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1. Introduction

The one-dimensional compressible Navier-Stokes equations read in theEulerian
coordinates

(1.1)





ρ̃ + (ρ̃˜ ) ˜ = 0
(ρ̃˜ ) + (ρ̃˜2 + ˜ ) ˜ = µ ˜ ˜ ˜
(
ρ̃
(

˜ +
˜2

2

))
+
(
ρ̃ ˜
(

˜ +
˜2

2

)
+ ˜ ˜

)
˜

= κθ̃ ˜ ˜ + (µ ˜ ˜ ˜ ) ˜

where ˜( ˜ ) is the velocity, ˜ρ( ˜ ) > 0 the density,θ̃( ˜ ) the absolute temperature,
µ > 0 the viscosity constant andκ > 0 the coefficient of heat conduction. The pres-
sure = ˜ ( ˜ρ θ̃) and the internal energy ˜ = ˜( ˜ρ θ̃) are related by the second law of
thermodynamics.

There have been a lot of works on the asymptotic behaviors of the solutions for
the system (1.1). Most of these results are concerned with the rarefaction wave and
viscous shock wave. We refer to [10–15] for 2× 2 case and [4–5, 7–8] for 3× 3
case and references therein. However there is no result on the contact discontinuity
for the system (1.1) until now due to various difficulties. Although some progress on
the contact discontinuity were obtained by Liu and Xin [9] and Xin [17] in which the
asymptotic toward the contact discontinuity was investigated for the initial value prob-
lem (IVP) of viscous conservation laws with uniformly artificial viscosity, no result is
known for the physical system, especially for the compressible N-S equations (1.1).
Therefore we really want to give a positive result on the contact discontinuity for the
physical system (1.1). To simplify our problem, we focus ourattention on the perfect
gas. In this situation,

˜ (ρ̃ θ̃) = θ̃ρ̃(1.2)

˜(ρ̃ θ̃) =
γ − 1

θ̃ + const(1.3)

where > 0 is the gas constant andγ > 1 is the adiabatic exponent. As observed
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by [9, 17], the contact discontinuity can not be the asymptotic state, and a diffusive
wave, which approximates the contact discontinuity on any finite time interval, instead
dominates the large time behavior of the solutions for theirviscous system. For the
system (1.1), we also expect that the asymptotic behavior ofthe solutions is governed
by a nonlinear diffusive wave. We call it viscous contact discontinuity. We observe that
the sign of the first derivative of the velocity in the nonlinear diffusive wave is impor-
tant to the a priori estimate and is not good in the whole space. Thus it is difficult
to obtain the asymptotic stability of the viscous contact discontinuity for IVP of the
system (1.1). We further observe that the effect of the sign could exactly be neglected
for initial boundary value problem (IBVP) of the system (1.1) because there has the
inequality of Poincar´ type in the half space. It might be possible to obtain the a pri-
ori estimate for IBVP of the system (1.1) although IBVP is usually much more diffi-
cult than IVP in many situations. Motivated by this observation, we consider the sys-
tem (1.1) in the part >̃ ˜ ( ), where ˜ = ˜ ( ) is a free boundary, with the following
boundary conditions

(1.4)
˜ ( )

= ˜( ˜ ( ) ) ˜ (0) = 0 θ̃( ˜ ( ) ) = θ− > 0

and

(1.5) ( ˜ − µ ˜ ˜ )| ˜= ˜( ) = −

which means the gas is attached at the free boundary ˜ = ˜ ( ) to the atmosphere with
pressure − (see [15]) and the initial data

(1.6) (ρ̃ ˜ θ̃)( ˜ 0) = (ρ̃0 ˜0 θ̃0)( ˜ ) lim
˜→+∞

(ρ̃0 ˜0 θ̃0)( ˜ ) = (ρ+ 0 θ+)

whereρ+, θ+ are positive constants andθ0(0) = θ−. Because here we only consider the
case of a single contact discontinuity, we require

(1.7) − = + = θ+ρ+

Since the boundary condition (1.4) means the particles always stay on the free
boundary ˜ = ˜ ( ), if we use theLagrangian coordinates, then the free boundary
becomes a fixed boundary. Thus we transform theEulerian coordinates ( ˜ ) to the
Lagrangiancoordinates ( ) by

