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On Quotient Rings

By Yuzo Utumr

An extension ring S of a ring T is called a left quotient ring of
T if for any two elements x==0 and y of S there exists an element a
of T such that ax==0 and ay belongs to 7. Let R be a ring without
total right zero divisors. Then R has always a unique maximal left
quotient ring, and moreover the maximal left quotient ring of a total
matrix ring of finite degree over R is a total matrix ring of the same
degree over the maximal left quotient ring of R.

A left ideal 1 of R is called an M-ideal ‘if it contains every element
x for which there exists a left ideal m of R satisfying the condition
that (1) mx<ZI! and (2) R is a left quotient ring of m. When S is a
left quotient ring of R, M-ideals of R and those of S correspond one-
one in a definite way. A left ideal I of R is said to be complemented
if there exists a left ideal I such that [ is a maximal one among left
ideals which have zero intersection with I’. Every complemented left
ideal is an M-ideal, but the converse is not true in general. In a ring
without total right zero divisors, every M-ideal is complemented if and
only if the ring has the zero left singular ideal. Another example of
M-ideals is the annihilator left ideals. A sufficient condition for that
every M-ideal of a ring with zero left singular ideal is an annihilator
left ideal, is that the maximal left quotient ring coincides with the
maximal right quotient ring.

Every semisimple I-ring has zero singular ideals and hence it has
the left and the right maximal quotient rings. We discuss especially
two types of semisimple I-rings, i.e., primitive rings with nonzero socle,
and semisimple weakly reducible rings. Let P be a primitive ring with
nonzero socle. Then the maximal left quotient ring of P is right com-
pletely primitive. Thus, the left and the right maximal quotient rings
of P coincide if and only if P satisfies the minimum condition. Let W
be a semisimple weakly reducible ring. The left and the right maximal
quotient rings of W always coincide and is also semisimple weakly
reducible. In particular, if W is plain then its maximal quotient ring
is strongly regular. This implies that the (nilpotency) index of a total
matrix ring of degree m over a semisimple /-ring of index » is mn.



2 Yuzo UtumMI

The writer wishes to express his gratitude to Professor Goro
Azumaya for his helpful suggestions.

1. For any subset A of a ring S and any family B of right operators
of S the set of all the elements in S satisfying xBZ A is denoted by
(A/B)S. In particular, when B consists of the right multiplications of
all elements in a subset C of S we write it as (A4/C)S.

(1.1) Let R be a subring of a ring S. We say that S is a (lef?)
quotient ring of R if for any pair of elements x==0 and y in S there
exists an element ¢ in R such that ay€ R and ax==0. Notation: S>R.

We may also define a similar concept by a slightly weaker condi-
tion: We write S(Z) R if any nonzero x€ S there is an element a€ R
such that O==ax € R. Of course, SR implies S(=)R. But the following
example shows that the converse is false. Let K be a field and S the
ring K[x]/(x*). We denote the subring of S generated by 1, #* and #*
as R. Then S(>>)R, while no @€ R satisfies az€ R and az*-=0 simul-
taneously.

Our main object is the quotient ring in the sense of (1.1).

(1.2) Let S>R. The only homomorphism of S into itself which
leaves R invariant is the identity mapping.

If x0=+x for some x€ S, there would exist an element ¢€ R such
that ax€ R and a(x0—x)==0. But then a(x0)=(a0)(x0)=(ax)0=ax. This
contradiction shows that x0=x for every x€ S.

(1.3) Let S>R. An element x belongs to the center of S if it is
commutative with every element in R.

Assume xy==yx. Then ay€ R and a(xy—yx)=}=0 for some a€ R.
axy=xay—ayx. This is a contradiction.

(1.4) Let S>R. For any finite number of elements x,4=0, x,, -+, X,
in S there exists an element a € R such that ax,, ax,, -+, ax,€ R and ax,==0.

The assertion is evidently true if n=1. Let »>1. We assume
that bx,, bx,, -+, bx, € R, bx,-1=0 for some b€ R. Since SR there is
¢€ R such that c¢bx,€ R and cbx,=1=0. Therefore ¢b, c¢bx,, -+, cbx,€ R and
cbx,=4=0.

(1.5) Let SOR>OT. Then S>R>T if and only if S>T.

The “if” part is clear from the definition. To prove the “only if”
part let S>x(=-0), y. Then ax, ay€ R and ax=-0 for some a€ R. Hence
ca, caye T and cax=4-0 for some c€ T. This implies S>T.

We denote by S* the set of all left ideals [ satisfying S>1.
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(1.6) Let 1 be a left ideal of S. Then L€ S* if (and only if) for
any elements x==0 and y in S there exists an element a in S such that
ay>1 and ax==0.

In fact, it follows from the assumption that there is moreover an
element b € S such that bac! and bax=-0. Since (ba)y=b(ay) € we have
S4s1.

1.7) If S>R and me S*, then S>Rnm, Rm.

Let S>x(==0), . Then ax==0, ayem for some a€m. Hence
ba, bay€ R and bax=0 for some b€ R. We see that ba, bayc (Rnm)n Rm.
Therefore S>Rnm and S>Rm.

(1.8) Let S>R and let m, € S* be preassigned to each x€ R. Then
SerMx € SA.

