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Abstract
Let X be the space of type-preservingSL(2,C) characters of the punctured

torus T . The Bowditch spaceXBQ is the largest open subset ofX on which
the mapping class group acts properly discontinuously, this is characterized by
two simple conditions called the BQ-conditions. In this note, we show that[�] 2
int(X n XBQ) if there exists an essential simple closed curveX on T such thatjtr �(X)j < 0.5.

1. Introduction

Let T be the punctured torus and� := �1(T) = hX, Yi be its fundamental group
which is free on the generatorsX, Y. The relative SL(2,C) character variety oftype-
preservingcharacters is the set

X := f[�] 2 Hom(� , SL(2,C))=SL(2,C) : tr(XY X�1Y�1) = �2g,
where the equivalence is by the conjugation action. The Bowditch space is the subset
XBQ � X of characters which satisfy two simple conditions (see Definition 2.1), this
is the largest open subset ofX on which the mapping class group ofT acts properly
discontinuously. It is conjectured by Bowditch to be precisely the quasi-Fuchsian space
XQF (Conjecture A, [1]). To attempt to verify or disprove the conjecture, and also
to study the dynamics of the action of the mapping class groupon the non-discrete
characters, it is useful to have an effective sufficient condition for [�] to be inside
int(X n XBQ). We have the following:

Theorem 1.1 (Main theorem). For [�] 2 X , [�] 2 int(X n XBQ) if there exists
X 2 C such thatjtr�(X)j < 0.5, whereC is the set of free homotopy classes of essen-
tial simple closed curves on T.

REMARK 1.2. (a) The bound 0.5 in the theorem is not optimal, and can beim-
proved, but for computational purposes, it is quite effective.
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(b) Jorgensen’s inequality implies that if there existsX 2 C such that 0< jtr�(X)j< 1,
then [�] corresponds to a non-discrete representation. Rough computer experiments
have shown that in fact, in many examples considered (no counterexamples were de-
tected), if jtr �(X)j < 1 for some X 2 C , with jtr �(X)j 62 (�1, 1), then by a trace
reduction algorithm, one can find someY 2 C such thatjtr �(Y)j < 0.5, that is, [�] 2
int(X n XBQ). This can be regarded as supporting evidence towards Bowditch’s con-
jecture as experiments with the Wada’s OPTi program [9] has shown that in almost all
cases where [�] is non-discrete, there existsX 2 C with jtr �(X)j < 1.
(c) The theorem quantifies the result of Bowditch in [1] (Theorem 5.5) by giving an
explicit bound for the constant"0 in his theorem, and hence generalizes Corollary 5.6
there, that [�0] 2 int(X nXBQ), where [�0] is the quaternionic character with tr�0(X) =
tr �0(Y) = tr �0(XY) = 0 (and hence tr�0(X) = 0 for all X 2 C ).
(d) The setXBQ can be expected to have a very interesting and complicated geome-
try, especially at the boundary, as evidenced by pictures and studies of various slices
of deformation spaces of discrete, faithful representations including the Maskit slice,
Earle slice, Riley slice, Bers slices (obtained using Wada’s Opti program [9]), and also
the bumping phenomena on the boundary of the quasi-Fuchsianspace, as studied by
various authors. In particular, we have the recent results of Bromberg that states that
the closure ofXQF is not locally connected. Theorem 1.1 can be used in a computer
program to draw the Bowditch space and its complement and this should prove useful
in studying the geometry of these spaces and various relatedconjectures.
(e) More generally, as studied in [6], [7] and [8], we can studythe relative character
varietiesX� , where

tr �(XY X�1Y�1) = �
with � 6= 2, and the Bowditch space can be defined similarly for these relative character
varieties. If � is close to�2, our methods can be modified to give similar conditions
for when [�] 2 int(X� n XBQ) and this can be used together with the BQ-conditions
to draw the Bowditch space and complement. Note that in this case, the Jorgensen
inequality may no longer apply, for example if� 2 (�2,2), since in this case the image
may never be discrete.

