lambda} m_{\lambda, s_{\lambda}}\right)$ and it is the direct sum of p directly indecomposable modules which are shown in (3.2) since $\sum l_{i j}=l$ is minimal. ${ }^{8)}$
8) If $\mathfrak{M}^{\prime}=\sum A e_{i} m_{i j}$ is the direct sum of directly indecomposable modules shown in (3.2) and we put $n_{i j}=m_{i j}+\sum r_{\xi \eta} m_{\xi \eta}$ then the length of $A e_{i} n_{i j}$ is larger than that of $A e_{i} m_{i j}$.
(3.3.1) We assume that $s\left(A e_{\lambda} m_{\lambda, s_{\lambda}}\right)$ is simple and put $s\left(A e_{\lambda} m_{\lambda, s_{\lambda}}\right)$

$$
=A u_{\lambda, s_{\lambda}, \alpha} m_{\lambda, s_{\lambda}} \text { where } e_{\alpha} u_{i j a}=u_{i j a} .
$$

Then

$$
\begin{equation*}
u_{\lambda, s_{\lambda} \alpha} m_{\lambda, s_{\lambda}}=\sum_{(i, j) \neq\left(\lambda, s_{\Lambda}\right)} a_{i j} u_{i j \alpha} m_{i j} \quad\left(a_{i j} \in k\right) \tag{I}
\end{equation*}
$$