Let S>x(==0), y. Then ay€ R and ax==0 for some a€ R. We set
m=m,Nm,,. By (1.7), me S*. Hence bax==0 for some b€ m and then
ba€ m,a, bayc m,,ay.

(1.9) Let S*>R, T. If 0 is an S-left homomorphism of R into S
then (T/0)Re S*.

Let S>x(==0), y. Then ay€ R, ax=+0 for some a€ R. Moreover,
b(ab), b((ay)0) € T and bax==0 for some be T. Hence ba, baye (T/0)~.
Thus (T/6)Re€ S*.

This proof shows also the following

(1.10) Let S>R. If 0 is an R-left homomorphism of R into S, then
(R/6)R € R*.

(1.11) Let S be a ring. The following conditions are equivalent :

(1) There exists a ring T such that S>T or T >S.

(2) S=S.

(3) S has no total right zero divisors, that is, Sx=0 implies x=0.

This is evident from the definition and (1.5).

By virtue of the above lemmas the R. E. Johnson’s method® for con-
structing the extended centralizer is verbatim applicable to our case.

Construction of S. Let S be a ring such that S>>S. Then S* is
non-vaid. We denote by g the set of all S-left homomorphisms each
of which is defined on a left ideal in S* and has values in S. The
definition domain of 6 € g is denoted as M,. When M,=M,, we define
the addition by x(@+6&)=x6+2x0’. When M,0 "M, , the multiplication
is defined by x(00)=(x0)¢’. For 0, ¢ € Ag if there exists € S* such
that [M,nM, and 6, ¢ coincide on Y, we say that ¢ and ¢ are

1) See [8].
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equivalent. Then this relation is reflexive, symmetric and transitive.
We denote the equivalence class containing 6 as 6 and the set of all
the classes as S. By (1.7), (1.9) it is easy to see that S forms a ring
in a natural way. For any x€ S the right multiplication x, belongs to
As. We identify x with Z, and regard S as an extension ring of S.

(1.12) If x€ M,, then x0=x0.
This follows easily from that y(x0)=(yx)6 for every y€ S.

(1.13) S>S.

In fact, let §, p€ S and @==0. By (1.7), M,nM,<c S*. Hence ap=0
for some a€ MynM,. Then ad=abc S and ap=ap-=0 by (1.12). This
implies S>8S.

Theorem 1. Let T>>S. Then T is isomorphic, over S, to S if and
only if T satisfies either the following condition (1) or (2).
In this case, we say that T is the (left) maximal quotient ring of S.

ConpITION (1). For any 0€ Ug there are x€ T and me S* such that
mM, and y0=yx for every yc m.

CONDITION (2). If RZ>S, then there exists an isomorphism, over S, of
R into T.

Proof. To see the “only if” part it is sufficient to prove that S
satisfies these conditions. (1) is evident from (1.12). Let R=>S. By
(1.10), (S/x)S€ S* for every x€ R. Hence the right multiplication €, of
x on (S/x)S belongs to As. Associating each x € R with 6,€ S we obtain
an isomorphism, over S, of R into S. Therefore S satisfies (2). If R
satisfies the condition (1), this isomorphism is onto. This proves the
first half of the “if” part of Theorem. Finally, let T satisfy (2).
Then, since S>>S by (1.13), S is isomorphic, over S, into 7. On the
other hand, since 7>>S and S satisfies the condition (2), T is isomor-
phic, over S, into S. Then product of these isomorphisms is the identity
mapping of S by (1.2). It follows from this that S and 7 are isomor-
phic over S. This completes the proof.

The following (1.14)—(1.17) are easily proved by Theorem 1 and we
omit their proofs.

(1.14) If T>S, then T~S over S.
1.15) S=3S.
(1.16) If T>S and T=T, then T~S over S.
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(1.17)  Every automorphism of S can be extended uniquely to that of S.

2. (2.1) Let {S,} be a family of rings with the property S,>S, for
every d. Then 24 S, is the maximal quotient ring of 2 S., where =5
denotes the complete divect sum, while Zg the (restricted) divect sum.

(1) First we note that if 2§ 7,>R and T,>T, then T,>RnT,.
In fact, let T,3>x(==0), y. By the assumption, bx==0 for some b€ T,.
Hence ab, aby€ R and abx==0 for some a€ R. Then ab, aby€e RN T,.
Therefore T,>RNnT,. @) Let T,>R, for every «. Then it is easy
to see that =5 T,>3s R,. (3) We set P=35S,. Let 6 €, and denote
its restriction to M,nS, as 6,. Then ,€Us, since M,nS, €S2 by ().
By Theorem 1 there is x,€ S, such that yx,=y6, for every y€M,nS,.
Hence y3%x,=3y0 for every y€s (M,nS.,). By @), = (M,nS.,) < P>
Therefore it follows from Theorem 1 that P=P because of P>>P. By
@), P>%8,. Thus we see that P~X S, over =S, by (1. 16).

As a corollary of 2.1),

2.2) If S=ada’ where a and o’ are two-sided ideals of S, then a
is the maximal quotient ring of anS. B

From (1) of the proof of 2.1) we get a>anS. Now S=S=ada.
Hence a=a. Owing to (1.16) this implies a~anS over anS.

