Yanagisawa, T.
Osaka J. Math.
44 (2007), 99-119

ASYMPTOTIC BEHAVIOR OF SOLUTIONS
TO THE VISCOUS BURGERS EQUATION

TAKU YANAGISAWA

(Received November 4, 2005, revised March 28, 2006)

Abstract

We study the asymptotic behavior of solutions to the visdusgers equation by
presenting a new asymptotic approximate solution. This@pmate solution, called
a diffusion wave approximate solution to the viscous Busgeguation ok-th order,
is expanded in terms of the initial moments upktoh order. Moreover, the spatial
and time shifts are introduced into the leading order terntdpture precisely the
effect of the initial data on the long-time behavior of theéuat solution. We also
show the optimal convergence order lif-norm, 1 < p < oo, of the diffusion wave
approximate solution ok-th order. These results allow us to obtain the convergence
of any higher order irLP-norm by taking such a diffusion wave approximate solution
with orderk large enough.

1. Introduction

We consider the viscous Burgers equation
(1.2) Ut + UUy = Uyxyx In R xRy,
with the initial condition
(1.2) u(x, 0) =up(x) on R.
Here u = u(x, t) is an unknown function; the coefficient of viscosity is assd to be
1, for simplicity; R+ = {t e R | t > 0}. We assume that the initial datg satisfies
that, for a nonnegative integére Ny (= NU {0}) and a small positive constaaf

(1.3) @ +[x]) % ug € LY(R).

We introduce Cole-Hopf transformation of the solutiento (1.1)-(1.2) which is
given by

(1.4) HIUOI0) = exo =5 [ uty.0dy) -1,
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t being regarded as a parameter. Then we gt t) = (d/dxX)H[u(t)](x). It is well-
known that (1.1)—(1.2) is converted into the heat equatiby o

(1.5) Gt = Pxx In R xRy,
with the initial condition

¢(x, 0) = H[uo]'(x)

1.6 X

(1.6) = —}uo(x) exp(—}/ uo(y) dy) on R.
2 2 )

We natice that the condition (1.3) implies

1.7) (1 +x))****H[ug]’ € L'(R),

thereby it is easy to see that there exists a unique smoothi@oky to (1.5)—(1.6).
Hence, taking the inverse of Cole-Hopf transformationppfwe obtain a unique global
smooth solution to (1.1)—(1.2) (see (2.35) and (2.29)).

The purpose of this paper is to present a precise descripfighe long-time as-
ymptotic behavior of the solution to the viscous Burgersagigun (1.1) with the initial
condition (1.2). For this purpose, we begin by introducimgasymptotic approximate
solution to the heat equation (1.5) with (1.6) up to arbitréinite order: First we de-
fine the j-th moment of a function(X), j € No, by

(1.8) /\/lj(f):/xjf(x)dx.
R

We note here that (1.7) ensures thet;(H[uo]’) < oo for 0 < j < k+2. In what
follows we shall assume, in addition, that

(1.9) My(H[ug]') # 0.

We then introducean asymptotic approximate solution {@.5)—(1.6) of k-th order
which is defined by

k-1

#00 = ) (76
(1.10) =0
+ (- l)kwc)() Gre@), (X —m) for t>0,xeR.

Here G¢(x) denotes 1-D heat kernel, i.e.,

(1.11) Gi(x) = i ex (—X—2>
. t = \/H P at )
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Of course, in case th&t= 0, RHS of (1.10) except for the last term should be dropped.
The spatial shifty, and the time shiftt()., where ). = max¢x, 0), appearing in the
last term on RHS of (1.10) are specified as follows: The shpalidt i is determined

by the relation

(1.12) Mis1(H[uo]') — (K + )My (H[uo] )y = 0.
Then the time shiftt(). is given throughty which is determined by the relation

(k+2)k+1)
2

(1.13) Mia2(H[uo]') — Mi(H[uo] )(%Z + 2t) = 0.

From (1.12), (1.13) we see tha and (). are expressed as

(14 BC Tf;jﬁi:([:?]ui]’)’
and
2K+ D)Mo (HUo] YMi(HUg]) — (K + 2)(Mier(HIugl )2
20+ 1P UML)
115  @r=l T MiolHUMiCHIUL) > —o 2 (Miea(HIug )P,

2(k+1)

0 it Mioa(HIUG]JMHl) < 52 (M el )

It should be remarked that the asymptotic approximate isolyt“ of k-th order defined
by (1.10) can be also represented in terms of the Hermitenpatyals as follows:

st E DL ) Ao )

(1.16) Mk<H[uo])< 1 >kH< N )
o \2vir@s) "\ ir s

1 (X — w)?

