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1. Introduction

The one-dimensional compressible Navier-Stokes equatiead in theEulerian
coordinates

pr + (pid)z = 0,
(1.1) (pit), + (51'72 + D)y = pilzs,
~2 ~2

(565, (9(e+ ) ), =

whereu (¢t ) is the velocityp(x, ) > O the density,é(i, t) the absolute temperature,
1 > 0 the viscosity constant ang > O the coefficient of heat conduction. The pres-
surep =pp, §) and the internal energy ~ acp”,(@) are related by the second law of
thermodynamics.

There have been a lot of works on the asymptotic behaviord@fsblutions for
the system (1.1). Most of these results are concerned wehrainefaction wave and
viscous shock wave. We refer to [10-15] forx22 case and [4-5, 7-8] for 8 3
case and references therein. However there is no result @rcdhtact discontinuity
for the system (1.1) until now due to various difficulties.tidugh some progress on
the contact discontinuity were obtained by Liu and Xin [9-aXin [17] in which the
asymptotic toward the contact discontinuity was invesédaor the initial value prob-
lem (IVP) of viscous conservation laws with uniformly axiéil viscosity, no result is
known for the physical system, especially for the compl#ssN-S equations (1.1).
Therefore we really want to give a positive result on the aonhtiscontinuity for the
physical system (1.1). To simplify our problem, we focus attiention on the perfect
gas. In this situation,

(1.2) p(p, 0) = RGP,

(1.3) 2, 0) = 6 + const

v—1

where R > 0 is the gas constant angd > 1 is the adiabatic exponent. As observed
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by [9, 17], the contact discontinuity can not be the asyniptetate, and a diffusive
wave, which approximates the contact discontinuity on angefitime interval, instead
dominates the large time behavior of the solutions for théscous system. For the
system (1.1), we also expect that the asymptotic behavighefsolutions is governed
by a nonlinear diffusive wave. We call it viscous contactcdigtinuity. We observe that
the sign of the first derivative of the velocity in the nonbmediffusive wave is impor-
tant to the a priori estimate and is not good in the whole spabes it is difficult
to obtain the asymptotic stability of the viscous contactcdntinuity for IVP of the
system (1.1). We further observe that the effect of the sigmdcexactly be neglected
for initial boundary value problem (IBVP) of the system (LHdecause there has the
inequality of Poincar” type in the half space. It might be giole to obtain the a pri-
ori estimate for IBVP of the system (1.1) although IBVP is aigu much more diffi-
cult than IVP in many situations. Motivated by this obseiat we consider the sys-
tem (1.1) in the park "> X(z), wherex™ =x"( ) is a free boundary, with the following
boundary conditions

(1.4 L0 0.0, 50 =0 1G0.0=0->0
and
(1.5) @ — piiz)|z=x() = P

which means the gas is attached at the free boundary 7 = ~(het@tmosphere with
pressurep_ (see [15]) and the initial data

(1.6) (. 0)(F.0) = (fo. o, Bo)(F). ~_lim (Po. ito. Bo)(¥) = (p+. 0. 6).

wherep,, 0, are positive constants arfid(0) = #_. Because here we only consider the
case of a single contact discontinuity, we require

(17) pP— = P+ = R0+/)+.

Since the boundary condition (1.4) means the particles yavsday on the free
boundaryx™ =x7{), if we use théagrangian coordinates, then the free boundary
becomes a fixed boundary. Thus we transform Euerian coordinates X;¢ ) to the
Lagrangiancoordinates X, ¢ ) by

(1.8) x = / Ao, dy, =1,
X(r)
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and our free boundary value problem (1.1-1.7) is then cldmgie

vy —u, =0, x>0, t >0,

u,+p(v,0)x=,u(u7x) , x>0, t>0,
u? ) 0, Uy,

(e(v,9)+7)l+(p(v,9)u)x= (/@'7 +u 5 )X, x>0, t>0,

(1.9)
9|x:0 = 0—5

(p(vv 6) - ,U‘MTX)(Ov t) :p"" > 0’
(v, u, 0)(x, 0) = (vo, uo, Go)(x) — (v+, 0, 64) asx — +oo,

whereu ,1) =u';t) etcv = 1p, e(v,0) = {R/(y—1)}8 + const, and p @, 0) =
RO/v.