since $A e_{\lambda} m_{\lambda, s_{\lambda}} \cap \mathfrak{m}^{\prime} \neq 0$ and we may assume that the number of $u_{i j a} m_{i j}$ of (I) is minimal. Now if $A e_{g} m_{g h}+A e_{g^{\prime}} m_{g^{\prime} h^{\prime}}$ is a direct summand of m^{\prime} and $a_{g h} u_{g h a} m_{g h}$ and $a_{g^{\prime} h^{\prime}} u_{g^{\prime} h^{\prime} \alpha} m_{g^{\prime} h^{\prime}}$ do not appear in (I) then this is a contradiction since $A e_{\lambda} m_{\lambda, s_{\lambda}} \cap \mathfrak{m}^{\prime} \neq 0$ and $A e_{g} m_{g h}+A e_{g^{\prime}} m_{g^{\prime} h^{\prime}}$ is a direct summand of m^{\prime}.
(a) If $A u_{i j \alpha} m_{i j} \not \subset s\left(A e_{i} m_{i j}\right)$ then there exists $A e_{i^{\prime}} m_{i^{\prime} j^{\prime}}$ such that $A e_{i} m_{i j}$ $+A e_{i^{\prime}} m_{i^{\prime} j^{\prime}}$ is directly indecomposable and $A e_{i} m_{i j} \cap A e_{i^{\prime}} m_{i^{\prime} j^{\prime}}=N u_{i j a} m_{i j}$ $=N u_{i^{\prime} j^{\prime} \alpha} m_{i^{\prime} j^{\prime}}$ where $N\left(a_{i j} u_{i j a} m_{i j}-a_{i^{\prime} j^{\prime}} u_{i^{\prime} j^{\prime}{ }^{\prime}} m_{i^{\prime} j^{\prime}}\right)=0$. Hence by (3.2) $N e_{i} m_{i j}$ $\cong N e_{i^{\prime}} m_{i^{\prime} j^{\prime}}$ or $A u_{i j} m_{i j} \cong N N_{i^{\prime}} m_{i^{\prime} j^{\prime}}$ where $N e_{i} m_{i j}=A u_{i j} m_{i j}+A v_{i j} m_{i j}, A u_{i j} m_{i j}$ is uniserial and $A u_{i j} m_{i j}>A u_{i j \alpha} m_{i j}$. If there exists $v_{i j \lambda} \in N e_{i}$ such that $u_{i j a}=u_{\lambda, s_{\lambda}, \alpha} v_{i j \lambda}$ then there exists $v_{i^{\prime} j^{\prime} \lambda} \in N e_{i^{\prime}}$ such that $u_{i^{\prime} j^{\prime} a}=u_{\lambda, s_{\lambda}, w} v_{i^{\prime} j^{\prime} \lambda}$. Hence if we take $n_{\lambda, s_{\lambda}}=m_{\lambda, s_{\lambda}}-a_{i j} v_{i j \lambda} m_{i j}-a_{i^{\prime} j^{\prime}} v_{i^{\prime} j^{\prime} \lambda} m_{i^{\prime} j^{\prime}}$ instead of $m_{\lambda, s_{\lambda}}$ then $u_{\lambda, s_{\lambda}, a} n_{\lambda, s_{\lambda}}=\sum_{\left(\xi, \eta_{n}\right) \mp} \sum_{\substack{(i, j) \\\left(i^{\prime} j^{\prime}\right)}} a_{\xi \eta} u_{\xi_{n a}} m_{\xi \eta}$ and $s\left(A e_{i} m_{i j}+A e_{i^{\prime}} m_{i^{\prime} j^{\prime}}\right) \cap$ $\left(A e_{\lambda} n_{\lambda, s_{\lambda}}+\sum_{(\xi, n) \neq \ddagger} \sum_{\substack{(i, j) \\\left(i^{\prime} j^{\prime}\right)}} A e_{\xi} m_{\xi_{\eta}}\right)=0$. If $u_{i j \alpha} m_{i j}+\gamma u_{i^{\prime} j^{\prime} \alpha^{\prime}} m_{i^{\prime} j^{\prime}}=b_{\lambda, s \lambda} u_{\lambda, s_{\lambda \alpha}} n_{\lambda, s_{\lambda}}$ $+\sum_{(\xi, \eta) \neq \begin{array}{c}(i j) \\ \left(i^{\prime} j^{\prime}\right)\end{array}} b_{\xi \eta} u_{\xi \eta a} m_{\xi \eta} \quad$ then $\quad u_{i j \alpha} m_{i j}+\gamma u_{i^{\prime} j^{\prime} a} m_{i^{\prime} j^{\prime}}=b_{\lambda, s_{\lambda}} u_{\lambda, s_{\lambda} \alpha} a_{i j} u_{i j \alpha} m_{i j}$ $-b_{\lambda, s_{\lambda}} a_{i j} u_{i j \alpha} m_{i j}-b_{\lambda, s_{\lambda}} a_{i^{\prime} j^{\prime}} u_{i^{\prime} j^{\prime} \alpha_{\alpha}} m_{i^{\prime} j^{\prime}}+\sum b_{\xi_{\eta}} u_{\xi_{\eta \alpha}} m_{\xi \eta} \quad$ and $\quad b_{\lambda, s_{\lambda}} u_{\lambda, s_{\lambda}, \alpha} m_{\lambda, s_{\lambda}}$ $=\left(b_{\lambda, s_{\lambda}} a_{i j}+1\right) u_{i j a} m_{i j}+\left(b_{\lambda, s_{\lambda}} a_{i^{\prime} j^{\prime}}+\gamma\right) u_{i^{\prime} j^{\prime} \alpha} m_{i^{\prime} j^{\prime}}-\sum b_{\xi \eta} u_{\xi \eta a} m_{\xi \eta}$. Hence $u_{\lambda, s_{\lambda}, \alpha} m_{\lambda, s_{\lambda}}=\left(\frac{b_{\lambda, s_{\lambda}} a_{i j}+1}{b_{\lambda, s_{\lambda}}}\right) u_{i j \alpha} m_{i j}+\frac{b_{\lambda, s_{\lambda}} a_{i^{\prime} j^{\prime}}+\gamma}{b_{\lambda, s_{\lambda}}} u_{i^{\prime} j^{\prime} \alpha} m_{i^{\prime} j^{\prime}}-\sum \frac{b_{\xi, \eta}}{b_{\lambda, s_{\lambda}}} u_{\xi \eta \alpha} m_{\xi \eta}$ and $\frac{b_{\lambda, s_{\lambda}} a_{i j}+1}{b_{\lambda, s_{\lambda}}}=a_{i j}$. Thus $a_{i j}+\frac{1}{b_{\lambda, s_{\lambda}}}=a_{i j}$ and $\frac{1}{b_{\lambda, s_{\lambda}}}=0$ but this is a contradiction.

