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1. Introduction

In this paper, we discuss the Littlewood-Paley inequalifypical example is
the Brownian motion on the Euclidean space and it leads tddh@wing inequality:
for any p > 1 there exist a positive constaGt  such that

(1.1) CH|Vull, < IV=2ul, < C||Vull.

Vv—A, the square root of the minus Laplacian, is called the Cawgwrator. (1.1) is
equivalent to theL.” -boundedness of the Riesz transformation

This kind of inequality also holds for the Ornstein-Uhleokeprocess on an ab-
stract Wiener space, which was proved by P.A. Meyer [11] irrababilistic approach.

In this paper, we attempt to extend this inequality for auwdifbn process associ-
ated with a Dirichlet form that admits a square field operaldrere have been sev-
eral related works, e.g., Bakry [3, 4], Shigekawa-Yoshidé].[ In these papers, they
assumed thar'; is positive or bounded from below. We replace this boundssiraes-
sumption with the exponential integrability of negativertpaf I',. To handle this case,
we assume that the logarithmic Sobolev inequality holdsrddeer our square field
operator is of the gradient form, i.e., the Dirichlet fognis given as follows;

(1.2) E(,v) = /M(Vu, Vo) u(dx).

We adopt a probabilistic approach which was developed by evend Bakry. We
will show the inequality for the Littlewood-Pale -functio Since the square field
operator is given as a gradient, we consider another seugigtbat acts on vector
valued functions and use the semigroup domination to estimactor valued func-
tions. Using this method, the estimate for vector valuedcfions can be reduced
to the scalar case. But the unboundednesd pfcauses some troubles and so we
could not prove the exact inequality. We only show that e ormmis dominated
by L?-norm for 1< p < g (see the precise statement§g).
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We also discuss the Brownian motion on a Riemannian manifotd boundary.
We impose the Neumann boundary condition on the Brownianiomoin this case,
the quantity corresponding tb, is singular (i.e., it is not a function but a smooth
measure). We deal with it by way of an associated additivectional. The additive
functional belongs to the Kato class and we can show the erequality (i.e., no
loss of exponent).

The organization of the paper is as follows. We give a fortimtaand a main re-
sult in §2. We definel'; in our formulation. It is a generalization of Ricci curvagur
and is based on a square field operator for vector valuedifunsctin §3, the max-
imal ergodic inequality for a semigroup with a potential ive. Here the logarith-
mic Sobolev inequality is essential. We give a proof of theinmtheorem in§5. To
do this, we prepare fundamental inequalities for the hittled-PaleyG -function irg4.
A proof for the Littlewood-Paley inequality is given &b. Combining this with the in-
tertwining property of semigroups, we can get the main tediie Brownian motion
on a Riemannian manifold with boundary is dealt with§6.

2. Symmetric diffusion

Let us introduce a diffusion process that we use in the pdpsrM be a topo-
logical space. We assumd  to be Souslinian. Suppose we aga giBorel proba-
bility measurey, on M and a Dirichlet form€ in L?(n). We assume that there exists
a Hunt diffusion processX;, P, .}, associated wittf. We denotes the generator and
the semigroup byL andT,}, respectively. We assume thatclDom(L) andL 1 =0
where 1 denotes the function that is identically equal to éné¢ the diffusionX; ) is
conservative. We also assume that the Dirichlet form sasidfiie following defective
logarithmic Sobolev inequality: there exist> 0 and 3 > 0 such that

2.1) / u?log (L) 1(dx) < € (u, u) + Bu, u).
M [uell2
Here (, ) denotes the inner product Iif.
Further we assume that the square field oper&tor is welletkfiklerel :
Dom(€) x Dom(€) — L*(un) is a continuous bilinear map which is characterized as
follows:

(2.2) 20, w)u)=E(vw, u) — E(v, wu) — E(vu, w), Yu,v,w € ENL®.

A crucial assumption is as follows; there exists a ‘gradieperator’ V such thatV

is a closed operator fromi?(1) to L?(u; K) and it satisfied” , v ) =u, Vv). Here

K is a (separable) Hilbert spacg?(;; K) may be possibly the set of all square inte-
grable section of a vector bundle ov& . But we uséy; K) for notational conven-
tion. We need another semigrodfi;} in L2(;; K). Let {7} be a contraction symmet-
ric semigroup associated with a bilinear fogn We also need a square field operator
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for {7;} and so we assume that

(A.1) For § € Dom(L), it holds that|#|2 € Dom(Ly).

Here L; is the generator irL.'(;). Under this condition, we define a square field op-
eratorI" as

(2.3) 2A°(0,m) = LO, )k — (LO, n)x — (0, L.