We use the notation R, for the total matrix ring of degree # over
a ring R.

2.3) If S=S, then (S), is the maximal quotient ving of S,.

First, we assume that S has a unit element. (1) S>T implies
S,=>T,. Infact, let S, A,=3 a{ye;; for k=0, 1 and let a{Y==0. Then
there is a€ T such that @alY=+0 and aa(€ T (u=1,---,m). Hence
ae,,, aey,A, € T, and ae,,A=F0. This shows S,>T,. @) If (S)*>R,
then m, <R for some méeS* In fact, we denote by m, the set of
all the elements of S each of which is a coefficient of a matrix
in RnS,e,.. This is evidently a left ideal of S. Let S>x (4=0), y. By
the assumption there is a matrix A==2 g;;e;; € R such that Ae,,, A(ye.) € R
and A(xe,)==0. Hence a;,x==0 for some i. Since a;, a;,y<€m,, this
implies m,€ S*. By (1.7), m=/\m,€ S* For any element y&m there
exists a matrix D€ RN S,¢e,, whose (1, k)—coefficient is y. ye;,=e;;DER.
Therefore m,ZTR. (3) Let 6€Us,. By ), m, <M for some meS*.
For any x € m we denote (xe,)8=e,(xe,)0 as =; (x0,,)e,;. Then 0,; are
S-left homomorphisms of m into S so that they belong to 2. Hence
there are a,;€S such that x0,;=xa,; for every x€m. Therefore,
for every Zxpen€m,, (2 a0 =2 en (Xie) 0 = Ty e (X:40)) €45
=3, (S Xixay;) €;;= (2 Xix€:) (S aipes). This shows that (S),~(S,) over S,
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since (S),>>S, by (1). For S without unit element we denote by S’ the
subring of S generated by S and the unit element of S. Then S~
over S by (1.14). Moreover, (S,))=~(S, over S, since S, >S, by (1).
From these facts it follows that (S),~(S,) over S, as required.

3. In this section we shall consider some correspondence between
ideals of a ring and those of its quotient ring.

Let R<S and I be an R-left submodule of S. We denote by A1
the set of all elements x € S satisfying (I/x)® € R*.

B.1) A3l is a left ideal of S containing .

For, let A$I>x and S>y. Since ([/x)®€ R* we see that ((I/x)%/yF
€ R* by (1.10). Now ((I/x)®/9)EyxZ(I/x)®x<I. Hence (I/yx)R€ R*, or
yx € AL

B.2) AS(INV)=ASINAST.
This is easy to verify by (1.5), (1.7).

3.3) A (InR)DI.
If x€l, then (R/x)®€ R* by (1.10). This means x € A} (INnR) since
(R/x)R=(RN1/x)~.

(3.4) AS(x) > (A% x for every x € S.

(3.5 Let RXS<T and 1 be an S-left submodule of T. Then
AT1=AT]1.

(3.6) Let RCS<T. Iflisan R-left submodule of S then AZL(A%Y)
=ATZl.

Since A%! is a left ideal of S containing I, we see that AZ(A%)
=AZ(AR)DAFI by (3.2), (3.5). On the other hand, let x€ AZ(AS)
or (Afl/x)ReR*. If ye(Af[/x)® then yxe€ A31; hence (I/yx)Re RA.
It follows from (1.8) that = (I/yx)Ey€ R*, where = denotes the sum for
all ye (AgIl/x)R Since (X ([/yx)®y)x<I, this implies that AZI>ux.
Therefore AZ(A) TAZI and the equality holds.

Let R<R. A left ideal I is called a (left) M—ideal if ARI=I.

3.7 The intersection of any collection of M-ideals in a ring is also
an M-ideal.

Let I, be M-ideals. By 3.2), AE(N\I1)<TAEI,=I,. Hence
NLZAR(N\L) by 3.1). Thus AR(N\L)=/N1,.

(3.8) Let R<S. Then A3l is an M—ideal of S for every R-left
submodule | of S.



On quotient rings 7

In fact, AS(AS)=AST by (3.6).

Theorem 2. Let R<S. The Mappings | —>A31 and L—LNR are
mutually receiprocal and give a 1-1 correspondence between M-ideals | of
R and ¢ of S.

Proof. If I is an M-ideal of R then A3l is an M-ideal of S by
(3.8). Clearly ASINnR=AEI=I by the definition. On the other hand,
if £ is an M-ideal of S, then L=A§L=A$ T DA% (2N R) > according
to 3.5, 3.2) and (3.3). Hence L=A%(8NR). Moreover, N R is an
M-ideal of R since AR(RNR) =A3®RNR NR=8nR.

(B.9) Let R<S. Iflis an M—ideal of R, then A\ is the maximal
left ideal of S of which intersection with S is-1.

From (3.3) we see that AJI=A%RNR) DL if LnR=I.

In the following we make mention of two special types of M-ideals,
i. e., the left annihilator ideals and the complemented left ideals.

By /x(A) (rx(A)), we mean the left (right) annihilator ideal of A
in R.

(3.10) If R<R, then every left annihilator ideal in R is an M—ideal.

By (3.4), (ARI(x))xZAE (I(x)x) =0 for every x€ R. Since A /(x)
—>I(x), we have AEIl(x)=1I(x). According to (3.7), every left annihi-
lator ideal is an M-ideal.