Nz ) exp(‘ A+ (tk)+)>'

Here H; is the j-th Hermite polynomial which is generated by the relation

(1.17) H;(§) = (-1) expéz)@(e p(=52).

As seen from (1.10), the asymptotic approximate soluibrof k-th order consists
of the j-th order spatial derivative of heat kernel with the stréngiven by thej-th
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moments ofH[up]’, 0 < j < k. By taking the approximate solution like this form,
we can make all the initial moments of the error term ugkith order canceled. Fur-
thermore, adjusting the center and width of the highestrodgeivative of heat kernel
of ¢¥ by use of the shiftgy and (x)+, we find that the K + 1)-th and k + 2)-th ini-
tial moments of the error term also vanish (see Remark 2.th ({2 and Lemma A.3
in Appendix). As a result, our asymptotic approximate sohuip* controls the initial
moments up tk + 2-th order and this fact enables us to obtain the optimahyleate
of the error term inLP-norm (see Proposition 2.1 i§R).

Once we obtain the asymptotic approximate soluijénto (1.5)—(1.6) ofk-th or-
der, by taking formally the inverse of Cole-Hopf transfotina of ¢¥, we finally reach
a diffusion wave approximate solution {t.1)—(1.2)of k-th orderwhich is defined by

PX(x, 1)

k = _
(118) XD = =2 k. dy

for t>0,xeR.

The validity of taking the inverse of Cole-Hopf transforioat of ¢* with k > 1 is
ensured by the fact that the denominator in (1.18) is cdytainiformly positive after
the time Tk which is determined only bk and the moments ofi[ug]’ up to k-th order
(see Lemma 2.5 ig2).

Then, on the base of the optimal error estimates of the astropapproximate
solution ¢* in LP-norm, the following main theorem of this paper builds thegise
convergence estimates of this diffusion wave approximatetien x* of k-th order.

Theorem 1.1. Suppose thafl +|x|)<*3*uy € L1(R) and M(H[ug]’) # O for an
integer k> 0 with ¢ > 0 small Let u be a solution tq1.1)—(1.2)and x* a diffusion
wave approximate solution tl.1)+(1.2) of k-th order defined byl1.18). Then for any
p € [1, ool
1. In case that k= 0, the diffusion wave approximation solutigff of 0-th order is
well-defined on the intervgl0,o0) and the following estimates hold for a constang C

(1.19) lu(t) — x°M)llLew) < Cot¥@P2 for t >0, when (i) >0,

(1.20) Iu(t) — x°®) ey < CotYCP~¥2 for t >0, when (t).=0.

Here G depends only on Hig]” in (1.6).

2. In case that k> 1, there exists a constant, T> 0 such that the diffusion wave
approximate solutiorny® of k-th order is well-defined on the intervély, co) and the
following estimates hold for a constantC

(1.21) lu(t) — x*OllLr@ < CitY@P=27K2 for t > T,, when (t): >0,

(1.22)  u(t) — x*@©)llLewy < CitY@P=327K2 for t > T, when (&) =0.

Here T depends only on k and1;(H[ug]’), 1 < j <k, and G depends only on Hig]’.
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REMARK 1.2. (i) It is easy to see that the condition (1é)<*3*uy € LY(R)
can be replaced by a weaker condition (Ix$**?*uy € LY(R) when ¢). = 0. (See
the proof of Lemma 2.3 ir§2.)

(i) We can readily observe from (1.4) thatlo(H[uo]’) = 0 if and only if Mg(ug) = 0.
In addition, if Mo(H[ug]’) =0, it is not hard to see that

Mi(Hug]) = —%Mk(uo), KeN.

Therefore, for anyk € N, the condition thatM(H[up]’) = 0 and My(H[up]’) = 0 is
equivalent to the condition thato(up) = 0 and My (up) = O.

(i) Suppose that the initial datag is a nontrivial continuous function with compact
support inR. Then, sinceH[up]’ also has the same property as supposed above, by
virtue of well-known Hausdorff's moments theorem (sgin [1], for example), we
find that there exists an integég € Ny such thatM, (H[ug]) # 0. So, in this case

we need not assume the condition (1.9).

(iv) We say that the moments df(x) degenerate up tbth order,| € Ny, provided that

(1.23) M;j(f)=0 for 0<j<I, Myu(f)Z0.