The rest of this paper is organized as follows. In Section 2, we set up the notation
and definitions to be used and in Section 3, we give the proof ofthe theorem.

2. Preliminaries: Notation and definitions

As in the introduction, letT be the punctured torus,X, Y a pair of simple closed
curves onT with geometric intersection number one so that� := �1(T) = hX, Yi. The
relative character variety oftype-preservingcharacters is the set (denoted byX ) of
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equivalence classes of representations from� to SL(2,C) satisfying

(1) tr �(XY X�1Y�1) = �2,

where two representations are equivalent if they are conjugate by an element of
SL(2,C). By classical results of Nielsen [5], (see for example [2] for background and
references) it does not matter which pair of generators is used for � in the definition.
Fixing a pair of generatorsX, Y of T , by results of Fricke, see [3] for an exposition,
the map

(2) � : X 7! f(x, y, z) 2 C3 : x2 + y2 + z2 = xyzg,
given by

�[�] = (tr �(X), tr �(Y), tr �(XY))

is a bijection. Henceforth we shall identifyX with the cubic variety given in (2), and
the topology onX will be that induced by this identification. The character [�] such
that �[�] = 0 = (0, 0, 0) is the quaternionic character, denoted by [�0].

The outer automorphism group of� ,

Out(�) = Aut(�)=Inn(�),

is isomorphic to the mapping class group ofT

�0(Homeo(T)) �= GL(2,Z)

by results of Nielsen [5], and it acts onX , via the action

(3) �([�]) = [� Æ ��1], where � 2 Out(�), [�] 2 X .

This action is not effective, the kernel is generated by the automorphism�inv, where�inv(X) = X�1, �inv(Y) = Y�1, corresponding to the elliptic involution onT . Denote
by 0 �= PGL(2,Z) the quotient of�0(Homeo(T)) (equivalently, Out(�)) by the elliptic
involution, 0 now acts effectively onX .

The setC of free homotopy classes of essential (non-trivial and non-peripheral)
simple closed curves onT forms the vertices of the pants graphC (T) of T , where two
vertices are connected by an edge if and only if the corresponding curves have geomet-
ric intersection number one.C (T) is isomorphic to the Farey graph of the hyperbolic
plane, and every vertex has infinite valence (see for example[7]). X,Y 2 C are called
neighborsif they are joined by an edge inC (T). This is equivalent to saying thatX
and Y generate� . Note that for anyX 2 C and [�] 2 X , tr[�](X) is well-defined. To
simplify notation, we shall use the notationally simpler tr�(X) henceforth.0 acts onC (T), and is transitive on the set of verticesC , in fact, it is transitive
on the set of neighbors (X, Y), and the set of triples of mutual neighbors (X, Y, Z).
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DEFINITION 2.1. The Bowditch space is the subsetXBQ � X consisting of all
characters [�] 2 X satisfying the following two conditions, called theBQ-conditions:
(i) tr �(X) =2 [�2, 2] for any X 2 C ; and
(ii) jtr �(X)j � 2 for only finitely many (possibly none)X 2 C .

In [1], Bowditch showed thatXBQ is open inX , and that0 acts properly dis-
continuously onXBQ. It is also not difficult to see that in fact,XBQ is the largest open
subset ofX for which the action is properly discontinuous, (see for example [7] and
[6] for details, and generalizations to not necessarily type-preserving characters). Fur-
thermore, the subsetXQF of characters corresponding to the quasi-Fuchsian representa-
tions of � is contained inXBQ as a connected component. Bowditch has conjectured
that in fact,XQF = XBQ.

The dynamics of the action of0 on int(X nXBQ) is also very interesting, and some
natural questions arise. The first (see [4]), is whether there exists [�] 2 int(X n XBQ)
such that the closure of its orbit contains [�0] and intersects�XBQ. More generally
one can ask if there is a dense orbit under this action, or if most orbits are dense, and
finally, if this action is ergodic. Another natural questionis whether int(X n XBQ) is
dense inX n XBQ.