We now construct the viscous contact discontinuity, U, ® x,)( ) ahkhis ex-
pected to describe the large time behavior of the solutiorthe system (1.9). To
achieve our goal, we consider the following Riemann problem

v, —u, =0,
Ur + p(vv 9)/\ = Oa
Ll2
(1.10) (ew.0)+ %) +(p(v.0)u), =0,

(v,u,0)(x,0)=(@_,0,6_), if x <O,
(v, u, 0)(x,0) = (v4,0,6,), if x>0,

wherevy andfy are given positive constants. It is known from [16] that therRann
problem (1.10) admits a contact discontinuity

— - = _ (U_, 0, 0_), x < 05
(111) . 0,00 = { (v4.0.6), x>0,
provided that
0_ RO,
112 ST TR
( ) p v_ p+ U+

From the structure of the Riemann solution, we conjecture
RO®
(113) P (V, @) :7 = D+.

On the other hand, it is observed that the third equation &) (éan be reduced to

(1.14)

B e plon 0, = (62 w2
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by (1.9). Motivated by (1.14), we further conjecture that,U, ® ) is gowest by the
following equations

VI - Ux = 0’
R Oy
(115) m@t +pU, = ﬁ(v)x,

0(0,t) =6_, O(+00, t) = 0.
Direct computations from (1.13) and (1.15) yields

O,

116 0, =a(2) 000 =0, B0, =0 a= Kps(y — 1)

R0

We seek the self similarity solutio® &), £ =x/+/1+¢ of (1.16). Namely® {) is the
solution of the following equation

1 I — ®/ ! — — !/ —
(1.17) -3¢0 —a(g), 00 =0 0(+) =6, =T,

It is known from [1] that there exists a unique solutieh¢&) ©f (1.17) which is a
monotone function, increasing #. > #_ and decreasing if. < 6_. Furthermore,
©®’(0) has the following property due to [2],

(1.18) Caffs — 0| < [0'(0)] < Ca|0 — 6|,

where C; and C, are positive constants depending @én. From (1.17), we have

1 @ 1 ®I ! !
(1.19) Q" = ;(—55 + "@2 )@ = A(6)O),
which yields
(1.20) O'(€) = @' (0)elo AW ds.

Due to [3], the asymptotic behavior eflc 46)4s s
(1.21) oo A4 = 0 (7Y as ¢ — o,

for some positive constant's depending ord.. Thus by (1.18)—(1.21), it is easy to
verify the following estimates o® .

Lemma 1.1. Let|f. —6_| =4, the following estimates hold

(1.22) / O%dx < CoY1+1)"%2, / @2, dx < CH*(1+1)73/2,
0 0



StABILITY OF CONTACT DISCONTINUITY 197
(1.23) / @2 dx < C&¥(L+1)%2, / x(©% + |0, |)dx < C6.
0 0

After O(x, t) = ©(&) is obtained, we define

k(y — 1) O(x, t)x
YR O(x,1)’

R

(1.24) Vi, t) =p—®(x, 1), U, )=
+

It is easy to seel(, U, ® ) has the following property

(1.25) [(V =V, U=U,O —0)||Lro+e) < C[RAL+1)]Y), all p>1,

which means the nonlinear wave/, (U, ® ) approximates the contaciomkinuity
(\7, U, (5) in L? norm, p > 1 on any finite time interval ag tends to zero. We call
(V, U, ®)(x, t) viscous contact discontinuity.