(1.8) =
∫ ˜

˜ ( )
ρ̃( ) =
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and our free boundary value problem (1.1–1.7) is then changed into

(1.9)





− = 0 > 0 > 0

+ ( θ) = µ
( )

> 0 > 0
(

( θ) +
2

2

)
+
(

( θ)
)

=
(
κ
θ

+ µ
)

> 0 > 0

θ| =0 = θ−(
( θ) − µ

)
(0 ) = + > 0

( θ)( 0) = ( 0 0 θ0)( )→ ( + 0 θ+) as → +∞

where ( ) = ˜ ( ˜ ) etc. = 1/ρ, ( θ) = { /(γ − 1)}θ + const and ( θ) =
θ/ .

We now construct the viscous contact discontinuity ( )( ) which is ex-
pected to describe the large time behavior of the solution tothe system (1.9). To
achieve our goal, we consider the following Riemann problem

(1.10)





− = 0
+ ( θ) = 0

(
( θ) +

2

2

)
+
(

( θ)
)

= 0

( θ)( 0) = ( − 0 θ−) if < 0
( θ)( 0) = ( + 0 θ+) if > 0

where ± and θ± are given positive constants. It is known from [16] that the Riemann
problem (1.10) admits a contact discontinuity

(1.11) (¯ ¯ ¯)( ) =

{
( − 0 θ−) < 0
( + 0 θ+) > 0

provided that

(1.12) − =
θ−

−
= + =

θ+

+

From the structure of the Riemann solution, we conjecture

(1.13) ( ) = = +

On the other hand, it is observed that the third equation of (1.9) can be reduced to

(1.14)
γ − 1

θ + ( θ) =
(
κ
θ )

+ µ
2
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by (1.9)2. Motivated by (1.14), we further conjecture that ( ) is governed by the
following equations

(1.15)





− = 0

γ − 1
+ + = κ

( )

(0 ) = θ− (+∞ ) = θ+

Direct computations from (1.13) and (1.15) yields

(1.16) =
( )

(0 ) = θ− (+∞ ) = θ+ =
κ +(γ − 1)

γ 2
> 0

We seek the self similarity solution (ξ), ξ = /
√

1 + of (1.16). Namely (ξ) is the
solution of the following equation

(1.17) −1
2
ξ ′ =

( ′ )′
(0) = θ− (+∞) = θ+

′ =
ξ

It is known from [1] that there exists a unique solution (ξ) of (1.17) which is a
monotone function, increasing ifθ+ > θ− and decreasing ifθ+ < θ−. Furthermore,

′(0) has the following property due to [2],

(1.18) 1|θ+ − θ−| ≤ | ′(0)| ≤ 2|θ+ − θ−|

where 1 and 2 are positive constants depending onθ±. From (1.17), we have

(1.19) ′′ =
(
−1

2
ξ +

′

2

)
′ =: (ξ) ′

which yields

(1.20) ′(ξ) = ′(0)
R

ξ
0 ( )

Due to [3], the asymptotic behavior of
R ξ

0 ( ) is

(1.21)
R ξ

0 ( ) =
(

− 3ξ
2)

as ξ →∞

for some positive constant 3 depending onθ±. Thus by (1.18)–(1.21), it is easy to
verify the following estimates of .

Lemma 1.1. Let |θ+ − θ−| = δ, the following estimates hold

∫ ∞

0

4 ≤ δ4(1 + )−3/2
∫ ∞

0

2 ≤ δ2(1 + )−3/2(1.22)
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∫ ∞

0

2 ≤ δ2(1 + )−5/2
∫ ∞

0
( 2 + | |) ≤ δ(1.23)

After ( ) = (ξ) is obtained, we define

(1.24) ( ) =
+

( ) ( ) =
κ(γ − 1)
γ

( )
( )

It is easy to see ( ) has the following property

(1.25) ‖( − ¯ − ¯ − ¯)‖ (0 +∞) ≤ [κ(1 + )]1/(2 ) all ≥ 1

which means the nonlinear wave ( ) approximates the contact discontinuity
( ¯ ¯ ¯) in norm, ≥ 1 on any finite time interval asκ tends to zero. We call
( )( ) viscous contact discontinuity.