We assume the following two properties: the positivity ahd tlerivation property.
(A.2)T(0,0) > 0 for 8 € Dom(E).
(A.3) For 0, n € Dom(E) N L> andu € Dom(£) N L, it holds that

(2.4) 80, n) = —(Vu, V(9,)) + T8, un) + Fub, 7).
Then, by the semigroup domination theorem (see [14]), we= hav
(2.5) 11,0 < T,)0).

Let Sp(K) be the space of all self-adjoint operator @&h that is bodnffem
below. LetR be a function o/ taking values & (K). Define a bilinear formE®

by
(2.6) ER(0,n) = E0,m) + /M (R()0(x), n(x)) . (dx).

The associated semigroup will be denoted frp§/ We assume the following intertwin-
ing property, which is crucial in the paper.

(2.7) VTu=TRVu, for u € DomV).

R plays the role of so called,.
We take a scalar functior  such that

(2.8) (RO, K) . > V) Kk

The semigroup generated ldy—V is denoted by{7, }. The generator oﬁR is L—R.
Again by the domination theorem, it holds that

(2.9) |17,26] < 1,716).

V can be decomposed 8 V=—V_ whereV.=VVvO0 andV_ =(-V)VO0. The last
assumption is that
(Ad) '~ eL> =, L

For scalar functions, we can define two kinds of norifu||, and ||v/1 — Lu||,.
It is a fundamental question whether these norms are eguivalr not. For example,
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if the generatorL is the Ornstein-Uhlenbeck operator on asiratt Wiener space,
then the equivalence of two norms are known as the Meyer alguige.
Under our conditions, we can get the following result.

Theorem 2.1. For anyl < p < g < oo, we have

(2.10) ||v“||p Svi- L”Hq’
(2.11) V1= Lull, < [[Vulg+|lully-

In the above theorem, the notatioh < B stands forA < kB for a positive con-
stantk . Further, in (2.10) for example, the constant depemdis on p but is indepen-
dent ofu . We use this convention in the sequel without meirigahn

To prove the theorem, we use the Littlewood-Patey -functiddfe introduce it
in §4 and give a proof of the theorem §b.

3. Maximal ergodic inequality

In this section, we discuss the maximal ergodic inequalithis inequality is
known for a symmetric Markov semigroup (see e.g., Stein)[1FHere we consider
a semigroup with a potential. To show the inequality, we adoprobabilistic method
due to Rota [13].

We consider an additive functionad,  associated to a smo@hesi measurg
under the Revuz correspondence. We define a Dirichlet form by

(3.2) EP(u,v) =E(u, v) +/ uvp(dx)

M

whereu” denotes the quasi-continuous modificationt of . Ths®@ated semigroup is
denoted by{7,}, which is expressed as

(3.2) T/ u(x) = Ex [u(X,)e ]
where E,, denote the expectation under the measire

Theorem 3.1. Assume that for any > 1, there exist constants,, 3, such that
(3.3) E [e" 14V < ¢ Pt vt >0, g.e.x.

Here “g.e.” means that it holds except for a set of capadityThen for anyp > 1
there exist constants, ¢ such that

(3.4) < cllul|p, Yu € L?.

p

suple™ T ul
>0
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In particular, if p is non-negative(i.e,, A, is non-negativg we can take\ = 0.

Proof. We note that7;”u| < T, ”~ |u|, wherep = p. — p_ is the Hahn decompo-
sition of p. Without loss of generality, we may assume thais non-positive.
Set

(3.5) M, =T} u(X,)e ™.

Here 0, is the shift operator. We show first thgd,} is a martingale under,, :=
Sy Peiuldx). In fact,

Ey[u(Xp)e ™ | 7] = Ep[u(Xg—, 0 0)e 4104 | F]
=e M E, [M(XTft 0 ;e Ar—°% | ft]
=e MEy, [M(XT_t)e—AT—f] (Markov property)
e A TP u(X,).

We note, by the Markov property,

Tf ,u(Xr) = Ex, [u(Xr—)e "]
= E,[u(X7—, 0 0r)e A7 | X7]
= EH [M(XQT_t)e_AZT_'+AT | XT] .

Now, using the reversibility of X; ), i.e., Xor—/)o<i<or has the same law as
(Xt)0§t§2T, we have

Tf u(Xr) = E,[u(X)e 474 | Xr].
Hence

TZP(Tft)u(XT) = T{?_,T{?_,M(XT)
= E,[TF_u(X)e "4 | Xr]
= E, [Me 4724 | Xxy].