Therefore, we conjecture that the solution, i, 6)(x, ) of the system (1.9)
asymptotically tends to the viscous contact discontingity U, ®)(x, t). The aim of
this paper is to justify the above conjecture. Our resultrégjghly speaking, as fol-
lows.

If 6. —0_| is small then the viscous contact discontinuity is asymptotic stabl

Our plan of this paper is as follows. in Sec. 2, we reformutht original prob-
lem and state our main result; in Sec. 3, we establish the ai m@stimate and prove
our main result; in Sec. 4, we show the local existence of thetisn.

Notations.  Throughout this paper, several positive generic constarg denoted
by ¢, C without confusions. For function spaceé$!  ( ) denotes/itieorder Sobolev
space with its norm

1/2

i
(1.26) LAle={ Do N0z ) o when || := | - || 2.

j=0
The domain®2 will be often abbreviated without confusions.

2. Reformulated problem and main result

To state our main result, we put the perturbatign, ¢)(x, t) by

v(x, 1) =V(x,t) +d(x, 1),
(2.1) u(x, 1) =U(x,t) +(x, 1),
O(x,t) =O(x, t) +{(x,1),
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where (/, U, ® )k, t ) is the viscous contact discontinuity defined i) and (1.19).
By the definition of the viscous discontinuity, we have

Vi—=Ux =0,
@2 0+ (), = 6(5),
where
23) F =2, - n(E5mo).) |
(2.4) G = Jgg (“(WR; Y n @)”)2 = 0(02, +0%).

Substituting (2.2) into (1.9) (1.9), and (1.14) yields

¢z—¢x:0,

RO+() RO\ _ U+ U
wﬁ( V+o _T)I (v+¢ _V)X_ ’
R R(® +()
’Y—1<t+ V+¢ (Ux+wx)_p+Ux

(2.5) _ (OGO U+ U2

_“<v+¢))r “(V)AW Vvie My 7O
(RG__ Ux+wx) _
Vg Hveg Mo PP
¢(0,1) =0,
(¢7 wv C)(X, 0) = (UO - Va uo — Uv 6 — @)()C, O)

We assume

(2.6) (b0, Yo)(x) = (&, ¥)(x, 0) € HY(O, +00),  (o(x) = (¥, 0) € Hp (0, +o0).

Our main result is

Theorem 2.1 (Stability theorem). There exist positive constants and o such
that for any |0. — 0_| = 6 < do, if ||(¢o, %o, C)||1 < €0, then the problem(2.5) has a
unique global solution(¢, ¥, ¢)(x, t) satisfying

(¢, ¥)(x, 1) € C(0, +o0; HY(0, +00)),  ((x, 1) € C(0, +oo; Hy(0, +o0))
¢x(x, 1) € L?(0, +oo; L(0, +0)),
(¥, Qx(x. 1) € L?(0, +o00; HY(0, +00)),
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and

sup|(¢, ¥, O)(x,1)] — 0, as t — +oc.
x>0

Remark 1. Although Theorem 2.1 is only concerned with the perfed gase, it
is not difficult to obtain the similar result for general cdse the same argument.

Remark 2. One would expect similar result for Dirichlet problem , {0 =) 0,
0(0,¢) = 6_. However, if we still use the same viscous contact discoitiincon-
structed in (1.16) and (1.24), then the decay rate of the dmynvalue(0,¢) =
0((1+1)~Y?) is not good. It is difficult to control the terms from the baiamy.

We shall prove the stability Theorem 2.1 by the local existeland the a pri-
ori estimate. We look for the solutionp(t, ¢) in the solution space,, ,; (0oc®) =
Uzso Xmm(0, T), where

Xum(0,T) = {(¢. ., ) : (¢, ) € C([0, T]; HY), ¢ € C([0, T1; Hp),
(6. . Olls < M. inf(V + ¢) > m > 0, ¢ € L¥0, T; L),

for T, m, M >0, and H' = H(0, +0). Let

(2.8) N ()= sup [|(&, ¥, )l
t€[0,T]

In the present paper, the a priori estimate will be investidein the next section
and the local existence will be left to the last section. Ninedess we first state our
local existence.