Therefore, we conjecture that the solution ( θ)( ) of the system (1.9)
asymptotically tends to the viscous contact discontinuity( )( ). The aim of
this paper is to justify the above conjecture. Our result is,roughly speaking, as fol-
lows.

If |θ+ − θ−| is small, then the viscous contact discontinuity is asymptotic stable.
Our plan of this paper is as follows. in Sec. 2, we reformulatethe original prob-

lem and state our main result; in Sec. 3, we establish the a priori estimate and prove
our main result; in Sec. 4, we show the local existence of the solution.

NOTATIONS. Throughout this paper, several positive generic constants are denoted
by , without confusions. For function spaces, ( ) denotes the-th order Sobolev
space with its norm

(1.26) ‖ ‖ =



∑

=0

‖∂ ‖2




1/2

when ‖ · ‖ := ‖ · ‖ 2( )

The domain will be often abbreviated without confusions.

2. Reformulated problem and main result

To state our main result, we put the perturbation (φ ψ ζ)( ) by

(2.1)
( ) = ( ) + φ( )
( ) = ( ) +ψ( )
θ( ) = ( ) + ζ( )
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where ( )( ) is the viscous contact discontinuity defined in (1.16) and (1.19).
By the definition of the viscous discontinuity, we have

(2.2)





− = 0

+
( )

= µ
( )

+

γ − 1
+ + = κ

( )
+ µ

2

+

where

=
κ(γ − 1)

γ

[
(ln ) − µ

(
+ (ln )

) ]
(2.3)

= −µ +
(κ(γ − 1)

γ
(ln )

)2
=

(
2 + 4

)
(2.4)

Substituting (2.2) into (1.9)1, (1.9)2 and (1.14) yields

(2.5)





φ − ψ = 0

ψ +
( ( + ζ)

+ φ
−

)
= µ
( + ψ

+ φ
−

)
−

γ − 1
ζ +

( + ζ)
+ φ

( + ψ )− +

= κ
( + ζ

+ φ

)
− κ

( )
+ µ

( + ψ )2

+ φ
− µ

2

−
( θ−

+ φ
− µ + ψ

+ φ

)∣∣∣
=0

= +

ζ(0 ) = 0

(φ ψ ζ)( 0) = ( 0− 0− θ− )( 0)

We assume

(2.6) (φ0 ψ0)( ) = (φ ψ)( 0) ∈ 1(0 +∞) ζ0( ) = ζ( 0) ∈ 1
0 (0 +∞)

Our main result is

Theorem 2.1 (Stability theorem). There exist positive constantsδ0 and ε0 such
that for any |θ+ − θ−| = δ ≤ δ0, if ‖(φ0 ψ0 ζ0)‖1 ≤ ε0, then the problem(2.5) has a
unique global solution(φ ψ ζ)( ) satisfying

(φ ψ)( ) ∈
(
0 +∞; 1(0 +∞)

)
ζ( ) ∈

(
0 +∞; 1

0 (0 +∞)
)

φ ( ) ∈ 2
(
0 +∞; 2(0 +∞)

)

(ψ ζ) ( ) ∈ 2(0 +∞; 1(0 +∞)
)
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and

sup
≥0
|(φ ψ ζ)( )| → 0 as → +∞

REMARK 1. Although Theorem 2.1 is only concerned with the perfect gas case, it
is not difficult to obtain the similar result for general caseby the same argument.

REMARK 2. One would expect similar result for Dirichlet problem (0 )= 0,
θ(0 ) = θ−. However, if we still use the same viscous contact discontinuity con-
structed in (1.16) and (1.24), then the decay rate of the boundary valueψ(0 ) =

((1 + )−1/2) is not good. It is difficult to control the terms from the boundary.