(3.11) Let R<S. If l is aleft annihilator ideal in R, then A1 is
also a left annihilator ideal in S.

We assume [=/,(4). Then /;(4) is an M-ideal in S. Hence /s(A)
A3 (Us(ANR)y=A% [x(A)=A%1 by Theorem 2.

We may define a right quotient ring in an obvious way.

(3.12) Let S be a left and right quotient ring of R. If L is a left
annihilator ideal in S, then LN\ R is also a left annihilator ideal in R.

Let x€7x(8nR). Then 0=A3(R"R)2)D(ALERNR)x>DLx by
(3.4), (3.3). Hence x €7gx(¥). Therefore 7x(¥ N\ R) =7p(¥). Similarly we
see  that [x(rs(®)NR) =I5 (r5(¥)). Thus I, (78N R)) =I5 (7£(Q))
= Ilp(rr(®) N R)=Ix(rs(R))=1Is(rs(8)) " R=%N R and our assertion is proved.

For given left ideal [ of R a left ideal of R is called a complement
of I if it is the maximal one among the left ideals having the zero
intersections with [. We denote it by [°. Of course, [° is not uniquely
determined by I. A left ideal which is a complement of some left ideal
is called a complemented left ideal. We use the notation 1°° for (I9)°
containing 1.



8 Yuzo Utuml

(3.13) Let R<R. Anycomplemented left ideal of R is an M-ideal.

In fact, AR(°)=1° since AR(IYNIZAR()NARI=AR(I°‘n])=0 and
[FT AR ().

(3.14) Let R<S. If | is a complemented left ideal in R, then A%
is also a complemented left ideal in S.

We may assume that [=1° Clearly A3 INA$(()=A%(INI)=0.
On the other hand, if & is a left ideal of S such that & DA%, then
YNROASINR=I by (3.9) since ! is an M—ideal in R by (3.13). Thus
YNASI) D NR)NI==0 since I is also an M-ideal in R. Therefore
we have A% I=(A%(9)°.

(3.15) Let R<S. If L is a complemented left ideal in S, then 8N R
is also a complemented left ideal in R.

We assume that =28 Let I’ be a left ideal of R such that
LARZ and !N (8°NR)=0. Then AN =A$T'NA% R NR) =0 and
AV DOAS(RNR)=2. Hence A3lI'=%L Thus LnRDI' by @G.1).
Therefore 8"R=1" and L\ R= (8" R)".

4. In this section we discuss from our point of view the cose con-
sidered by R. E. Johnson [8].

A ring R is called a (left) C-ring if R<R and every M-ideal of R
is a complemented left ideal.

From (3.13), (3.14), (3.15) and Theorem 2 we obtain immediately
the following proposition.

@4.1) Let R<S. R is a C-ring if and only if S is a C-ring.
We denote by R4 the set of all left ideals of R each of which has
a nonzero intersection with every nonzero left ideal.

4.2) Let S be an extension ring of R. If every nonzero R-left sub-
module has a nonzero intersection with R, then (R/x)>€ R> for every x € S.

Let I be a nonzero left ideal of R. If /o(x)I==0, then evidently
(R/x)®N1==0. And if /x(x)"I1=0 we see that [x==0 and hence [xn R==0.
This implies (R/x)®N[==0 again. Therefore (R/x)R¢€ R-.

4.3) Let | be a left ideal of a ring R. If x €1, then (I/x)R€ R*.

To see this let I’ be any nonzero left ideal of R. First we assume
that (*+Ux)nI=0. Then U'x"I°‘N1*°=0. Hence (I/x)Rn1'==0. Next
let (“+Ux)nl>32==0 and z=a+b, acl’ bcl’x. Then a=2z—b
el'Nn(I+Vx)ZI°NI°=0. Thus O=z=beclnlx so that (/x)Enl'==0.
Therefore we see that (I/x)® € R=.

Theorem 3. If R<R, the following conditions are equivalent :
(1) R is a C-ring.
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(2) If 1eR® and (x=0, then x=0.

(3) R*=R-*.

In this case, 1°° is uniquely determined for every left ideal |, and is
in fact the smallest M—-ideal AR containing I.

Proof. (1)=(2): If x==0, then /g(x) is an M-ideal by (3. 10), hence
it is a complemented left ideal. Clearly /p(x)==R. Hence [Ix(x) ¢ R*.
2 = (3) : It follows immediately from the definition that R* T R*. Let
R*>! and let m be a nonzero [-left submodule of R. Then Im is a
nonzero left ideal by the assumption. Hence Inm_>InIm==0, which
shows that the assumption of (4.2) is satisfied by R and I. Thus
(I/x)IEIA for every x € R. It follows easily from this that (I/x)[eRA.
If O¢=y€ R, then (I/x)I y==0. This shows that there exists a €1 such that
ay==0, ax€l. Therefore [€ R* and hence R*T_R*. Thus R*=R*.
(3=>@): Let I be a left ideal of R and let x€l*. By @4.3) we see
that ([/x)®€ R*=R* or x€ AEIl. This implies [“TARI Since [ is
an M-ideal by (3.13), ABYCCAR(*“=[“TAR| and whence [“=AZL.
In particular, if [ itself is an M-ideal, then (=1 and [ is a comple-
mented left ideal. Therefore R is a C-ring as required.