Proposition 2.2 (Local Existence). There exists a positive constaht such that
if ||(d0, Yo, Co)|]1 < M and infg,(V + ¢p) > m, then there exists a positive constant
To = To(m, M) such that there exists a unique solutién, 1, () € X(1/2ym,5m(0, To)
to (2.5).

3. A priori estimate

Before establishing the a priori estimate, we first estimte value of ¢(0, ¢)
on the boundaryx = 0 by the boundary condition (2.5). két) = ¢(0,¢). Since
U,(0, 1) = 0, the boundary condition of (2.5) yields

RO_ (1),
v +ot) v +o0)

(3.1) =ps, t>0.
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Direct computation gives

(3.2) ¢ = —%aﬁ(t), (0) = ¢o(0).

It follows then, that

(3:3) &(1) = po(0)e (/1
Now we turn to the a priori estimate. We have
Proposition 3.1 (A Priori Estimates). There exist positive constanty and &1

such that for any given|0.—6_| =6 < do, if (4,1, ¢) € X(1/2mo.4e,(0, T) is @ solution
of (2.5) for some positivel’, then (¢, ¢, {) satisfies the a priori estimate

34 [l(6 v, Ol + / {16x 12 + (e GO} d < € (8%3 + || (0. 0. Q)IIT°).
wheremo = (1/2) min{v_, v+}, v_ = RO_/px.

Proposition 3.1 is proved by a series of Lemmas. We first dieefollowing key
Lemma.

Lemma 3.2. It follows that

100, O 2+ / (s CYDIPY dr
(3.5) 0

<C (5% + (6o v IE° +5 [ on(r) P ar).

Proof. Multiplying (2.5} by v, we have

(3),+#[(225-2)0] o[22 - %)

(3.6) vV v %
- R(®T+< - %)d}x +M(L :wx - U7)¢ = —F.

Since ¢, =, and

3.7) R(%-%) :R@(%_%%RTC,

we get

8) (3v7) ~RO(T —2)or — cun + By

2 1 1
+,u_x +:LL¢XUX<_ - _) = —Fw,
v v |4
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where
_ L [(0*¢ @ U+t U
H=R|(5 =g )] | (P - )
Let
(3.9 P()=s—1—Ins.
It is easy to check tha®’(1) =0 and® § ) is strictly convex around = 1. We com-
pute

(ro0(2)}, = ron(3) - ko( -2+ 2)o

(3.10) + RO~ %+‘]/')V,+R®(—%+é)v,
- ro(-e o pe(

where

(3.11) W6) =5t — 1+Ins.

Substituting (3.10) into (3.8) yields

(}W*R@q’(ﬁ)) “re ()
——Qb + H, +Mw—2+u'¢)U(}—%) —F.

(3.12)

On the other hand, we calculate

o1 [os(§)] = (- 3w for= (1= Do v(Ge.
and
-3
(1= ) (pm e pven( - G) (5 - 5) - 0)
= Ew +<(p+ p)Ux + (g(e_x_%)

(3149 ) G 0N /G L (1 1 pu?  UZ\ (G
R [ ) O R e D =
:—gcw + S s(S(E - 0)) - e

e 0.Co p quz U2 (G
02 7 G+ hg O — 02vv®"+7<7_ )__
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Substituting (3.13) and (3.14) into (3.12) gives

(3 mon () s gon(3)) + o

(3.15) VG— 1 %\e v
+Hx+Q:_F¢_%a
where
T o— C ax ®x
and
_ v D+ 0 1 1
617 0 =p-u(5; )i+ o 1 () v+t - 3)
' Y b Go 0:Co o pC u_i_U_f
g(Pr = PIUs = g (G = R GOt R VO = (v % )
satisfies
(3.18) 0] < (81+ C5,N(T)) (92 + (Z) + C5,(C* + ¢%) (|0 | + ©3),

if e1 is suitably small.
Note that® (0) =®’(0) = 0 and® § ) is a strictly convex function around =
and