Assume that the moments ¢i[ug]’ degenerate up tok(— 1)-th order,k € N. Then,
it readily follows from the item (ii) above that

(1.24) M;j(H[ug])=0 for 0<j=<k—1, My(H[ug) #0.

We can now deduce from (1.24), (1.12) that the spatial shifts given by
(1.25) [ o= n HiLue o dx =0,
R

which implies that they is regarded as a center kith moment ofH[up]’. Similarly,
we can see from (1.24), (1.13) that theis expressed simply as

1/k+2 / N /

az26) = (57) Mucktua) [ o w2Hlugl o o
R

It is clear that this expression is valid even wh&n=0. Hence, we conclude

from (1.26) that, ifup is nonnegative and the moments biffug]’ degenerate up to

(k — 1)-th order, the time shiftt(). becomes strictly positive for any=2m, m € Np.
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(v) The diffusion wave approximate solutigr of orderk is an explicit smooth solu-
tion to the viscous Burgers equation for- 0, and is self-similar whetk = 0. It can
be also seen that

(1.27) /X"(x,t)dx:/\/lo(uo) for t >0,
R

which means that the 0-th moment gf is a conserved quantity.

In [2], the diffusion and N-wave approximate solutions te thscous Burgers equa-
tion were introduced and their error estimatesLiPrnorm were obtained. They further
discuss the metastability phenomenon appearing in thetiomg behavior of the solu-
tion to the viscous Burgers equation with small viscositge(slso [3]). However, they
study the diffusion wave approximate solutionanfly O-th order without the time shift
In [5], both the spatial and time shifts are taken into ac¢danthe diffusion wave ap-
proximate solution to (1.1)—(1.2) and the error estimatd.finorm was gained. But
the diffusion wave approximate solution ofly O-th order is again considered in [5]
for the restricted nonnegative initial dataOn the other hand, the asymptotic approx-
imate solution to the heat equation of higher order with bgpatial and time shifts
like (1.10) has already been introduced in [4], although error estimates were ob-
tained there. Moreover, in [6], an asymptotic approximate solutidrO-th order with
the spatial and time shifts to the heat equation was intreddor the study of the as-
ymptotic behavior of the damped wave equation. Curioussitigation on the adequate
choice of the time shift for an approximate self-similarumn to the nonlinear porous
medium equation was presented in [7].

In brief, our Theorem 1.1 generalizes and refines the resulf®] and [5], by
introducing a diffusion wave approximate solution to (£(1)2) of any higher order
with both spatial and time shiftand by showing the optimal convergence rates of the
error term,under a weakened condition on the initial data

The plan of the paper is the following: [§2 we give the optimal error estimates
in LP-norm of the asymptotic approximate solutigh to the heat equation dé-th or-
der. In this stage, checking the integrability of the itecatinti-derivatives of the initial
error term of % becomes most crucial (see Lemma 2.3). We then show the omifor
pointwise estimates of the denominator appearing in thergesof Cole-Hopf transfor-
mation of both the actual and asymptotic approximate swistito the heat equation.
Finally, combining the error estimates and the uniform pwise estimates obtained
in the preceding steps, we accomplish the proof of Theoreln The proof of sev-
eral elementary lemmas which are usecsthand the proof of equivalence of the rela-
tions (1.12)—(1.13) and the conditions (2.5) fpr k+ 1,k +2 are given in Appendix.
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2. Proof of Theorem 1.1

We begin with studying the long-time behavior of the solntto the initial value
problem of the heat equation (1.5)—(1.6) under the conditil.3), (1.9). The follow-
ing proposition gives the optimal error estimates of thengstytic approximate solu-
tion ¢¥ to (1.5)—(1.6) of ordek defined by (1.10). This result seems to be new and
of independent interest.

Proposition 2.1. Let1l < p < co. Suppose that the conditiorn(¢.3) and (1.9)
hold. Let ¢ be a solution to(1.5)—(1.6)and ¢¥ an asymptotic approximate solution
to (1.5)—(1.6)of order k defined by1.10). Then the following estimates hold

(2.1) lp(t) — d M) llLeey < CotY@P27K2 for t >0, when (t). >0,
(2.2) ) — X)Ly < Cot@P~3/2 K2 for t >0, when (t): =0,
and

< Catl/@n-3/2-k/2

[ svndy- [ s

(2.3) LP(R)
for t>0, when (t)+ > 0,
H/ sody- [ gy < caien iz

(2.4) —oe —o0 LP(R)

for t>0, when (t)+=0.