Our main theorem can be considered as a first step towards the study of these
questions as it gives an effective way of determining if [�] 2 int(X n XBQ). In fact,
the proof, which is based on a trace reduction algorithm gives in many cases a way of
constructing a sequence of elements in the orbit of [�] which converges to [�0]. (In
particular, it can be modified to give an effective constant" > 0 such that if there exists
neighbors (X, Y) such thatjtr �(X)j < " and jtr �(Y)j < ", then there exists a sequence
of elements in the orbit of [�] which converges to [�0]. Our result is also useful for
attacking the conjecture in [8] that the set of ends of a character [�] should be a Cantor
set if it contains at least three points and is not the entire projective lamination space,
since the trace reduction algorithm given produces lots of ends of the character when
there existsX 2 C with jtr �(X)j < 0.5.

3. Proof of Main Theorem: A trace reduction algorithm

Our proof of Theorem 1.1 is similar in spirit to that given by Bowditch in [1]
that [�0] 2 int(X n XBQ), although somewhat more geometric. The key lemma is the
following:

Lemma 3.1. Let [�] 2 X and suppose that there exists X2 C such thatjtr �(X)j < 0.5, with tr �(X) =2 R. Then there exists a neighbor Y of X inC such
that jtr �(Y)j < jtr �(X)j.

The theorem now follows from the lemma since ifjtr �(X)j < 0.5 and tr�(X) 2
R, then [�] =2 XBQ, otherwise, we can construct a sequence (of neighbors)fXng in C
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such thatX0 = X, and furthermore, either (i) the sequence is infinite andjtr�(X j +1)j <jtr �(X j )j for all j , or (ii) the sequence is finite and terminates atXN with tr �(XN) 2
(�2, 2). In either case, [�] =2 XBQ. Note that the condition is an open condition, so
[�] 2 int(X n XBQ).

Proof of Lemma 3.1. LetYn, n 2 Z denote the (successive) neighbors ofX, that
is, Yn = XnY0 for some neighborY0 of X. For simplicity of notation, we use the lower
case lettersx, yn to denote tr�(X), tr �(Yn) respectively. The condition in the lemma
is then

(4) jxj < 0.5, x =2 R.

By conjugating the representation so that�(X) is diagonal and1 is its attracting fixed
point, that is,

�(X) =

� � 0
0 ��1

�
, �(Y0) =

�
A B
C D

�
,

we see that

(5) x = � + ��1, where j�j > 1,

and

(6) yn = A�n + D��n,

where

(7) AD =
x2

x2 � 4
,

by the commutator relation (1).
Write � = rei � , so j�j = r > 1, arg� = � 2 (�� , � ]. By renamingYn as Y0, and

interchangingA and D if necessary, we may assume that

(8) 1� ����D

A

���� � j�j = r .

The idea now is that ifjxj is small, thenr � 1 andj� j � �=2. HencejAj � jDj �jxj=2, so that eitherjy0j < jxj (if arg A 6� argD), or jy1j < jxj (if arg A � argD). We
make these arguments precise in the following estimates.

From (4), we have the following bounds forr and � :

1< r = j�j < 0.5 +
p

4.25

2
�= 1.281,(9)

�0.25< cos� < 0.25, 0.419� < j� j < 0.581� .(10)
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From (4), (7) and (8), we have

(11) jADj < jxj2
3.75

=⇒ jAj2 < jxj2
3.75

=⇒ jAj < jxjp
3.75

.

Hence,

(12) jy0j = jA + Dj = jAj����1 +
D

A

���� < jxjp
3.75

����1 +
D

A

����.
Now we claim that either ����1 +

D

A

���� < p
3.75,(13)

or

����� +
D

A�
���� < p

3.75() ����1 +
D��1

A�
���� <

p
3.75j�j .(14)

Proof of Claim. Suppose that the first statement is not true, that is, j1+(D=A)j �p
3.75. Let D=A = r0ei �0, where�0 2 (�� ,� ], and writea := j1 + (D=A)j, � := � � �0.