Noting that we have taked to be non-positive, we have

1/p
1 1
XT} E, [equT | XT]l/q. (— + == 1)
P q

Sup (T4 _yu(Xr)| < B, | sup [Mle
0<i<T 0<i<T

< Eu[ sup |M,|?
0<1<T

On the other hand,

(3.6) E,[em9%7 | x7]Y7 = E,[e 94 —40 | x, 17" (reversibility)
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= E,[e %00 | X, (additivity)
= Ex, [e947]Y"  (Markovian property)

<cge. (0 (3.3)

Thus we have

1/p
sup |Tf;_u(Xr)| < cqeﬁqTEu{ sup |M,|? XT}
<t<T

0<i<T

0

Hence, by the Doob inequality

sup [T _yul
o<i<T p
1/p
< eE, {Eu{ sup |M,|? XTH
0<i<T

1/p

= cqeﬂ"TEﬂ[ sup |M,|”}
0<i<T

< Cle,e®TE [|Mr|P]YP (Doob’s inequality)
= C'cqeﬁqTEH[|M(XT)|pe*”AT]l/p
= Cleg™ E,[Ellu(Xr)Pe P47 | X71)M7
=Clcge™ E,[[u(X7)|PE e P | XT]]l/p
< C'cje’ e, e E [lu(Xr)P1YP (. (3.6)

= C/Cpcqe(ﬁ')+ﬁq)T||”||p-

Thus we can find constants> 0 andC > 0 which are independent & and
that

< Ce*Jull,
p

sup |7/ul
o<r<2r

We take\ > k. Note that for any integer

S e—)\n
p

sup [T, ul
0<t<n+1

< Cef)\nek(rﬁl)”u”r.

sup e M|T ul
n<t<n+l

p

Summing up inn

o %)
< CA Y e O,
p n=0

sup e |7/ ul
n<t<n+l

n=0

such
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C
< m”““p-
Clearly this leads us to
o0
sup e M|T7ul|| < || sup e N|TVu|
0<t<oo p =0 "<t<n+l p
o0
<> |l sup e M |1 u|
=0 n<t<n+l P
<l
— ||U .
- e—k _ e—)\ p
This completes the proof. [l

The assumption (3.3) is rather strong. We replace it with desumption (A.4).
In this case, we sep = Vm. Hence, the associated additive functional is given by

(3.7) A, :/Ot V(X,)ds.

Here we denote the semigrouf;’} by {T,Y}. Since £ satisfies the logarithmic
Sobolev inequality (2.1), we have (see, e.g., [14]),

(3.8) 1TV ull, < lle="|l B -

op/4(p—1)€

This means that there exists a constaptsuch that
(3.9) 1T lp—p < €.

E'g-v Set’YP = (4ﬁ/0¢) loQ ||eiv||cxp2/4(p—l)'
In particular, whenp =2,

(3.10) IV ull2 < fle™ V|5 e™™/ *|lull2

In this case, takinge =1, we have

Ele 1= [ Elle uta)
X
= |17,/ 1/l
< |7"1l2
< fle™" I,/ 1]

< eV et
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Hence, for anyy > 0, it holds that
(3.11) E [e ] < [le V| e¥/
Noticing this inequality, we can get the following maximagedic inequality.

Theorem 3.2. Take anyl < p < r < oo. If we takeX > 0 to be sufficiently
large, then there exists a constaat> 0 such that

(3.12) suple M T,Y ul

>0

< cfull,-
P

Proof. By the same proof as in Theorem 3.1, we have

sup | Ty yu(Xr)| < Eu{ sup |M;|e A7
0<t<T 0<1<T

Hence,

sup |T2‘ET7I)M|
0<t<T p
r p11/p
<E, Eu[ sup |M|e A7 XT] ]
L 0<t<T

r 1/p
< E,| sup |M,|”e‘1’AT}
L0<:<T

} (p/q9)-(1/p)

< E,| sup |MI|P<I/P

Eu[e*puAr](q*p)/pq (i + } = 1)
lo<t<T

q/p u
< CEu“MT|q]l/qE#[e_”“AT](q_”)/”q (Doob’s inequality)
= CEM[|u(XT)e*AT|’1]1/qEM[e*P"AT](q*p)/pq
< CEM[|M(XT)|”I/’]](<I/")'(1/‘I)Eu[efqvAr](rfq)/rqEM[efpuAT](qu)/pq
(i)
r/qg v

< CHuHr||e—qvV||g—q)T/rqe4ﬂ(r—q)T/arq||e—puV||g1—p)T/pqe45(q—p)T/apq_
Thus we can find a constakt> O which is independent off and such that

< CeZkT||u||r.
p

sup |7,"u|
0<r<2T

The rest is the same as Theorem 3.1. This completes the proof. O
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4. Littlewood-Paley G-functions

Let us introduce the Littlewood-Pale§y -functions. To dosthive recall the sub-
ordination of a semigroup. Sét* = e~ 7, (A > 0). We take) to be large enough.
For anyr > 0, define a measurg, on [0, co) by

t
N

(4.1) 1 (ds) = e /A s=3/2 g

In terms of the Laplace transform, this measure is charaettras
/000 e u,(ds) =e Vo' for a > 0.