Next if there exists $v_{\lambda, s_{\lambda}, i} \in N e_{\lambda}$ such that $u_{\lambda, s_{\lambda}, \infty}=u_{i j \alpha} v_{\lambda, s_{\lambda}, i}$ or $N e_{i} m_{i j}$ $=A u_{i j} m_{i j}+A v_{i j} m_{i j}(i=\lambda)$, and we take $n_{i j}=a_{i j} m_{i j}-v_{\lambda, s_{\lambda}, i} m_{\lambda, s_{\lambda}}$ instead of $m_{i j} \quad$ then $\quad N u_{i j \alpha} n_{i j}=N\left(u_{i j \alpha} m_{i j}-u_{i j \alpha} v_{\lambda, s_{\lambda}, i} m_{\lambda, s_{\lambda}}\right)=N\left(u_{i j \alpha} m_{i j}-u_{\lambda, s_{\lambda}, a} m_{\lambda, s_{\lambda}}\right)$ $=N u_{i j \alpha} m_{i j}=N u_{i^{\prime} j^{\prime} \alpha} m_{i^{\prime} j^{\prime}}$. Thus $u_{i j a} n_{i j}+\sum_{(\xi, \eta)} \sum_{\substack{(i j) \\\left(\lambda, s_{\lambda}\right)}} a_{\xi \eta} u_{\xi \eta \alpha} m_{\xi \eta}=0$ and $s\left(A e_{\lambda} m_{\lambda s_{\lambda}}\right) \cap\left(A e_{i} n_{i j}+\sum_{(\xi, \eta)_{\odot}} \sum_{\substack{(i, j) \\\left(\lambda, \lambda_{\lambda}\right)}} A e_{\xi} m_{\xi \eta}\right)=0$ by the same way as above. But this is a contradiction. Therefore \mathfrak{m} is assumed not to have such a direct summand and we may assume that $A u_{i j \alpha} m_{i j} \subset s\left(A e_{i} m_{i j}\right)$ for each (i, j). Hence we can assume that $N u_{i j \alpha} m_{i j}=0$ for each (i, j).
(b) Assume that there exists $v_{i j \lambda} \in N e_{i}$ such that $u_{i j \alpha}=u_{\lambda, s \lambda, \alpha} v_{i j \lambda}$ and
$s\left(A e_{i} m_{i j}\right)$ is simple. If we take $N_{\lambda, s_{\lambda}}=m_{\lambda, s_{\lambda}}-a_{i j} v_{i j \lambda} m_{i j}$ instead of $m_{\lambda, s_{\lambda}}$ then $u_{\lambda, s_{\lambda}, \alpha} n_{\lambda, s_{\lambda}}=\sum_{(\xi, \eta) \neq} \sum_{(i, j)} a_{\xi \eta} u_{\xi \eta \alpha} m_{\xi \eta}$. But this is a contradiction since $s\left(A e_{i} m_{i j}\right) \cap\left(A e_{\lambda} n_{\lambda, s_{\lambda}}+\sum_{(\xi, \eta) \neq \ddagger} \sum_{(i, j)} A e_{\xi} m_{\xi \eta}\right)=0$ similarly as above.

Moreover if $N e_{i} m_{i j}=A u_{i j} m_{i j} \oplus A v_{i j} m_{i j}$ then similarly as above we can see that this is a contradition.

Next if there exists $v_{\lambda, s_{\lambda}, i} \in N e_{\lambda}$ such that $u_{\lambda, s_{\lambda, \infty}}=u_{i j a}=u_{i j \alpha} v_{\lambda, s_{\lambda, i}}$ and $A e_{i} m_{i j}$ is a direct summand of m^{\prime} then similarly as above this is a contradiction. ${ }^{9)}$