[ 1Pvlax < s+ cal P
Choosingd; suitably small and integrating (3.15) ové&:. x (0, t) give
6.0 0+ [ 1 P~ [ . nar
(3.19) < [["cwr+@+e0ul+ 60+ (6l) dxa
vc [ IR d o o I
From Lemma 1.1, it is easy to see
(3.20) /Ot/ooo U?+|G|dxdt +/0[ |F|53:2dr < C5%3.

Due to the good property of (3.20), the estimates of the texomgainingF andG are
omitted in what follows. Since

(3.21) ICCe )] < X216 (ox, O] < 100, 1)] + x| bx ),
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applying Lemma 1.1 and the boundary condition (3.3), we have

(3.22) /O /0 (@ + (O] + ©2) dx dt < C5|g|2 +Co /O (s 2.

We now estimate the term from the boundary. We compute froi) @nd (3.3),

/ (0, 1) dr < C / 1600, £)06(0, 1| + |64 (0. 1)(0. 1)| dit
(3.23) 0 0

t —(» 1 t
<Cloo) [ e pu ) dr < 5 [l +Clool

Thus there exists a positive constait For anyd < dp, Lemma 3.2 is obtained
by (3.19-3.23). O

Lemma 3.3. It follows that
(3.24) e (1)]|2 + /0 b (P 2dT < C (%3 + |[(do, Yo, CO)IF°).

Proof. Following [13], we introduce a new variable v#V. Then (2.5) can be
rewritten by the new variable as
Uy

(3.25) (u(5)-v) —p=F.

Multiplying (3.25) by v, /v, we have

() -03),*(o3),+r

(2) - R

(3.26) 1 1y B w2 T
+p(g—7)05 = el - 5) +F

The Cauchy inequality yields that

(3.27) ]%C% + zﬁxe(% - é)\ < 51(%)2%51(5+c51(¢§+¢zuf),
(3.28) (a2 - D)oz| <o () +csce?

and

(3.29) a6~ co?V2 < () < esf6? + V).

On the boundary =0, we have

(3.30) be =y
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Note that the right hand sides of (3.27)—(3.30) have alrebdgn investigated in
Lemma 3.2. Integrating (3.26) ovek. x (0,t), using Lemma 3.2, (3.27)—(3.30), the
boundary condition (3.3), the fact that

M(’N)X)z 2
<HE(¥\ 4
4\ v

Ux

&

and choosingj; is suitably small, we get the desired estimate (3.24). O

Lemma 3.4. It follows that

(331) || GO)*+ /O {1 @re, Cr)DNPY dr < C (543 + || (o, t0, C)7°).

Proof. Multiplying (2.5)% by —«,, and (2.5} by —(,, and combining the result-
ing equalities, we have

2
(3.32) (%%2 ' 2(’YR— 1)43), - (w’% ¥ %G@)x tH
2 u?  U? .
A2 Pxthx +M(7 - V)C“' +0 = Fibyy + GCor,
where
(3.33) 0 =u(% - %)xwxx — (p — P+)UsCox + )y (%)x%

1 0, 06,
+ "{Cx(;)xgm - p¢x<xx + K(T - V)Xé-xx-
Since p. is constant, we have
(3.34) |Pxthec| < 0105, + Co, (97 + (?)OF + Cs, (05 + CF).

On the other hand, the Cauchy inequality yields

(3.35) ]u(”; = U72)<

< 615 + Cs, (V2 + U + 92| Cx)

and

|01 < 01 (w2, + %) + Cs, (08 + 2, + %, + 6% +97 +(F)

(3.36) +C|¢A|(|%||¢xx| +|<X||C“|)
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The integral of the term)?|(,,| can be estimated as follows.