Here the constants £Land G depend only on|lx(H[uo]’) Il 1r), Wwhere k(H[uo]’) is
defined below in2.6) when(tk):+ > 0, and in (2.7) when (t;)+ = 0, respectively

REMARK 2.2. (i) The following claim reveals the reason why we spediie
shifts yx, (tx)+ appearing inp by the relations (1.12)—(1.13):
Suppose that the data satisfies

/ / k +2 2
Mi2(H[Uo] )M (H[uo]’) > M{MKH(H[UO] )1t

which means thattf). > 0. Then the relations (1.12)—(1.13) hold if and only if the
following condition is fulfilled for j =k + 1,k + 2:

(2.5) tir&/ij{qb(x,t) — ¢X(x, 1)} dx = 0.

This claim implies that the choice of the shiftg, (t)+ as in (1.12)—(1.13) enables
us to control the K+ 1)-th and k + 2)-th moments of the initial error term. Moreover
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we notice that the conditions (2.5) for € j < k always hold even if the shifts,
(t)+ are not specified.

The equivalence of the relations (1.12)—(1.13) and the itiond (2.5) for j =k +
1,k + 2 is proved in Lemma A.3 in Appendix.
(i) In view of (1.10), we can see that the fastest decay terfn ¢
(=L (M (H[uo])/KN(3/3X) Grag. (X — w) and its decay rate inLP-norm is
t1/@r)-1/2-k/2 - Accordingly, we know that the error estimates (2.1)—(2®) effective.
In a similar way, the error estimates (2.3)—(2.4) are alswed as effective.

To prove Proposition 2.1 we shall make some auxiliary olet@ms. First define
a functional Ix(H[ug]’) by: In case thattf). > O,

I(H[uo] )(x)
= /X (/: e /:1</:2 H[uo]/(Xk+3)ka+3) A%z - - ) dx
k-1

S 1y M)
AT ()
- (-ay MALe]) / (/[ eute=svatndy) dre )

In case thatt(). =0

l(H [uo])(x)

/ (/ / </xk+1 H[uo]/(xk+2)dxk+2> ka+1---) dx

k-1

2.7) e
Z( l)JM (H[Uo]) (/O /O Yo(Xkr1—j) A X1 | ---)dxl

— @WW /_;(/:; Y, (X2) dx2> dx.

Here Ya(X) is the Heaviside function with the jump at= a, that is,

(2.6)

Xk+1 i

YO(Xk+2_j) ka+2_J'> dxk+1—j .. ) Xm

_ |0 if x=<a,
Ya(x)_{l if x> a.

We are going to prove the integrability of(H[ug]’) on R by making use of the
relations (1.12)—(1.13) in essence.
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Lemma 2.3. Suppose that the relationd.12)—(1.12)hold. Then under the con-
ditions (1.7), it follows that k(H[ug]’) € Lt (R) and

loc
(2.8) [I(H[Uo] )()I = o(Ix|7*~)  when (t)+ > 0,
(2.9) [k(H[uo])(¥)I = o(Ix|7*)  when (t)+ =0,
as |x| — oo. Here ¢ is the small positive constant appearing (ib.3).
Proof. We give the proof only of the case that){ > 0. The proof of the case

that ¢x)+ = O is achieved in the similar way, so we omit it.
First we decompose the terip(H[up]’)(X) into the following three parts:

Bl(x)=/oo</mfoo(/oo H[uo]’(xk+3)dxk+3) dxk+2~--) dx,,

k-1 . /
Ba(x) = — Y (1 il el (?![”"] )

j=0
X X Xi—j X+1—j
x/ (/ / </ YO(Xk+2J)ka+2j>ka+lj "-)dxl,
o \Jo 0 -

By = —(-1f D) [ w( [ oo( [ Gute =) dy) dx2> dx.

Then, applying Lemma A.1 in Appendix and recalling the ctiodi (1.7), we read-
ily have

(2.10)

k+2 K+ 2

— l j +2—] NS 4
(2.11) B1(x) = &2 jz:(;(_l)J ( j > X¥*271 M (H[uo] )(x),

where M (f)(x) = /7. y/f(y) dy. Furthermore, since

X X1 Xk—j X+1—j
/ (/ / (/ YO(Xk+2—j)ka+2—j)ka+1—j ~-->dX1
0 0 0 0

XI:+2_ j

T k+2—)) ==
we obtain

k—1

(2.12) Bx(x) = — ) _(-1)

j=0

M;(H[ug]) %)
il (k+2— )’

where X, = maxXx, 0}.
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As for B3(x), by the Fubini theorem and by integration by parts we have

e = (-0 G [ ([ ([ Gyt - vy de) da ) v dy

H ’ X1 X=X
= _(_1)k My ( kl[uO] ) ‘/I;H:Xl /700 G (X2 —y) dX2i|Xl:C>o

(2.13) —f Xthk(Xl_Y)Xm}Yyk(y)dy

o0

_ _(_NW{X fR(f; Gy (% — ¥) dxl)Yyk(y) dy

- /R ( f xletk(xl—y)dxl)vyk(y)dy}.