Thus we can assume that m^{\prime} is the direct sum of the following directly indecomposable modules.
(1) $A e_{s} m_{s t}+A e_{s^{\prime}} m_{s^{\prime} t^{\prime}}^{\prime} \quad$ where $A e_{s} m_{s t} \cap A e_{s^{\prime}} m_{s^{\prime} t^{\prime}}=A u_{s t \alpha} m_{s t}=A u_{s^{\prime} t^{\prime} \alpha} m_{s^{\prime} t^{\prime}}$ and there does not exist $v_{\lambda, s_{\lambda}, s} \in N e_{\lambda}$ such that $u_{\lambda s_{\lambda \alpha}}=u_{s t a} v_{\lambda, s_{\lambda}, s}$ for each $u_{s_{t}}$.
(2) $A e_{p} m_{p q}$ where $s\left(A e_{p} m_{p q}\right)=N w, s\left(A e_{p} m_{p q}\right)=A u_{p q \alpha} m_{p q} \oplus A u_{p q \beta} m_{p q}$ $(\alpha \neq \beta)$ and there exists $v_{p q \lambda} \in N e_{p}$ such that $u_{p q_{\alpha}}=u_{\lambda, s_{\lambda}, \alpha} v_{p q \lambda}$.
(3) $A e_{p} m_{p q}+A e_{r} m_{r s}$ where $A e_{p} m_{p q}$ has the type (2), $A e_{p} m_{p q} \cap A e_{r} m_{r s}$ $=A u_{p \beta \alpha} m_{p q}=A u_{r s \alpha} m_{r s}$ and there exists a homomorphism of $A e_{r} m_{r s}$ into $A e_{p} m_{p q}$ which is the extension of $A u_{p q \alpha} m_{p q}$ $\simeq A u_{r s} m_{r s}$.
(4) $A e_{p^{\prime}} m_{p^{\prime} q^{\prime}}$ where there exists $v_{p^{\prime} q^{\prime} s^{\prime}} \in N e_{p^{\prime}}$ such that $u_{p^{\prime} q^{\prime} a_{s}}$ $=u_{s^{\prime} t^{\prime} \alpha} v_{p^{\prime} q^{\prime} s^{\prime}}$ for each $u_{s^{\prime} t^{\prime} \alpha}$.
(i) Assume that m^{\prime} has a direct summand $A e_{i} m_{i j}+A e_{i^{\prime}} m_{i^{\prime} j^{\prime}}$ where $A e_{i} m_{i j} \cap A e_{i^{\prime}} m_{i^{\prime} j^{\prime}}=A u_{i j a} m_{i j}=A u_{i^{\prime} j^{\prime} a}^{\prime} m_{i^{\prime} j^{\prime}}$ and $A u_{i j a} m_{i j}$ is isomorphic to a vertice component. ${ }^{10)}$ In this case by the condition (4. ii. α) if $A u_{i j \alpha} m_{i j} \subset$ $N^{2} e_{i} m_{i j}$ then $s\left(A e_{i} m_{i j}\right)$ is simple. Now we say that this module is of type (1_{a}).

First assume that m^{\prime} is the direct sum of directly indecomposable modules of type (1_{a}). Then there exists $A e_{i} m_{i j}$ such that $u_{\xi \eta_{n \alpha}}=u_{i j a} v_{\xi n i}$ for each $(\xi, \eta)\left(v_{\xi_{n i}} \in N e_{\xi}\right)$ since there exists $A e_{i}$ such that it is homomorphic into $A e_{\xi} m_{\xi \eta}$ for each (ξ, η). Hence if we take $n_{i j}=a_{i j} m_{i j}$ $+\sum_{(\xi, \eta) \mp} \sum_{\substack{(i, j) \\\left(\lambda, s_{\lambda}\right)}} a_{\xi \eta_{\eta}} v_{\xi \eta i} m_{\xi \eta}-v_{\lambda s, \lambda, i} m_{\lambda, s \lambda}$ instead of $m_{i j}$ then $u_{i j \alpha} n_{i j}=0$ and this contradicts the assumption on l. Therefore we assume that m^{\prime} is the direct sum of directly indecomposable modules of the type (1_{a}) and (4).