/O V2o dx < sUp{ b0 G|

< V29 I3 121G
< 01 ([[ax |2+ 11Gox %) + €5, N (D).

(3.37)

The last term of (3.36) can be also treated as in (3.37). Itoed thaty,(0,1) =
(0, t) exponentially decays angl = 0. On the boundarg =0, we have

2
(3.38) Gidn = W0 = Vb = W6 — 6o(O) Fwe /M.
The right hand side of (3.38) can be estimated by the same wdg$.23). Thus inte-
grating (3.32) overR: x (0, t), choosingd; is suitably small, and using (3.33)—(3.38)
and Lemma 3.2, Lemma 3.3 imply (3.31). Lemma 3.4 is proved. O

Proof of Proposition 3.1.  Proposition 3.1 is obtained ateoffom Lemma 3.2—
Lemma 3.4. O

Remark. We note that Proposition 3.1 is only formally obtained ie tbrevious
argument because our solution space is not enough reguagivé a rigorous justi-
fication, we use the standard mollifier to smooth the soluti®mce our solution is
regular with respect to the space variable, we only need too#mthe solution with
respect to the time variable. Lgtr (3} 0 € C5°(0, 1) satisfyingfolj(t) dt =1 and
Je(t) = (1/e)j(t/e). Let f(x,t) be any measurable function, we defifie = f x j..
For any 0< 7 < t < oo, there exists a positive constang(r) such that for any
0<e<eq f¢€C™®(r1t]; HY) holds if f € C([0, ¢+ 1]; HY). Then we mollify the
equations (2.5) as following:

o7 — Y5 =0,

_ (RO +() ROS\ _ (UsS+yE  US -
wﬁ( Vet+ge  ve )x_ (ve+¢e_F)x_F * Ry

R R(O®° + (¢

¢+ RO D) ey - pout
(3.39) v-1 Vete

_ (93t G OF (U +95)?  (US)? ey pe
_K<V5+¢s)x H(Vs)x-i_ V5+¢5 H Ve G +R2’
Y5(0.1) = —%aﬁf(o, ).

¢¢(0,1) =0,

where R¢

i

i =1, 2 tends to zero il.%([0, T]; L?) norm ase — 0. Following the same
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method in Proposition 3.1, we get
t
165, v, C)E+ / (162 + s, )3y dr
1
(340)  <C(6Y3+ (6" 05, YY) +C / RS + RSNG| do
1
+C / RS |2+ | RS |2 dt.

Since ¢°, ¥°, (%) — (¢, ¥, ¢) in norm HY, (¥°,¢%) — (¥, ¢) in norm L3([0, T]; H?)
and @°, 1%, C°)(x, 7) — (¢, v, {)(x, 7) in norm H!, letting ¢ — 0 implies

16w, QI+ / (ln 2+ (. G2} dr
<C(8*3+ (6, v, Q)IIV3).

(3.41)

Letting 7 — O yields Proposition 3.1.

Proof of Theorem 2.1. Theorem 2.1 is easy from the Proposit®.2 and 3.1.
U

4. Local existence

Proof of Proposition 2.2.  From (2.5)¢ has an explicit form

@.1) o(x. 1) = dolx) + /O (e, 7Y dr.