Then, the first and second terms of the braces on the last fif2.18) can be treated

as follows:
X
x/(/ Gtk(xl—y)dxl)vyk(y)dy
R —00
X o0
:x/ (/ Gtk(xl—y)dy>dxl
o\
X X1
-x [ (/ etk(y—m()dy)dxl
X X
:x2/ etk(y—yk)dy—x/ %Gy, (X — ) dxa,
and

- /R(/; XG0 =) Xm) Y, (y) dy
_ /:; xl(/y:o Gy (X1 —Y) dy) dx
_ /_; X1</_);: G (Y — ») dy) dx

x2 X 1M 5,
=5 | suy-nwdys3 [ xeula-mdx,

—x —00
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so that we arrive at

(2.14)

B5(x) = (-~ ML) ){X2

> [ ev-may

1 X
—X/ yGtk(y—w)dy+§/ yzGtk(y—yk)dy}-

Hence we promptly find from (2.11), (2.12), (2.14) tHatH[uo]’) € L (R).
We now look at the case whex — —oo. Recalling (1.7) again and applying
(A.4) of Lemma A.2 withs=k + 3 +¢ yield, for 0< j < k+ 3,

(2.15) Mi(H[uo])(x) = o(jx|7**"1) as x — —oo,

thereby it follows from (2.11), (2.12) and (2.15) that

(2.16) B1(X) + By(x) =o(Ix| 1 ¢) as x — —oo.

In view of (2.14), we also have

(2.17) Bs(X) = O(L)(L + /T +t)e * /3% a5 x — —o0.
Accordingly, from (2.16), (2.17) we can conclude that (2h®)ds whenx — —oc.

Next we turn to the case when— oco. First, it is readily observed from (2.11),
(2.12) that

By (X) + Ba(x)

(_ )k+2 (_1)k+1

= k+2) - Mia(H[uo] )(x) + K+ DIl

(2.18) L& ) -
kl 21

s M (H [uo] ) (X)X

Mi(H[uo] )(x)x>

-1
Z o V0 (L 00K T = M (Rl 1)
=0
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On the other hand, by referring to (2.14), we see that

Ba(x) = ~(-1y e 2 <

o CROLY

X—Yk X—Yk
—x/ yetk(y)dy—wx/ G (y) dy

[ee] —00

1 [,
*5 / y“Gy (y) dy
(2.19) —o0

X—W J/2 X—W
+ykf yGtk(y)dy+5k/ Gtk(y)dy}
Mi(H[ug]’) [ x? W
k k
—(E (S e
+ O(1)(1 +/f + t)e~ /3%

asx — oo. Here we have used the fact thaf Gi(x) dx = 1, [, XxG(x) dx = 0, and

Jg X?Gi(x) dx =2t for t > 0.

Eventually, combining (2.18) and (2.19), then applying3)Aof Lemma A.2 with

s=k+ 3 +¢, we have

(2.20)
l(H[uo] )(x) = B1(x) + Ba(x) + Ba(x)
_ 1)k+2 k
= —Ek }.)z)l {Mk+2(H[UO]/) - %M(sz + Ztk)Mk(H[UO]/)}
_ 1K+l
Ek +)1). (Mica(H[uo]') = ne(k + DMi(H [uo] )}x

k+2

Z (k+( 1)1)' 7 (M H i) = My (HIual )

+ 0(1)(1 + i+ e 0

k+2 K K
Ek }-)Z)I {M""Z(H[UO] ) - %(-Fl)()’kz + 2tk)Mk(H[u0]’)}
_1)k+1
Ek +)1)' (Micra(H[Uo]') = mek+ DMi(H[uol Y + (x| 77),

as x — oo. Consequently, in view of the relations (1.12)—(1.13), wenaude

from (2.20) that (2.8) holds wher — co. We have thus proved Lemma 2.3.