If m^{\prime} has at least two direct summands of type (4), $A e_{p^{\prime}} m_{p^{\prime} q^{\prime}}$ and $A e_{r^{\prime}} m_{r^{\prime} s^{\prime}}$, then from the assumption $A e_{s^{\prime}} m_{s^{\prime} t^{\prime}}$ of each direct summand $A e_{s} m_{s t}+A e_{s^{\prime}} m_{s^{\prime} t^{\prime}}$ of \mathfrak{M}^{\prime} is homomorphic to a submodule of $A e_{p^{\prime}} m_{p^{\prime} q^{\prime}}$ and
9) We have only to take $n_{i j}=a_{i j} m_{i j}-v_{\lambda}, s_{\lambda} m_{\lambda}, s \lambda$ instead of $m_{i j}$.
10) From this result we have $s\left(\frac{A e_{i} m_{i j}}{A u_{i j \alpha} m_{i j}}\right) \cong s\left(\frac{A e_{i^{\prime}} m_{i^{\prime} j^{\prime}}}{A u_{i^{\prime} j^{\prime} \alpha} m_{j^{\prime} j^{\prime}}}\right)$.
 and $\quad a_{p q} u_{r^{\prime} s^{\prime} a} m_{r^{\prime} s^{\prime}}=a_{p q} u_{p q} m_{p q}=u_{p q_{\alpha}} n_{p q}-\sum_{(\xi, \eta \geqslant \neq(\varphi, q)} a_{\xi_{\eta}} u_{\xi_{k}} m_{\xi \eta}$. Hence if we take $\quad n_{r^{\prime} s^{\prime}}=a_{p q} m_{r^{\prime} s^{\prime}}-v_{\lambda, s_{\lambda} r^{\prime}} m_{\lambda, s_{\lambda}} \quad$ instead of $\quad m_{r^{\prime} s^{\prime}}$ then $n_{r^{\prime} s^{\prime}{ }_{a}{ }^{\prime} n_{r^{\prime} s^{\prime}} .}$ $=-\sum_{(\xi, \eta \geqslant \neq(p, q)} a_{\xi \eta} u_{\xi \eta \eta} m_{\xi \eta}$ and $s\left(A e_{p} m_{p q}+A e_{r^{\prime}} m_{r^{\prime} s^{\prime}}\right) \cap\left(A e_{r^{\prime}} n_{r^{\prime} s^{\prime}}+\sum \sum\left(A e_{\xi} m_{\xi \eta}\right.\right.$ $\left.+A e_{\xi^{\prime}}\left(m_{\xi^{\prime} \eta^{\prime}}\right)\right)=0$. But this is a contradiction.

If \mathfrak{m}^{\prime} is the direct sum of modules of the type $\left(\alpha_{1}\right)$ and $\left(\alpha_{2}\right)$ then by the same way as this we can see that this is a contradiction.
(3.3.2) Assume that $s\left(A e_{\lambda} m_{\lambda, s_{\lambda}}\right)=A u_{\lambda, s_{\lambda \alpha}} m_{\lambda, s_{\lambda}} \oplus A u_{\lambda, s_{\lambda} \beta} m_{\lambda, s_{\lambda}}$. If $N e_{\lambda} m_{\lambda, s_{\lambda}}=A w_{\lambda, s_{\lambda}} m_{\lambda, s_{\lambda}} \oplus A w_{\lambda, s_{\lambda}}^{\prime} m_{\lambda, s_{\lambda}}$ then similarly as (3.3.1) we can see that this is a contradiction.

Next assume that $N e_{\lambda}$ has the type (3.1.1, ii) or (3.1.2, ii). If there exists $A e_{i} m_{i j}$ in m such that $s\left(A e_{i} m_{i j}\right)$ is simple then we have only to take $A e_{i} m_{i j}$ instead of $A e_{\lambda} m_{\lambda, s_{\lambda}}$.

Otherwise by the same way as (3.3.1) we can see that this is a contradiction.

Thus we have the main theorem.
Theorem. A is of 2-cyclic representation type if and only if A satisfies five conditions in $\S 1$.

Osaka University.
(Received March 12, 1962)