We shall prove the stability Theorem 2.1 by the local existence and the a pri-
ori estimate. We look for the solution (φ ψ ζ) in the solution space (0 +∞) =⋃

>0 (0 ), where

(0 ) = {(φ ψ ζ) : (φ ψ) ∈ ([0 ]; 1) ζ ∈ ([0 ]; 1
0 )

‖(φ ψ ζ)‖1 ≤ inf( + φ) ≥ > 0 φ ∈ 2(0 ; 2)

(ψ ζ) ∈ 2(0 ; 1)}(2.7)

for , , > 0, and 1 = 1(0 +∞). Let

(2.8) ( ) = sup
∈[0 ]

‖(φ ψ ζ)( )‖1

In the present paper, the a priori estimate will be investigated in the next section
and the local existence will be left to the last section. Nevertheless we first state our
local existence.

Proposition 2.2 (Local Existence). There exists a positive constant such that
if ‖(φ0 ψ0 ζ0)‖1 ≤ and infR+( + φ0) ≥ , then there exists a positive constant

0 = 0( ) such that there exists a unique solution(φ ψ ζ) ∈ (1/2) (0 0)
to (2.5).

3. A priori estimate

Before establishing the a priori estimate, we first estimatethe value ofφ(0 )
on the boundary = 0 by the boundary condition (2.5). Letφ( ) = φ(0 ). Since

(0 ) = 0, the boundary condition of (2.5) yields

(3.1)
θ−

− + φ( )
− µ φ( )

− + φ( )
= + > 0
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Direct computation gives

(3.2) φ = − +

µ
φ( ) φ(0) = φ0(0)

It follows then, that

(3.3) φ( ) = φ0(0) −( +/µ)

Now we turn to the a priori estimate. We have

Proposition 3.1 (A Priori Estimates). There exist positive constantsδ0 and ε1

such that, for any given|θ+−θ−| = δ ≤ δ0, if (φ ψ ζ) ∈ (1/2) 0 ε1(0 ) is a solution
of (2.5) for some positive , then (φ ψ ζ) satisfies the a priori estimate

(3.4) ‖(φ ψ ζ)‖2
1 +
∫

0
{‖φ ‖2 + ‖(ψ ζ )‖2

1} τ ≤
(
δ4/3 + ‖(φ0 ψ0 ζ0)‖4/3

1

)

where 0 = (1/2) min{ − +}, − = θ−/ +.

Proposition 3.1 is proved by a series of Lemmas. We first give the following key
Lemma.

Lemma 3.2. It follows that

‖(φ ψ ζ)( )‖2 +
∫

0
{‖(ψ ζ )(τ )‖2} τ

≤
(
δ4/3 + ‖(φ0 ψ0 ζ0)‖4/3

1 + δ
∫

0
‖φ (τ )‖2

)(3.5)

Proof. Multiplying (2.5)2 by ψ, we have

(1
2
ψ2
)

+
[( + ζ −

)
ψ
]
− µ

[( + ψ −
)
ψ
]

−
( + ζ −

)
ψ + µ

( + ψ −
)
ψ = − ψ

(3.6)

Sinceφ = ψ and

(3.7)
( + ζ −

)
=

(1 − 1 )
+

ζ

we get

(1
2
ψ2
)
−

(1 − 1 )
φ − ζψ +

+ µ
ψ2

+ µψ
(1 − 1 )

= − ψ

(3.8)
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where

=
[( + ζ −

)
ψ
]
− µ

[( + ψ −
)
ψ
]

Let

(3.9) ( ) = − 1− ln

It is easy to check that ′(1) = 0 and ( ) is strictly convex around = 1. We com-
pute

{ ( )}
=

( )
+

(
−1

+
1 )

φ

+
(
−

2
+

1 )
+

(
−1

+
1 )

(3.10)

=
(
−1

+
1 )

φ − +

( )

where

(3.11) ( ) = −1 − 1 + ln

Substituting (3.10) into (3.8) yields

(1
2
ψ2 +

( ))
+ +

( )

− ζψ + + µ
ψ2

+ µψ
(1 − 1 )

= − ψ

(3.12)

On the other hand, we calculate

(3.13)
[ ( θ )]

=
(

1−
θ

)
θ − ln

θ
=
(

1−
θ

)
ζ −

( θ )

and

γ − 1

(
1−

θ

)
ζ

=
(

1−
θ

)(
− + + + κ

(θ −
)

+ µ
( 2

−
2)
−

)

=− ζψ +
ζ

θ
( + − ) + κ

(ζ
θ

(θ −
))