O
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Thanks to Lemma 2.3 just proved, we reach the conclusion kp@t[ug]’) €
LY(R). So we can now define'”1(H[ug]’) by

(2.21) e 1i(H[uo]')(x) = /R Ge(x — ) k(H[uol )(y) dy.

The following lemma says that we can represent the error tdrthe asymptotic ap-
proximate solutionp® in terms of the derivative o€ I, (H[ug]’).

Lemma 2.4. The following equalities holdIn case that(ty)+ > 0O,
(2.22) A3 I (H[uol))(X) = p(x, t) — p¥(x,1) for t >0, x eR;
In case that(ty)+ =0,

(2.23) A2 2 1k (Huol )(X) = p(x, 1) — p*(x,t) for t >0, x e R.

Here ¢(x, t) is a solution to(1.5)—(1.6)and ¢¥(x, t) is an asymptotic approximate so-
lution to (1.5)—(1.6)of k-th order defined by1.10).

Proof. We shall give the proof only for the case th&).(> O by the same rea-
soning in the preceding proof. We again use the same decdtmoposf Ix(H[ug]) as
in (2.10) to obtain

X 3(e" I (H[uo]))(x)

eony =8 [ G-y Ayl [ Gux- yeay) dy
#3 [ Gix—y)Bay) .
Then, owing to the property of the convolution, we know froin5{, (1.6) that
o [ Gix— B dy

(2.25) = /R Gi(x — y)8>'§+3</;(/1(. .. (/::2 H [uo]’ (Xk+3) ka+3> .. .dxl) dy

= /R Gu(x — y)H[uo] (y) dy

= ¢(X, 1).
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Moreover, it is observed similarly that
(2.26)
% [ Gulx— Baty) dy

R

k-1 . ,
- Sy Mttt

j=0

. Xk+1—j
X 3%”'/ Gi(x — 3k+2_ (/ (/ / Yo(Xk+2— J) d Xso— i ) dX]_) dy

k—1
= —_2(;( gy ) (T,[UO]) | a"G(x—y)dy
=
k—1
H .
= >--ay 2R [ g el - y) dy
j=0
k—1 ,
=Y (~1) Mi('j"l[uo] )anGt(x).

j=0

Whereas, since we have by utilizing the Fubini theorem aeds#émigroup property of
the heat kernel,

a3 /R Gi(x — y)(/_io (/_:(/R Gy (X2 — 2)Y,, (2) dz) dx2> dxl) dy
= pkl /}; Gi(x — y)E)i(/_;</_);</Hg G (X2 — 2)Yy, (2) dz) dx2> dx1> dy

=akt [ Gt(x—y)( [ Gtk(y—z)vw(z)dz) dy
= 8)‘5*1/ G (X — 2)Y,, (2) dz
R

= K+l fx Gis, (2 — ) dz
= 0% Grag (X — 7,
we can see that
o [ G- yeaty) dy

M (H[uo]')
_(_1)k%

x a'x”s/ Gl(x — y)</_io</_xl </ Gy (%2 — 2)Y,.(2) dz> dx2> dx1> dy

( 1)kMk( k.[u()] )a Gt+tk(x . Vk)

(2.27)
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Combining (2.25), (2.26) and (2.27), and recalling the farfrpk in (1.10), we finally
arrive at (2.22). We complete the proof of Lemma 2.4. ]

We now give

Proof of Proposition 2.1. By virtue of the well-knownP — LY estimate of solu-
tions to the heat equation, we have, foxlp < oo,

118 € 1(H [Ua] )l Loy

(2.28) = o) /R Gu(x — y)lk(H[ugl)(y) dy

LP(R)
< CtY@P=Y2=172 )1 (H[ug] )l for all t > 0.

Here C is a universal constant.

Now, from Lemma 2.4 and the estimates (2.28) wjthr k + 3,k + 2,k + 1, and
k, we readily obatin the desired estimates (2.1)—(2.4). Ttoefpof Proposition 2.1 is
completed. [l

We next show the uniform pointwise estimates for the denatomappearing in
the inverse of Cole-Hopf transformation for both a solutigrto (1.5)—(1.6) and an
asymptotic approximate solutiop®.