The equation (2.5)and (2.5) are regarded as the initial-boundary value problem for
the parabolic equation af and { respectively:

v () == 8106.¢, 60, €

V+o
(4.2) 1120, 1) = — p+ (0, 1),

Y|i=0 = Yo,

G- n(755), = o= 0. o)
(4.3) ¢0.1)=0,

Cli=0 = Cos
where

(4.4) g1=—(M—E)X+u( O —%)_—F,
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5 =200 oy en (5 - 5)
2 2
B

To use the iteration method, we approximateo, (o) € HY, (o € H} by
(o, Yor, Cx) € H® which will be determined later. We define the sequence
{( @, ™, ") (x, 1)} for eachk so that

(4.6) (82, v @, ) (x, 1) = (bor, Yor, Cor)(x),

and for a given ¢" V), "™V ¢ (x, 1), v and (" are respectively the solutions
to
(n)

() _ ( kx ) (n—1) (n—l) /1 1) (n— 1) (n 1)
pl—0—) =8 ¢ s Dk
kt V + qzS/((n l) 1 ( k )

4.7
(4-7) B0, 1) =~ oy (0)elr 1,
I
(")|z =0 = Yok,
) e (-1 — (1) An=1) —1) ()
kt _“(ﬁ) =g =g Gl )
(48) n) V * ¢
G0, 1) =
C;E =0 = COk,
and
1
(4.9) " (x, 1) = por(x) + / P (x, 1) dr.
0

We now construct ¢, Yo, Cor). First we choosepg, € H?® such thatgg — oo
strongly in H! ask — oco. Let

(4.10) Ax(x) = o(0)e ™, An(x) = —%¢0k(0)xe_xz.

It is easy to check thatt; x( & H3, i =1, 2 satisfying

(4.11) A1(0) =¢0(0),  A1(0) =A42(0) =0, A2(0) = ——¢0k(0)

Let to(x) = = 1ho(x) — Aa(x) — A2(x). Then we haveﬁ_o(_x) € H}. We chooseyq, € HZ
such thatyg. — g strongly in HL. Let ¢e(x) = vo(x) + A1(x) + As(x), then we

have vo. — 1o strongly in H:. Furthermore we haveéy.(0) = —(p+/1)dor(0) which
guarantees the compatibility condition for the equatiorY)4in the same way, we can
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construct the approximatioty, € HZ N H* satisfying (o — (o strongly in H* and

e B = ~82(600(0). 0. 601, 0). s (0)
which guarantees the compatibility condition for the equat(4.8). It is obvious that
we can choose the above approximati@y (o, Cor) Satisfying ||(dok, Yok, Cor)llr <
(3/2)M, infg, (V + ¢ox) > (2/3)m for anyk .

By the linear theory, ife" = e C([0, T]; H?), i =1, 2, and {u, Cu) € H3, there
exists a unique-local solutionjf”, ¢™) to (4.7) and (4.8) satisfying

(4.12)

(4.13) n ¢y e (o, T); H3 n ([0, T); HY) N L2(0, T; H*).
Thus, if @, v, ") € X@/2msm, then the elementary energy estimate gives

Cu

@18) W01 < ((34) +Con M) exp(Clm, myo) + L2 < (o2

if 1o =1to(m, M) is suitably small. Also we have
to
(4.15) | s < Cn. oy
0
Similarly we obtain
(4.16) I3 < (bm)?,
where we have used the fact that

° n 2 n n n n
|0 i ar < 112

< BallGE 17 + G2l |2 + Co M2,

kxx kxx

(4.17)
for suitably small constand, > 0. On the other hand, direct computation on (4.9)
and (4.16) yields

(4.18) 6@ < @MY,

and infe,xo.o)(V + ¢")(x.1) > (1/2)m. Therefore we have ", v™, ") e
X1/2ym.6m (0, t0). Since ||pok, Yo, Corlls < Ci, @™, ™, (™) can be shown a Cauchy

sequence irC (Qo; H?). Thus we have a solutionpf, 1, ()(x, t) by letting n tends
to infinity. In particular, on the boundary =0, we have

(4.19) Okt = Ve = _&¢k-
i
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In the same way, we can show( v, (;) is also a Cauchy sequence ¢h , (@; H')
(taking Tp smaller thany, if necessary). Letting — oo, we obtain the desired unique-
local solution ¢, v, ¢)(x, 1) € X1/2ym.5m (0, To) to (2.5). ]
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