Here we note that (1) the assumption R<R follows directly from
the condition (2), and (2) means that R is a ring with zero singular
ideal by the terminology of R. E. Johnson [8].

4.4 Let R be a C-ring. Then S(>)R if and only if S>R.

The “if” part is trivial. To see the “only if” part let S > x(==0), y.
Then O==ax € R for some a€ R. By 4.2), (R/ay)®€ R*. Since R is a
C-ring, (R/ay)Rax==0 by (@) of Theorem 3. It follows from this that
there is ¢ € R such that ca, cay€ R and cax==0. Therefore S>R.

A unitary left module over a ring with a unit element is injective
if it is a direct summand of every unitary extension module.® A neces-
sary and sufficient condition for a unitary left R—-module M to be injec-
tive is that any R-left homomorphism defined on a left ideal of R and
having the values in M is obtained by the right multiplication of some
element of M.® When a ring R is injective as an R-left module, we call
it a (left) injectiv ring.

(4.5) (See R.E. Johnson [8]) If | is a left ideal of R, then 1+1°€ R,

4.6) Let R be a C-ring with a unit element. If | is an M—ideal of
R, then the R-left module | is injective.

2) See [2] Proposition 3.4.
3) See [2] Theorem 3. 2.
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Let I be a left ideal of R and 6 an R-left homomorphism of [’ into
[. We extend 0 to an R-left homomorphism of I’+1’°into [ by making
it vanish on [’. Then the extended ¢ belongs to Uy since [+1°€ R*=R*.
By (1.12) there is ¢ € R such that x0=xa for every x€I1+1°. From
({+19)a<lI we see that ¢€! since [ is an M-ideal.

Theorem 4. If R is a C-ring the following conditions are equivalent :

(1) R=R.

(2) R is an injective ring.

(3) R is a regular ring® with unit element and has the property that
if a family {x,+e,R} of cosets of principal right ideals has the finite
intersection property then the total intersection is non-void.

Proof. (1)=>(2) is a special case of 4.6). (2)= (3) The regularity
of R is a result of R. E. Johnson.” This is easily shown by 4.5) and
Theorem 3. Next, we assume that a family {x,+e,R} has the finite
intersection property. We set a=X R(1—e,) and consider the cor-
respondence  0: Xy (1—e,)(€ Q) >Z ty,(1—e,) X0, =Z to(1—e,) As;. If
2ty (1—e,) =0, then Zu,(l—e,) Ay, =2ty (1—e,)x=0 where x is an
element in /\A.;. It is easy to see that # is an R-left homomorphism.
By (2) there is an element # such that z0 =zu for every z€a. Since
(1—e,) xy=(1—e,)u we know that u€ x,+¢,R or u€ N\A,. (3)>(1) Let
a be a left ideal of R and 6 an R-left homomorphism of a into R.
We set A,=e0+ (1—e,) R for every idempotent e,€a. For each finite
subfamily {A4.} of the family {A,} there exists an idempotent ¢z such
that X R,,=Res. epf—es0=(1—e,)es0€ (1—e,) R and hence ‘egf € A,
for every A, € {A,}. Thus {A,} has the finite intersection property.
Therefore there is x€/\ A, by our assumption. e, 0 € x+(l—e,) R and
e =¢e,x. From a=3= Re, we see that y0 =yx for any y€a. This implies
R=R by Theorem 1.

The following (4.7)-@4.9) are corollaries of this Theorem.

@.7 Let R be a C-ring such that R=R. Then a left ideal of R
is a complemented left ideal if and only if it is a principal left ideal.

The “only if” part is evident by 4.6) Since R is regular, every
principal left ideal is a direct summand and hence it is a complemented
left ideal.

4.8 If R is a C-ring, then the set of all complemented left ideals

4) See [13].
5) See [8] Theorem 2.
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of R forms a complete complemented modular lattice.”
In fact, by Theorem 2 and 4.7) the set of complemented left ideals
of R forms a lattice isomorphic to that of principal left ideals of a
regular ring with unit element. The completeness follows from (3.7).
In an obvious way, we may also define the notions of right C-ring
and right maximal quotient ring.

4.9 Let R be a left and right C-ring and the left maximal quotient
ring R be simultaneously the right maximal quotient ring.”> Then a left
ideal of R is a complemented left ideal if and only if it is a left anni-
hilator ideal. The set of all left annihilator ideals and the set of all
right anwihilator ideals form the mutually dual isomorphic lattices.

This follows easily from Theorem 2, (3.10)—-(3.15) and 4. 7).

An example of C-rings. Levitzki [10] called a ring to be a semi-
simple I-ring if every nonzero right ideal contains a nonzero idempotent.
It is well known that this concept is right-left symmetric.

4.10) Every semisimple I-ring is a C-ring.
Let x€ R and /z(x) € R*. If ¢ is an idempotent in xR, then 0=/g(x)e
Dlp(x)nRe. Hence Re=0 and e¢=0. This shows x=0.

5. The left maximal quotient ring R of a ring R is not always the
right maximal quotient ring even if R is a both right and left C-ring.
In the following we shall show this by treating a primitive with non-
zero socle.