+ κ
(
−ζ
θ

+
θ ζ

θ2

)(ζ
+
(1 − 1 ) )

+
µζ

θ

( 2

−
2)
− ζ

θ

=− ζψ +
ζ

θ
( + − ) + κ

(ζ
θ

(θ −
))
− κ

θ
ζ2

+ κ
θ

θ2
ζζ + κ

ζ φ

θ
− κ θ ζφ

θ2
+
µζ

θ

( 2

−
2)
− ζ

θ

(3.14)
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Substituting (3.13) and (3.14) into (3.12) gives

(1
2
ψ2 +

( )
+
γ − 1

( θ ))
+
κ

θ
ζ2 + µ

ψ2

+ ˜ + = − ψ − ζ

θ

(3.15)

where

(3.16) ˜ = − κζ
θ

(θ −
)

and

= +

( )
+ +

γ − 1

( θ )
+ µψ

(1 − 1 )

− ζ

θ
( + − ) − κ θ

θ2
ζζ − κ ζ φ

θ
+ κ

θ ζφ

θ2
− µζ

θ

( 2

−
2)(3.17)

satisfies

(3.18) | | ≤
(
δ1 + δ1 ( )

)(
ψ2 + ζ2

)
+ δ1

(
ζ2 + φ2

)(
| | + 2

)

if ε1 is suitably small.
Note that (0) = ′(0) = 0 and ( ) is a strictly convex function around = 1

and
∫ ∞

0
| ψ| ≤ δ1‖ψ ‖2 + δ1‖ ‖4/3

1

Choosingδ1 suitably small and integrating (3.15) over+ × (0 ) give

‖(φ ψ ζ)‖2 +
∫

0
‖(ψ ζ )‖2 −

∫

0

˜ (0 )

≤
∫

0

∫ ∞

0

(
2 + (ζ2 + φ2)(| | + 2) + | |

)

+
∫

0
‖ ‖4/3

1 + ‖(φ0 ψ0 ζ0)‖2

(3.19)

From Lemma 1.1, it is easy to see

(3.20)
∫

0

∫ ∞

0

2 + | | +
∫

0
‖ ‖4/3

1 ≤ δ4/3

Due to the good property of (3.20), the estimates of the termscontaining and are
omitted in what follows. Since

(3.21) |ζ( )| ≤ 1/2‖ζ ‖ |φ( )| ≤ |φ(0 )| + 1/2‖φ ‖
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applying Lemma 1.1 and the boundary condition (3.3), we have

(3.22)
∫

0

∫ ∞

0
(ζ2 + φ2)(| | + 2) ≤ δ‖φ0‖2

1 + δ

∫

0
‖(φ ζ )‖2

We now estimate the term from the boundary. We compute from (2.5) and (3.3),

∫

0
| ˜ (0 )| ≤

∫

0
|φ(0 )ψ(0 )| + |φ (0 )ψ(0 )|

≤ |φ0(0)|
∫

0

−( +/µ) |ψ(0 )| ≤ 1
2

∫

0
‖ψ ‖2 + ‖φ0‖4/3

1

(3.23)

Thus there exists a positive constantδ0. For any δ ≤ δ0, Lemma 3.2 is obtained
by (3.19–3.23).

Lemma 3.3. It follows that

(3.24) ‖φ ( )‖2 +
∫

0
‖φ (τ )‖2 τ ≤

(
δ4/3 + ‖(φ0 ψ0 ζ0)‖4/3

1

)

Proof. Following [13], we introduce a new variable ˜ =/ . Then (2.5)2 can be
rewritten by the new variable as

(3.25)
(
µ
( ˜

˜

)
− ψ

)
− =

Multiplying (3.25) by ˜ /˜ , we have

(µ
2

( ˜
˜

)2
− ψ ˜

˜

)
+
(
ψ

˜
˜

)
+
( ˜

˜

)2
− ζ

˜
˜

+
( 1 − 1

θ

) ˜
˜

=
ψ2

+ ψ
(1 − 1 )

+
˜
˜

(3.26)