References

[I] T. Nakayama: On Frobeniusean Algebras. II, Annals of Math. 42 (1941), 1-21.
[II] T. Nakayama: Note on Uniserial and Generalised Uniserial Rings, Proc. Imp. Acad. 16 (1940) 285-289.
[III] G. Köthe: Verallgemeinerte abelsche Gruppe mit hyperkomlexen Operatorring, Math. Zeit. 39 (1935), 31-44.
[IV] T. Yoshii: On Algebras of Bounded Representation Type, Osaka Math. J. 8 (1956), 51-105.
[V] T. Yoshii: Note on Algebras of Strongly Unbounded Representation Type, Proc. Jap. Acad. 32 (1956), 383-387.
[VI] T. Yoshii: Note on Algebras of Strongly Unbounded Representation Type II, Proc. Jap. Acad. 32 (1956), 744-747.
$A e_{r^{\prime}} m_{r^{\prime} s^{\prime}}$. Hence by (g) and (h) $u_{p^{\prime} q^{\prime} \alpha}=u_{r^{\prime} s^{\prime} \alpha_{\alpha}} v_{p^{\prime} q^{\prime} r^{\prime}}\left(\right.$ or $u_{r^{\prime} s^{\prime} \alpha}=u_{p^{\prime} q^{\prime} a} v_{r^{\prime} s^{\prime} p^{\prime}}$) since
 $a_{r^{\prime} s^{\prime}}^{\prime} \mathrm{m}_{r^{\prime} s^{\prime}}+a_{p^{\prime} q^{\prime}} v_{p^{\prime} q^{\prime} r^{\prime}}^{\prime} m_{p^{\prime} q^{\prime}}$ instead of $m_{r^{\prime} s^{\prime}}$ (or $n_{p^{\prime} q^{\prime}}=a_{p^{\prime} q^{\prime}}^{\prime} m_{p^{\prime} q^{\prime}}+a_{r^{\prime} s^{\prime}} v_{r^{\prime} s^{\prime} p^{\prime}}^{\prime} m_{r^{\prime} s^{\prime}}$ instead of $m_{p^{\prime} q^{\prime}}$) then $u_{\lambda s_{\lambda} \alpha} m_{\lambda s_{\lambda}}=a_{r^{\prime} s} u_{r^{\prime} s^{\prime} \alpha} n_{r^{\prime} s^{\prime}}+\sum_{(\xi, \eta) \neq \mid} \sum_{\left(r^{\prime}, s^{\prime}\right)} a_{\xi \eta} u_{\xi \eta a} m_{\xi \eta}$ (or $\left.u_{\lambda s_{\lambda} \alpha} m_{\lambda s_{\lambda}}=a_{p^{\prime} q^{\prime}} u_{p^{\prime} q^{\prime} a} n_{p^{\prime} q^{\prime}}+\sum_{(\xi, \eta) \neq\left(p^{\prime} q^{\prime}\right)} a_{\xi \eta} u_{\xi \eta \alpha} m_{\xi \eta}\right)$ and this is a contradiction. Therefore we assume that m^{\prime} is the direct sum of directly indecomposable modules of the type $\left(1_{a}\right), A e_{\xi} m_{\xi_{\eta}}+A e_{\xi^{\prime}} m_{\xi^{\prime} \eta^{\prime}}$, and a directly indecomposable modules of the type (4) $A e_{p^{\prime}} m_{p^{\prime} q^{\prime}}$.

Now similarly as above there exists $A e_{i} m_{i j}$ such that $A e_{i} m_{i j}+A e_{i^{\prime}} m_{i^{\prime} j^{\prime}}$ is a direct summand of \mathfrak{m}^{\prime} and $u_{\xi \eta \alpha}=u_{i j \alpha} v_{\xi n i}$ for each $(\xi, \eta)\left(v_{\xi_{n i}} \in N e_{\xi}\right)$ and if we take $n_{i j}=a_{i j} m_{i j}+\sum_{(\xi, \eta) \mp} \sum_{\left(p^{\prime}, q^{\prime}\right)} a_{\xi_{\eta}} v_{\xi_{\eta \alpha}} m_{\xi_{\eta}}-v_{\lambda, s_{\lambda \alpha}} m_{\lambda, s_{\lambda}}$ instead of $m_{i j}$ then $u_{i j \alpha} n_{i j}=u_{p^{\prime} q^{\prime}{ }^{\prime}} m_{p^{\prime} q^{\prime}}$. Hence $a_{i j} u_{i^{\prime} j^{\prime} \alpha} m_{i^{\prime} j^{\prime}}=a_{i j} u_{i j \alpha} m_{i j}=u_{i j \alpha} n_{i j}$ $-\sum_{(\xi, \eta) \neq \ddagger} \sum_{\left(p^{\prime}, q^{\prime}\right)} a_{\xi_{\eta}} u_{\xi \eta a} m_{\xi \eta}+u_{\lambda, s_{\lambda} \alpha} m_{\lambda, s_{\lambda}}$ and from the assumption $u_{p^{\prime} q^{\prime} \alpha}$ $=u_{i^{\prime} j^{\prime} a} v_{p^{\prime} q^{\prime} i^{\prime}}\left(v_{p^{\prime} q^{\prime} i^{\prime}} \in N e_{p^{\prime}}\right)$. Therefore if we take $n_{i^{\prime} j^{\prime}}=a_{i j} m_{i^{\prime} j^{\prime}}-v_{p^{\prime} q^{\prime} i^{\prime}} m_{p^{\prime} q^{\prime}}$ instead of $m_{i^{\prime} j^{\prime}}$ then $u_{i^{\prime} j^{\prime} a} n_{i^{\prime} j^{\prime}}=u_{\lambda, s_{\lambda} \alpha} m_{\lambda, s_{\lambda}}-\sum_{(\xi, \eta) \neq \mp} \sum_{\left(p^{\prime}, q^{\prime}\right)} a_{\xi \eta} u_{\xi n a} m_{\xi \eta}$ and this is a contradiction.