Lemma 2.5. Let ¢ be a solution to(1.5)—(1.6)on [0, co) and ¢¥ an asymptotic
approximate solution td1.5)—(1.6)of order k with ke Nog. Then the estimates

1 [x X
min exp(—if uo(y)dy) < 1+[ o(y, t)dy

XeR

(2.29)

XeR

1 X
< maxexp(—E/ uo(y) dy) < 00

hold for any xe R, t > 0.
Furthermore we have
In case that k=0, the estimate

(2.30) min{l, exp(—% /R uo(y)dy)} < 1+/_OO #°(y, 1) dy

holds for any xe R, t > 0O;
In case that k> 1, there exists a constanty B 0 such that the estimate

(2.31) %min{l, exp(—%/ uo(y)dy)} < 1+/X #(y, t) dy
R —00

holds for any xe R, t > Ty. Here T depends only on k andt(H[ug]’), 1 < j <k.
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Proof. Since 1 +ffoo ¢(y,t) dy is still a solution of the heat equation (1.5) with
the initial data exp—(1/2) [ uo(y)dy), the estimate (2.29) immediately follows from
the maximum principle. Next, noticing thatto(H[uo]’) exp((1/2) [ Uo(y) dy) — 1,
we have

@3 1Mol [ oo Gurto. () dy = min{l, exp(—% [ Uo(Y)dY>},

for any x € R, t > 0. Accordingly, since

1+ / 6°(y,t) dy = 1+ Mo(H[uo]) / Gre(oy. (Y — 7o) Ay,

it is easy to derive from (2.30) the estimate (2.30).
On the other hand, in view of (1.17), we obtain, fpe N,

J(5)som(3) ‘s

(2.33) 0 ,
stz () o),

Remark that similar equality to (2.33) remains valid everewls(y) is shifted with
respect tot andy. Therefore, wherk > 1, we can see from (1.10), (2.33) and the
remark just above that

1+/X ¢*(y 1) dy

=1+Mo(H[uo]’) /_X Gi(y) dy

_':é/\41(lj4![uo]’)Zjiﬁt_j/2HJ (2\[> p( x2>

| MiHlug) 1 Y
k! N 2T+ () At + (t)+) )

Consequently, since sy |E' exp(=£2)| < C; holds for anyl € Ny with a constant
C > 0, we easily find from (2.32) witht{). = 0, (2.34) that there exists a constant
T« > 0 depending only ork and M;j(H[uo]’), 1 < j <k, such that the desired esti-
mate (2.31) holds for any € R, t > Ti. This completes the proof of Lemma 2.5.1

(2.34)

(t+ (tk)+)k/2Hk_1(

We are in a position to give the proof of Theorem 1.1.

Proof of Theorem 1.1. By virtue of (2.29) of Lemma 2.5, we fihdttthe unique
solutionu to (1.1)—(1.2) is indeed given by the inverse of Cole-Hophsformation of
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the solutiong to (1.5)—(1.6), that is,

B(x, 1)
1+[*_ oy, t)dy’

(2.35) u(x,t)=-2

We consider the case thlat> 1. Since the estimate (2.31) of Lemma 2.5 holds for any
x € R, t > T,, we can show that the diffusion wave approximate solutiéndefined

by (1.18) is well-defined on the intervaly,oc). Accordingly, owing to Proposition 2.1
and Lemma 2.5, we have the following estimates: for any ft < oo,

Iu(®) = x“®) e
| o) L, D
1+ [ ooty )dy 1+ ¢ y.0dy] .
_ 2060 — ¢ Ol [ 1+ 0.0 Y] ey
(2:36) = infxea{[1+ 7 @y, t) dy| [1+ 7 ¢*(y, 1) dyl}
2| [ dy. ) dy — [-, M, 1) dY] Loy IOy
infxer {[1+ 7 ¢y, t) dy| [L+[* ¢*(y, 1) dy]}

Ctl/@pP-2-k2  for t> T, when ). >0,
— |CctV@n-3/2-k2 for t> T, when =0,

where C depends only on the constar@s, Cs in Proposition 2.1 and the lower and
upper bounds in Lemma 2.5. Note that we used an elementaryaest|¢(t)|| L) <
(1/v/47 ) H[ug) llLiwyt~Y2, t > 0, in deriving (2.36). The estimates in (2.36) im-
ply (1.21) and (1.22). The case thiat= 0 can be treated likewise and the proof in
that case is omitted. We complete the proof of Theorem 1.1. ]

3. Appendix

In this appendix, we first give the proof of several elemgntammas which were
used in the preceding section.