The Cauchy inequality yields that

∣∣∣ ζ
˜
˜

∣∣∣ +
∣∣∣ψ

(1 − 1 )∣∣∣ ≤ δ1

( ˜
˜

)2
+ δ1ζ

2 + δ1

(
ψ2 + φ2 2

)
(3.27)

∣∣∣
( 1 − 1

θ

) ˜
˜

∣∣∣ ≤ δ1

( ˜
˜

)2
+ δ1ζ

2 2(3.28)

and

(3.29) 1φ
2 − 2φ

2 2 ≤
( ˜

˜

)2
≤ 3

(
φ2 + φ2 2

)

On the boundary = 0, we have

(3.30) ψ
˜
˜

= ψ
φ
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Note that the right hand sides of (3.27)–(3.30) have alreadybeen investigated in
Lemma 3.2. Integrating (3.26) over+ × (0 ), using Lemma 3.2, (3.27)–(3.30), the
boundary condition (3.3), the fact that

∣∣∣ψ
˜
˜

∣∣∣ ≤ µ

4

( ˜
˜

)2
+ ψ2

and choosingδ1 is suitably small, we get the desired estimate (3.24).

Lemma 3.4. It follows that

(3.31) ‖(ψ ζ )( )‖2 +
∫

0
{‖(ψ ζ )(τ )‖2} τ ≤

(
δ4/3 + ‖(φ0 ψ0 ζ0)‖4/3

1

)

Proof. Multiplying (2.5)2 by −ψ and (2.5)3 by −ζ and combining the result-
ing equalities, we have

(1
2
ψ2 +

2(γ − 1)
ζ2
)
−
(
ψ ψ +

γ − 1
ζ ζ

)
+ µ

ψ2

+ κ
ζ2

− ψ + µ
( 2

−
2)
ζ + ˜ = ψ + ζ

(3.32)

where

˜ =µ
(

−
)
ψ − ( − +) ζ + µψ

(1)
ψ

+ κζ
(1)

ζ − ψ ζ + κ
(

−
)
ζ

(3.33)

Since + is constant, we have

(3.34) | ψ | ≤ δ1ψ
2 + δ1

(
φ2 + ζ2

)
2 + δ1

(
φ2 + ζ2

)

On the other hand, the Cauchy inequality yields

(3.35)
∣∣∣µ
( 2

−
2)
ζ
∣∣∣ ≤ δ1ζ

2 + δ1

(
ψ2 + 4 + ψ2|ζ |

)

and

(3.36)
| ˜ | ≤ δ1

(
ψ2 + ζ2

)
+ δ1

(
4 + 2 + 2 + φ2 + ψ2 + ζ2

)

+ |φ |
(
|ψ ||ψ | + |ζ ||ζ |

)
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The integral of the termψ2|ζ | can be estimated as follows.

∫ ∞

0
ψ2|ζ | ≤ sup{|ψ |}‖ψ ‖‖ζ ‖

≤
√

2‖ψ ‖3/2‖ψ ‖1/2‖ζ ‖
≤ δ1

(
‖ψ ‖2 + ‖ζ ‖2

)
+ ′

δ1
( )‖ψ ‖2

(3.37)

The last term of (3.36) can be also treated as in (3.37). It is noted thatψ (0 ) =
φ (0 ) exponentially decays andζ = 0. On the boundary = 0, we have

(3.38) ψ φ = (ψφ ) − ψφ = (ψφ ) − φ0(0)
2
+

µ2
ψ −( +/µ)

The right hand side of (3.38) can be estimated by the same way as (3.23). Thus inte-
grating (3.32) over + × (0 ), choosingδ1 is suitably small, and using (3.33)–(3.38)
and Lemma 3.2, Lemma 3.3 imply (3.31). Lemma 3.4 is proved.

Proof of Proposition 3.1. Proposition 3.1 is obtained at once from Lemma 3.2–
Lemma 3.4.