Next if m^{\prime} has a direct summand of the type (2), $A e_{p} m_{p q}$, and of the type $\left(1_{a}\right), A e_{i} m_{i j}+A e_{i^{\prime}} m_{i^{\prime} j^{\prime}}$, then by the condition (4. ii. α) $N e_{p} m_{p q}$ $=A u_{p q \alpha} m_{p q} \oplus A u_{p q \beta} m_{p q}$. But in this case $u_{i j \alpha}=u_{p q \alpha} v_{i j p}$ and this contradicts the assumption.
(ii) Assume that m^{\prime} has a direct summand $A e_{i} m_{i j}+A e_{i^{\prime}} m_{i^{\prime} j^{\prime}}$ where $N e_{i} m_{i j} \cong N e_{i^{\prime}} m_{i^{\prime} j^{\prime}} \quad$ or $\quad \frac{N e_{i} m_{i j}}{A u_{i j \beta} m_{i j}} \cong N e_{i^{\prime}} m_{i^{\prime} j^{\prime}} \quad\left(s\left(N e_{i} m_{i j}\right)=A u_{i j \alpha} m_{i j} \oplus A u_{i j \beta} m_{i j}\right)$. Moreover we may assume that $A u_{i j} m_{i j} \subset N^{2} e_{i} m_{i j}$. We say that this modnle is of type $\left(1_{b}\right)$. Therefore if m^{\prime} has at least two direct summands of the type $\left(1_{b}\right) A e_{i} m_{i j}+A e_{i^{\prime}} m_{i^{\prime} j^{\prime}}^{\prime}$ and $A e_{k} m_{k l}+A e_{k^{\prime}} m_{k^{\prime} l^{\prime}}$ then $i=k$ and $i^{\prime}=k^{\prime}$. Hence similarly as (i) we may assume that m^{\prime} has at most one direct summand of the type $\left(1_{b}\right)$. In this case if m^{\prime} has a direct summand of the type (4) $A e_{p} m_{p q}$ then by the condition (4. ii. α) we can see that $p=\lambda=i$ but this contradicts the assumption.
(iii) Assume that m^{\prime} has a direct summand of type (3), $A e_{p} m_{p q}$ $+A e_{r} m_{r s}$. Then similarly as (i) and (ii) m^{\prime} has no direct summand of the type $\left(1_{a}\right)$. Hence m^{\prime} has a direct summand of one of the following types.
(α_{1}) $A e_{p} m_{p q}+A e_{r} m_{r^{\prime} s^{\prime}}$ where this is of the type (3), $u_{p q_{\alpha}}=u_{\lambda, s_{\lambda \alpha}} v_{p q \lambda}$ and $u_{\lambda, s_{\lambda \alpha}}=u_{r^{\prime} s^{\prime} a} v_{\lambda, s_{\lambda} r^{\prime}}$.
(α_{2}) $A e_{k} m_{k l}$ where this is of the type (2) and $u_{k l l_{\alpha}}=u_{p q_{\alpha}} u_{k l l_{p}}$.
If \mathfrak{m}^{\prime} is the direct sum of modules of the type $\left(\alpha_{1}\right)$ then there exists $A e_{p} m_{p q}+A e_{r^{\prime}} m_{r^{\prime} s^{\prime}}$ such that $u_{\xi \eta_{\alpha}}=u_{p q_{\alpha}} v_{\xi_{\eta p}}$ for all (ξ, η). Now if we take

[^0]: 1) See [I] and [II].
[^1]: 2) This is also the consequence of the first half of the condition 1 .
 3) See [III].
[^2]: 4) We can get $N^{\rho} u_{1} m_{1} \subset N^{\rho} u_{1} n_{1}+N^{\mu} u_{2} m_{1}$ from $N^{\rho} u_{1} n_{1} \subset N^{\rho} u_{1} m_{1}+N^{\mu} u_{2} m_{1}$ since $N^{\rho} u_{1} m_{1}$ is simple,
[^3]: 6) By the condition (1) and (2) we can see that the kernel of the homomorphism $A e_{i} \sim A e_{i} n_{i}$ is $N^{\rho} w_{1}+N^{\mu} w_{2}$ where $N e_{i}=A w_{1}+A w_{2}$.