So our assumption is equivalent to

(15) a2 � 3.75.

Applying the cosine rule to the triangle with vertices at thecomplex numbers 0,
D=A and 1 + (D=A), we get

(16) cos(� � �0) = cos� =
1 + jD=Aj2 � a2

2jD=Aj .

Now applying the bounds fora and jD=Aj from (15), (8) and (9) to (16) and rounding
off, we get

(17) cos� � 1 + r 2 � 3.75

2r
< �0.432.

In particular,

(18) j�0j < 0.36� , 0.64� < � < 1.36� .

Now write b := j1 + (D��1=(A�))j and as before, apply the cosine rule to the tri-
angle with vertices at 0,D��1=(A�) and 1 + (D��1=(A�)) to get

(19) b2 = 1 +
1

r 4

����D

A

����
2 � 2

r 2

����DA
���� cos(� + 2�).
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Using the bounds for� and � in (10) and (18), we get that

(20) j� + 2� j < 0.522� =⇒ cos(� + 2�) > �0.07.

Applying (20) andjD=Aj � r < r 2 to (19), we have

(21) b2 < 1 + 1 + 2(0.07) = 2.14=⇒ b < 1.463<
p

3.75

1.281
(�= 1.512)<

p
3.75j�j

where the last inequality follows from (9). This proves the claim as the second state-
ment of the claim holds in this case.

To complete the proof of the lemma, we see that if the first partof the claim holds,
we havejy0j = jA + Dj < jAjp3.75< jxj, otherwise,jy1j = jA� + D��1j = jAj j�jb <jAjp3.75< jxj, where the last part of the inequalities in both cases followfrom (11).

References

[1] B.H. Bowditch: Markoff triples and quasi-Fuchsian groups, Proc. London Math. Soc. (3)77
(1998), 697–736.

[2] W.M. Goldman: The modular group action on realSL(2)-characters of a one-holed torus,
Geom. Topol.7 (2003), 443–486.

[3] W.M. Goldman: An exposition of results of Fricke, arXiv: math.GM/0402103 .
[4] W.M. Goldman: Mapping Class Group Dynamics on Surface Group Representations, arXiv:

math.GT/0509114 .
[5] J. Nielsen:Untersuchungen zur Topologie der geschlossenen zweiseitigen FlachenI, Acta Math.

50 (1927), 189–358.
[6] S.P. Tan, Y.L. Wong and Y. Zhang:Necessary and sufficient conditions for McShane’s identity

and variations, Geom. Dedicata119 (2006), 199–217.
[7] S.P. Tan, Y.L. Wong and Y. Zhang:Generalized Markoff maps and McShane’s identity, arXiv:

math.GT/0502464 .
[8] S.P. Tan, Y.L. Wong and Y. Zhang:End Invariants ofSL(2,C) characters of the one-holed

torus, arXiv: math.GT/0511621 .
[9] M. Wada: OPTi program, program for drawing quasi-Fuchsian groups, downloadablefrom

http://vivaldi.ics.nara-wu.ac.jp/˜wada/OPTi/ , preprint.
[10] M. Wada: OPTi’s algorithm for discreteness determination, Experiment. Math.15 (2006),

61–66.



254 S.P.K. NG AND S.P. TAN

Shawn Pheng Keong Ng
Department of Mathematics
National University of Singapore
2 Science Drive 2
Singapore 117543
Fax: (65) 6779 5452
e-mail: shawnngpk@gmail.com

Ser Peow Tan
Department of Mathematics
National University of Singapore
2 Science Drive 2
Singapore 117543
Fax: (65) 6779 5452
e-mail: mattansp@nus.edu.sg