REMARK. We note that Proposition 3.1 is only formally obtained in the previous
argument because our solution space is not enough regular. To give a rigorous justi-
fication, we use the standard mollifier to smooth the solution. Since our solution is
regular with respect to the space variable, we only need to smooth the solution with
respect to the time variable. Let ( )≥ 0 ∈ ∞

0 (0 1) satisfying
∫ 1

0 ( ) = 1 and

ε( ) = (1/ε) ( /ε). Let ( ) be any measurable function, we defineε = ∗ ε.
For any 0< τ < < ∞, there exists a positive constantε0(τ ) such that for any
0 < ε ≤ ε0, ε ∈ ∞([τ ]; 1) holds if ∈ ([0 + 1]; 1). Then we mollify the
equations (2.5) as following:

(3.39)





φε − ψε = 0

ψε +
( ( ε + ζε)

ε + φε
−

ε

ε

)
= µ
( ε + ψε

ε + φε
−

ε

ε

)
− ε + ε

1

γ − 1
ζε +

( ε + ζε)
ε + φε

( ε + ψε)− +
ε

= κ
( ε + ζε

ε + φε

)
− κ
( ε

ε

)
+ µ

( ε + ψε)2

ε + φε
− µ ( ε)2

ε
− ε + ε

2

ψε(0 ) =− +

µ
φε(0 )

ζε(0 ) = 0

where ε, = 1, 2 tends to zero in 2([0 ]; 2) norm asε→ 0. Following the same
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method in Proposition 3.1, we get

‖(φε ψε ζε)‖2
1 +
∫

τ

{‖φε‖2 + ‖(ψε ζε)‖2
1} τ

≤
(
δ4/3 + ‖(φε ψε ζε)(τ )‖4/3

1

)
+

∫

τ

‖ ε
1‖‖ψε‖ + ‖ ε

2‖‖ζε‖

+
∫

τ

‖ ε
1‖2 + ‖ ε

2‖2

(3.40)

Since (φε ψε ζε) → (φ ψ ζ) in norm 1, (ψε ζε) → (ψ ζ) in norm 2([0 ]; 2)
and (φε ψε ζε)( τ )→ (φ ψ ζ)( τ ) in norm 1, letting ε→ 0 implies

‖(φ ψ ζ)‖2
1 +
∫

τ

{‖φ ‖2 + ‖(ψ ζ )‖2
1} τ

≤
(
δ4/3 + ‖(φ ψ ζ)(τ )‖4/3

1

)(3.41)

Letting τ → 0 yields Proposition 3.1.

Proof of Theorem 2.1. Theorem 2.1 is easy from the Propositions 2.2 and 3.1.

4. Local existence

Proof of Proposition 2.2. From (2.5)1, φ has an explicit form

(4.1) φ( ) = φ0( ) +
∫

0
ψ ( τ ) τ

The equation (2.5)2 and (2.5)3 are regarded as the initial-boundary value problem for
the parabolic equation ofψ and ζ respectively:





ψ − µ
( ψ

+ φ

)
= 1 := 1(φ ζ φ ζ )

µψ (0 ) =− +φ(0 )
ψ| =0 = ψ0

(4.2)





ζ − κ
( ζ

+ φ

)
= 2 := 2(φ ζ φ ψ )

ζ(0 ) = 0
ζ| =0 = ζ0

(4.3)

where

1 = −
( ( + ζ)

+ φ
−

)
+ µ

(

+ φ
−

)
−(4.4)



STABILITY OF CONTACT DISCONTINUITY 207

2 = − ( + ζ)
+ φ

( + φ ) + κ

(

+ φ
−

)
(4.5)

+ + + µ
( ( + ψ )2

+ φ
−

2)
−

To use the iteration method, we approximate (φ0 ψ0) ∈ 1, ζ0 ∈ 1
0 by

(φ0 ψ0 ζ0 ) ∈ 3 which will be determined later. We define the sequence
{(φ( ) ψ( ) ζ( ))( )} for each so that

(4.6)
(
φ(0) ψ(0) ζ(0))( ) = (φ0 ψ0 ζ0 )( )

and for a given (φ( −1) ψ( −1) ζ( −1))( ), ψ( ) and ζ( ) are respectively the solutions
to





ψ( ) − µ
( ψ( )

+ φ( −1)

)
= ( −1)

1 = 1
(
φ( −1) ζ( −1) φ( −1) ζ( −1))

ψ( )(0 ) =− +

µ
φ0 (0) ( +/µ)

ψ( )| =0 = ψ0

(4.7)





ζ( ) − κ
( ζ( )