Let R be a primitive ring with nonzero socle and e¢R be its minimal
right ideal. Then R may be regarded as a dence ring of linear trans-
formations of the eRe-left module ¢R. We denote by L the ring of all
linear transformations of eR.

5.1 L is the left maximal quotient ring of R.

Indeed, since ¢R is a faithful R-right module, we see easily that
¢R<R. Hence ¢R is the (left) maximal quotient ring of R by (1.14).
In e¢R every eRe-left submodule is a left ideal. Since eRe is a division
ring we see that eR is completely reducible for left ideals. Hence (eR)*
consists of e¢R alone. Thus eR satisfies the condition (2) of Theorem 3
and this implies that eR is a C-ring. Therefore (eR)* = (¢eR)*. It follows

6) This lattice is meet-homomorphic to that of all left ideals of R by (3.2) and Theorem
3. See [14].

7) On account of (1.5) and Theorem 1, this second assumption is, of course, equivalent
to the condition that every left quotient ring of R is a right quotient ring of R and vice
versa.
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from this that ¢R is the ring of all endomorphisms of the eR- (or eRe-)
left module ¢R and hence equal to L.
As an immediate corollary of (5.1) we obtain the following

(5.2) Let R be a primitive ring with nonzero socle. Then R is also
the right maximal quotient ring if and only if R is a simple ring with
minimum condition.

Next, we regard the minimal right ideal e¢R of R as a topological
vecter space over eRe of which open base is the set of left annihilaters
l,r(x) for all x in the socle S(R) of R® Then the right multiplication
of any element in R is a continuous linear transformation of the space
¢R. We denote by R the ring of all continuous transformations of eR.
Then R is also a primitive ring with nonzero socle and has the property
that the socle of S=S(R) TR R L. This shows the part (3) of the
following proposition.

6.3 (1) R is the greatest ome among the right quotient ring of R
which is a subring of L.

(2) (S(R)/S(R)E=R. In other words, R is the left idealizer of
S(R) in L.

(3) R is the greatest subring of L such that its intersection with
the socle of L is S(R).

In fact, if (S(R)/S(R))f>x==0, then O0==xS(R)"S(R). Since S(R) is
a C-ring, it follows from this by 4.3) that (S(R)/S(R)): is a right
quotient ring of S(R). Clearly R (S(R)/S(R))-. Hence (S(R)/S(R))- is
a right quotient ring of R. Now let A be any right quotient ring of
R contained in L. Then A is, of course, that of S(R). The right ideal
of S(RK), which has S(K) as its right quetient ring, is S(R) itself alone
since S(R) is completely reducible for right ideals. Hence A< (S(R)/S(R))~-
by (1.10). Therefore (S(R)/S(R))* is the greatest right quotient ring of
R contained in L. Next, let x€(S(R)/S(R)* and y€SR). Then
lg(xy) xy=0; hence /x(xy)x€lr(y). This shows that x€R. Thus
(S(R)/S(R)*R. The converse inclusion is evident since S(R) is the
socle of R. This completes the proof.

6. First we prepare a certain number of terms we need. If the
nilpotency indeces of nilpotent elements in a ring is bounded, the ring
is called to be of bounded index and its least upper bound is called the
index of the ring.” A (semisimple) [-ring is said to be plain if it is of

8) See [3], [7]. This topology is the weak topology.
9) See [6].
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index 1. It is well known that every idempotent in a ring of index
1 is central® Thus,

6.1) A ring is plain if and onlyif every nonzero right ideal of R
contains a nonzero central idempotent.

The “only if” part follows immediately from the definition. If a
ring R satisfies the condition, then R is evidently a semisimple I-ring.
Let O==x€ R. Then there is a nonzero central idempotent e=xy. Now
x"Ye=x""ey" 'e=x"""y"'e= --- =xy¢e=e=0. This shows x"4=0 and
that R is plain.

If a two-sided ideal of a ring R is the total matrix ring, of finite
degree, over a plain ring with unit element, then it is called a matrix
ideal of R Of course, the unit element of any matrix ideal is central
in R and hence every matrix ideal is a direct summand of R. A ring
is called semisimple weakly reducible if every nonzero two-sided ideal
contains a nonzero matrix ideal.’® Levitzki [12] has proved the follow-
ing facts:

(1) Every semisimple weakly reducible ring is a semisimpl I-ring
[12, Theorem 3.1];

(2) Every semisimple I-ring of bounded index is semisimple weakly
reducible [12, Theorem 3. 3];

(3) Every semisimple I-ring, of which each primitive image is a
simple ring with minimum condition, is semisimple weakly reducible
[12, Theorem 3.4]. We note teat this assumption is satisfied by every
semisimple I-ring with a polynomial identity.'*

To investigate the maximal quotient ring of a semisimple weakly
reducible ring it seems pertinent to re-construct it by a special manner.

A family B of central idempotents in a ring R is called a B-family
if the following conditions are satisfied :

(Bl) Let f be a central idempotent in R. If ¢f=f for some e¢€ B,
then fe€B.

(B2) For every nonzero central idempotent f in R there exists a
nonzero idempotent ¢ in B such that ef=f.