Lemma A.1. Suppose thafl +|x)*f € L1(R), k € No. Then the equality

/:(/;/: f(xk+1)dxk+l...>dxl

TV (J. ) X3 M (1)(xo)
2

holds Here M;(f)(x) = "y} f(y)dy for j e No.
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Proof. We use induction ok. The claim is trivial fork = 0; assume that (A.1)
with k = kg, ko € No, holds for anyf such that (1 4x|)% f € L1(R). Then, for anyf
such that (1 4x|)%*1f e L1(R), we have by integration by parts

(A.2) / Y M) dy= " M0

with0<j+l+1<ky+1andj,| € Ny, so that we find from the induction assump-
tion that

/ (f </ / " (r2) ez - >dx1>

) oo o
:é_Z(—l)kﬂ (') [ 5 B

j+1
Z( et (16 )( o 1Mko_j(f)(xO)—j—ilﬂw(f)(xo)

1 et

| i
= (kO " 1)[ Z(_l)ko+l—1(k0 + 1) (] k_01> X]_O Mko+l—1(f)(X0)
=1

1 ko+1 . 1)
—(k0+1).{2( 1ot J(k0+1)< )T}Mkoﬂ(f)(x(;)

ko+1
(koil)l Z( ko+1 i (kO 1) XO /\/lk0+1 ](f)(XO)

(1)t ("°j+ 1)} Mi1(F)(X0),

ko+1

(ko+1)'{

i=1
ko+1
(koi]_)l Z( 1)t (ko 1> X) Mir1—j (£)(Xo)-

This shows that (A.1) holds whdn=ko+1. So we complete the proof of Lemma A.1.
O

Lemma A.2. Suppose thafl +|x|)sf € L(R) for s > 0. Then
(A.3) M(F) = M;(F)(x)=o((X+[x])"") as x— oo

and

(A4) Mi(H)(x) =o((L+|x])™") as x— —o0
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hold for j=0,1,...,[s]. Here[s] denotes the greatest integer not exceeding s
Proof. Since

[M;(F) = M ()] =

[y f(y)dy‘

_ L@ +1yDslf(y)l dy

< @+ x5 for x>0,
and
— SO @Iy ()l dy
| M;(f)(x)| < L+ )] for x <0,
we can obtain easily (A.3), (A.4) from the assumption (kB*f(x) € L1(R). U

We next give the proof of equivalence of the relations (:{2)13) and the con-
ditions (2.5) forj =k + 1,k + 2, which was cited in Remark 2.2 (i).

Lemma A.3. Let ¢ be a smooth solution t¢1.5)—(1.6)on R x [0, T'), T" > O,

and let¢¥ be an asymptotic approximate solution {b.5)—(1.6)of k-th order defined
by (1.10) with k € No. Then it holds that

: k+1 k
lim /R X< Lp(x, 1) — ¢5(x, 1)) dx

(A.5)

= Miea(H[uo])) — (K + DMy (H[uo] )y
and
(A.6) tILrBLA; Xk+2{¢(x’ t) - ¢k(xl t)} dx

(k+2)k+1)
2

= Misa(H[ug]') — Mi(H[ual)2(t)+ + vd).

Proof. We first prove (A.5). By integration by parts, we obtai

|
(A.7) lim /xi <§X> Gi(x)dx=(-1)jl&; forany I,j €N,

t=0+ Jp
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whered); denotes Kronecker’s delta. Moreover, we have by integrabyparts

5\ K
k+1
— ] G — d
AX <8X> t+(to). (X — i) dX

(A.8) = (~Df(k+ 1)t /R XGta (g, (X — 7o) dx

= (~1)f(k + 1)!{ | %G, 0 dx e [ G, 09 dx}
= (-Df(k+ 1)
Therefore, in view of (1.5)—(1.6) and (1.10), it follows fo(A.7)—(A.8) that

lim /xk+1{¢(x,t)—¢k(x,t)}dx

t—0+ R
= Musa(Hlug)) — (-2 D)

= Misa(H[uo]') — (K + D)Mi(H [uo] Y

(A.9) (—1)(k + 1)! pic

which proves (A.5).
Next, recalling the fact that

[ %61, (0 dx= 26+ @),

we see that
xk+2 9 kG X —n)d
" I% t+(tk)+( )/k) X
=2 [ %36, tx = n dx
(A.10) =(- 1)k(k 2) { / X2Gragyy), (X) dX
R
*2n [ G (801 [ G 00 0x]
k +
= 0 2 o w0+

Accordingly, we can derive from (A.7) and (A.10) that

H k+2 k
im fR X<2(p(x, 1) — ¢*(x, 1)) dx

= Mua(Hiuo)) - (-2y D)

(k+2)k+1)
2

2 . )

= Misa(H[uo]’) — Mi(H[ua )2+ + v,
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which shows (A.7). The proof of Lemma A.3 is now completed. U
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