+ φ( −1)

)
= ( −1)

2 = 2
(
φ( −1) ζ( −1) φ( −1) ψ( ))

ζ( )(0 ) = 0
ζ( )| =0 = ζ0

(4.8)

and

(4.9) φ( )( ) = φ0 ( ) +
∫

0
ψ( )( τ ) τ

We now construct (φ0 ψ0 ζ0 ). First we chooseφ0 ∈ 3 such thatφ0 → φ0

strongly in 1 as →∞. Let

(4.10) 1( ) = ψ0(0) − 2

2( ) = − +

µ
φ0 (0) − 2

It is easy to check that ( )∈ 3, = 1, 2 satisfying

(4.11) 1(0) = ψ0(0) 1 (0) = 2(0) = 0 2 (0) =− +

µ
φ0 (0)

Let ψ̄0( ) = ψ0( ) − 1( ) − 2( ). Then we haveψ̄0( ) ∈ 1
0 . We chooseψ̄0 ∈ 3

0

such thatψ̄0 → ψ̄0 strongly in 1. Let ψ0 ( ) = ψ̄0( ) + 1( ) + 2( ), then we
haveψ0 → ψ0 strongly in 1. Furthermore we haveψ0 (0) = −( +/µ)φ0 (0) which
guarantees the compatibility condition for the equation (4.7). In the same way, we can
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construct the approximationζ0 ∈ 2
0 ∩ 3 satisfyingζ0 → ζ0 strongly in 1 and

(4.12) κ
ζ0 (0)

− + φ0 (0)
= − 2

(
φ0 (0) 0 φ0 (0) ψ0 (0)

)

which guarantees the compatibility condition for the equation (4.8). It is obvious that
we can choose the above approximation (φ0 ψ0 ζ0 ) satisfying ‖(φ0 ψ0 ζ0 )‖1 ≤
(3/2) , inf +( + φ0 ) ≥ (2/3) for any .

By the linear theory, if ( −1) ∈ ([0 ]; 2), = 1, 2, and (ψ0 ζ0 ) ∈ 3, there
exists a unique-local solution (ψ( ) ζ( )) to (4.7) and (4.8) satisfying

(4.13) (ψ( ) ζ( )) ∈ ([0 ]; 3) ∩ 1([0 ]; 1) ∩ 2(0 ; 4)

Thus, if (φ( −1) ψ( −1) ζ( −1)) ∈ (1/2) , then the elementary energy estimate gives

(4.14) ‖ψ( )( )‖2
1 ≤

((3
2

)2
+ ( ) 0

)
exp
(

( ) 0
)

+
µ

+

2 ≤ ( )2

if 0 = 0( ) is suitably small. Also we have

(4.15)
∫

0

0
‖ψ ‖2

1 τ ≤ ( )( )2

Similarly we obtain

(4.16) ‖ζ( )( )‖2
1 ≤ ( )2

where we have used the fact that
∫ ∞

0

(
ψ( ))2|ζ( ) | ≤ ‖ψ( )‖ ∞‖ψ( )‖‖ζ( ) ‖

≤ δ2‖ζ( ) ‖2 + δ2‖ψ( ) ‖2 + δ2
2

(4.17)

for suitably small constantδ2 > 0. On the other hand, direct computation on (4.9)
and (4.16) yields

(4.18) ‖φ( )( )‖2
1 ≤ (2 )2

and inf +×[0 0]( + φ( ))( ) ≥ (1/2) Therefore we have (φ( ) ψ( ) ζ( )) ∈
(1/2) (0 0). Since‖φ0 ψ0 ζ0 ‖3 ≤ , (φ( ) ψ( ) ζ( )) can be shown a Cauchy

sequence in (00; 2). Thus we have a solution (φ ψ ζ )( ) by letting tends
to infinity. In particular, on the boundary = 0, we have

(4.19) φ = ψ = − +

µ
φ
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In the same way, we can show (φ ψ ζ ) is also a Cauchy sequence in (00; 1)
(taking 0 smaller than 0 if necessary). Letting →∞, we obtain the desired unique-
local solution (φ ψ ζ)( ) ∈ (1/2) (0 0) to (2.5).
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