We say that a mapping 6 of a B-family B into the ring R is an
H-mapping if 6 satisfies the condition (H) that if ¢, f€ B and ef=f
then (e6)f=f0.

The totality of H-mappings defined on a B-family B forms a ring
Hpg by the operations e(@ + @) =¢ef +ep and e(@p) = (e0) (ep). It is easy to

10) See [12].

11) See [4], Lemma 1.
12), 13) See [12].

14) See [10] and [11].
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see that the intersection of any pair of B-families is also a B-family.
Now we say that two H-mapping are equivalent if their restrictions to
some B-family coincide. Then this relation is reflexive, symmetric and
transitive, and the set of equivalence classes forms evidently a ring R°.
We note that for every x€ R and every B-family B the mapping
Xp: e—>ex (¢<€ B) belongs to Hg.

(6.2) Let R be a semisimple weakly reducible ring. Identifying each
x € R with the class Tz € R° containing xp we can regard R° as an exten-
sion ring of R. Then R°~R over R.

(1) Let Bbea B-family. If x€ R is nonzero, then Bx==0. In fact,
we assume [\,z(1—e) R==0. Then /N\(1—e¢)R would contain a nonzero
matrix ideal and hence a nonzero central idempotent. By (B2) some
nonzero g € B would be contained in /\(1—e¢)R. Then gRT/N\(1—¢e)R
C(1—g)R and g=0, which is a contradiction. This shows that
N\ (1—e) R=0. If x==0, then x¢ (1—e) R or ex==0 for some e€ B.

From (1) it is easy to see that the identification in (6.2) is allowable.

(2) Let meR: Then the set By of central idempotents contained
in m forms a B-family. In fact, By satisfies evidently (Bl). Let e be
a nonzero central idempotent. The Re contains a nonzero matrix ideal
T, over a plain ring 7. Since T, is a direct summand of R it follows
from (1) of the proof of (2.1) thatT,nme Tr. By (2) of the proof of
(2.3) there is m’€ T* such that m,/<7T,nm. By (6.1) m’ contains a
noozero central idempotent f. By (1.3) f is central in 7 and hence in
R. Now fem,CT,nmRenm. This implies fe=f and fem.
Therefore By satisfies (B2) and it is a B-family.

(3) Let ¢€B and #c€ Hy;. Then e0=el where 6 is the class € R°
containing 6. In fact, if e, f€ B, then e(¢) =ef and (fe)(ed) = (fe)d by
(H). Hence f(et) = (fe)(ed) = (fe)0 = (ef)(f0) = (fep) (f0).

(4) The extension R° of R satisfies the condition (1) of Theorem 1.
In fact, we let m€ R* and let ¢ be an R-left homomorphism of m into
R. Then the restriction 6 of ¢ to Bn is clearly an H-mapping. On the
other hand, R is a C-ring since it is a semisimple I-ring. Hence R*=R*
by Theorem 3. From (1), (2) it is easy to see that ZBm;e Re e R*=R*.
For any element S, in 3 Re, (Sx¢)p="3 x,(e;p) =3 x,(e,0) =3 x,(e,0)
= (2 x¢,) 6.

(5) Let 0<4=0€ R° and let < H; be a representative of 8. Since
BO--0, we see that ef=e0-4-0 for some e€ B. This shows R<R° by
(4.4). Therefore R°~R over R by (4) and Theorem 1.

Theorem 5. Let R be a semisimple weakly reducible ring.
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(1) The left maximal quotient ring Ro f R is also the right maximal
quotient ring of R;

(2) If R is of index n, then so is R;

(3) If R satisfies a polynomial identity, then R satisfies the same
polynomial identity;

(4) R is also semisimple weakly reducible.

Proof. By the left-right symmetry of our method in (5.2) we see
that R° is also the right maximal quotient ring. (2) Let € R° be
nilpotent and € € Hz be its representative. Then & is nilpotent and
hence so is ¢f for every e€ B. ¢0"=(¢6)"=0. Thus 6"=0 and 6"=0.
This shows that the index of R° (or R) is at most # and hence is equal
to n. (3) Hz may be regarded as a subdirect sum of Re for all e€ B.
The identity holds in each Re. Hence it holds in Hy and in its limit
R°. (4) Let a be a nonzero two-sided ideal of R. Then an R is nonzero
and contains a nonzero matrix ideal Re=T, over a plain ring 7. Since
e is central in R it follows by (1.3) that e is central also in R.
R=¢R®(1—e)R. By (2.2), eR~¢Rn R=¢R=(T,). Hence e¢R~(T), by
(2.3). Now T is regular (Theorem 4) and of index 1 ((2) of this
Theorem), and hence plain. Thus ¢R is a nonzero matrix ideal of R
and is contained in a. This shows that R is semisimple weakly reducible.

7. In this section we consider some matrix rings as an application
of Theorem 5.

A ring is called strongly regular if for any element x there is an
element y such that x#*y=x. A necessary and sufficient condition for a
ring to be strongly regular is that it is regular ring of index 1.®

(7.1) Every plain ring R is embedded isomorphically into a strongly
regular ring.
In fact, the regular ring R is of index 1 by Theorem 5.

(7.2) If R is a nonzero plain ring, then R, is of index n.

Every strongly regular ring is a subdirect sum of division rings.
Thus RCSE P, P divisiom rings. Then R, (2 P‘®),~3% P®.
Since Py is of index #» the index of R, is at most #. On the other
hand, for any nonzero idempotent e € R, 271 ee;;., is of index n. There-
fore R, is of index .

(7.3) Let R be a semisimple I-ring. Then R is of index n if and

16)

14) See [10]. and [11].
15) See [4], Lemma 3.
16) See [4], Theorem 3.
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only if R is a subdirect sum of its matrix ideals T,. over plain rings
T and Max n,=n.

“If” part: The index of R is evidently at most ». And some 7;:*
contains a nilpotent element of index # by (7.2). “Only if” part:
From the assumtion we see that R is a semisimple weakly reducible
ring. Hence it follows from a result of Levitski [12, Theorem 3.1]
that R is a subdirect sum of its matrix ideals 7,2. By (7.2), Max #n,=n.

Theorem 6. A 7ing R is semisimple I-ring if and only if so is the
total matrix ring R,. In this case, R is of index m if and only if R,
is of index mn.

Proof. (1) Let R be a semisimple I-ring. We assume that AR, con-
tains no nonzero idempotent where A=3aq,e;;€ R,. Then (xa;;ye,)
R,= (xe,;) A(ye;,) R, contains no nonzero idempotent for any x, y€ R. Let
e=xa;yz be an idempotent. Then ee,, = (xa;;ye,)(ze,) is also an idem-
potent. Hence ee,;=0 and e=0. This implies xa,;;y=0. Therefore
a;=0 and A=0. It follows from this that S, is a semisimple I-ring.

(2) Let R, be a semisimple I-ring and | a nonzero left ideal of R.
The X le, is a nonzero left ideal of R,. Hence it contains a nonzero
idempotent X x;¢;. Zx.;=E x,6,)* =2 x;,x,6;,. Therefore x, is a
nonzero idempotent in [ which shows that R is a semisimple I-ring.

(3) Let R be a semisimple I-ring of index m. Then by (7.3) R
is a subdirect sum of its matrix ideals 7, and Max n,=m. Hence R,
is a subdirect sum of its matrix ideal T, and Max n,n=mn. By (7.3)
this means that R,, is a semisimple /-ring of index mmn.

(4) Let R, be a semisimple I-ring of index m#xn. Then R is also a
semisimple I-ring by (2). Since R, contains a subring isomorphic to R,
we see that R is of bounded index. Hence the index of R is m by (3).

As a corollary of this Theorem, we have

(7.4) Let R be a ring with a unit element and assume that some
homomorphic image of some two-sided ideal of R is a nonzero semisimple
I-ring of bounded index. Then R,~R,, implies n=m.

The minimum of the indeces of those rings, each of which is a
nonzero semisimple I-ring of bounded index and is a homomorphic
image of some two-sided ideal of R, is denoted by p(R), p(R,) and p(R,)
are similarly defined. Then p(R,) =#np(R) and p(R,)=mp(R). Therefore
n=m if R,—=R,,.

(7.5) Assume that a ring R satisfies the condition of (7.4). Let M
be a unitary R-module with a basis consisting of k elements. Then any
other basis is also finite and consists of k elements.
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This is evident from (7. 4) since the R—endomorphism ring of M is R,.

We note that every ring with a unit element, which is semisimple
weakly reducible modulo its radical, satisfies the assumption in (7.4)
and (7.5).

8. In this supplementary section we take a glance at the extended
centralizer defined in [8]. We denote the extended centralizer over a
module M as E(M) and the family of submodules of M each of which
has a nonzero intersection with every nonzero submodule of M as M“.

Theorem 7. E(N)ZE(M) for every submodule N of M.

We omit the detailed proof. It is easy to see that (1) E(N)=E(M)
if NeM* and (2) EN)ZEWM) if N is a direct summand of M. Now
let N be an arbitrary submodule of M. Then N+ N°€ M?#, where N° is
a maximal one among submodules having zero intersections with N.
Hence EM)=EN®N)DE(N).

8.1) Let Kbe a module and M the direct sum of n isomorphic copies
{K;} of K. Then E(M)~(E(K)),.

Let 6; be an isomorphism of K onto K;. For any submodule H of
K we denote the sum = HO; as H*. Then we know that H* € M* and
that for any Ne M* there is a submodule H of K such that H*<N.
From these facts we can prove the Theorem by the usual method.

Finally we add a simple application :

(8.2) Let R be a semisimple I-ring of bounded index and have a
unit element. We assume that a unitary R-module M has a basis consist-
ing of n elements. Then any basis of any free submedule N of M con-
sists of at most n elements.

Owing to (8.1) we have E(M)=~(E(R)),. Moreover, E(R)=R since
R is a C-ring by (4.10). Let » be the index of R. Then the index of
E(R) is also » by Theorem 5. Hence that of E(M) is »n by Theorem 6.
Let ¢ be a natural number which is not greater than the cardinal
number of the given basis elements of N. Then N contains a submodule
L which has a basis consisting of ¢ elements. Now Theorem 7 assures
that E(L)ZEM). Since E(L)~(E(R)),=(R),, we know that the index
of E(L) is rt. Therefore »#< rn whence #<n. This proves the pro-
position.

(Received March 19, 1956)
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