Then the subordinatiofQ;}'} of {T*} is defined by

(4.2) 0)= [ 12 utas)

The generator of @'} in L?() is —/\ — L.

We recall that{7,} is the semigroup with the potentidr . We s&t*V =
e MTY and we also define the subordination {d"} as

(4.3) M= [ ).
0
The operator norm of Q"1 in L? is estimated as

o0
A A
102,y < / 1T [y palds)
o0
S/ e pu(ds)
0
—e V )‘771”_

Here v, is the constant in (3.9). Moreover, by the semigroup dorona7 M Rg| <
T V|0|, we have

(4.4) TRy S NTAY [y < €00,
Similarly we have

(4.5) ||Q1)\+R||pﬂp < e VA=t

For any real valued function , define

(4.6) g (x, 1) = |0, Qu(x) %,
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4.7) gl (x, 1) = VO u(x)%,
(4.8) gl 1) =g~ (x, 1) + g (x,1).

Here 0, = 9/0t. Then, the Littlewood-Paley; -function is defined by

0o 1/2
(4.9) G u(x) = {/ tg (x,1) dt} ,
Ooo 1/2
(4.10) Glu(x) = {/ 1! (x,1) dt} ,
Ooo 1/2
(4.11) Gu(x) = {/ tg(x,t) dt} .
0
Moreover, we define thél -functions by
00 1/2
(4.12) H u(x) = {/ tQ,gH(x,t)dt} ,
Ooo 1/2
(4.13) H'u(x) = {/ 10,8 (x,1) dt} ,
Ooo 1/2
(4.14) Hu(x) = {/ tQ.g(x, 1) dt} .
0

For vector valued functiord, we define G -function andH -function, similarly.
That is, e.g.,

(4.15) 27 (x. 1) = 10,0} 0(x) %,
0o 1/2
(4.16) G 0(x) = {/ tgﬁ(x,t)dt}
R Ooo 1/2
(4.17) H™0(x) = {/ tQ:8 (x,1) dt}
0

Notice that, in this case, we use the semigrdu®*X} that is the subordination of
{TMRY, G0, H'0, GO, and HO are defined similarly. For example,

gl (x, 1) =T (00, 0*%0)(x)

(see (2.3) for the definition of).
The following proposition is easily obtained by the spdctlecomposition:

Proposition 4.1. It holds that

B 1
(4.18) 1G ™ ullz = Slull2,



LITTLEWOOD-PALEY INEQUALITY 907

and
. 1
(4.19) 1G0|2= §||0||2

Later we need the interrelationship betweén  difd functions s0 we first
prepare the following.

Lemma 4.2. We have the following estimate

(4.20) T u()P < {supif“*”l(x)}r,|u|2(x>,
s>0

(4.21) OV u(x)? < {suprW)l(x)}Qf|u|2(x)-
s>0

Proof. By the Feynman-Kac formula, we have

E. {exp{—/\t - /O’ V(X)) ds}u(X,)}

<k [exp{—zA 2 Vix) "H EL[lu(X,)]
0
= TP (x) - T Juf?(x)

< {sumf(“”l(x)} T u(x).
s>0

2
TV u(x)|? =

Further we have,

2

O u(x) = \ / T I u(nds)

< / T2 () A (ds)
0

</ {supr“*”l(x)} T PN (ds)
0 r>0

= {suprfwl(x)} 0 u).
5s>0

This completes the proof. U

Now we can show the following estimate betwe@n -functiond &nfunctions.
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Proposition 4.3. We have that

. vz
(4.22) G0 < Z{SUpr(’\W)l(x)} -H™0.
s>0

For scalar function we have

(4.23) G u<2H u,
1/2
(4.24) Glu < 2{supTS2(’\+V)l(x)} -H'lu.
5s>0

Proof. We have,
10 *6(x)| < /OOO [TXR0(x) e (ds) < /Ooo TV 10|(x)pui(ds) = @1 0|(x).
Using Lemma 4.2, we have
1M 0) < (017101} < {supTZ0" 11600} - 0 0.
Therefore

87 (x, 20) = |9, 0RO (x) 2

§=2t
= ~ 2
= ‘\/)\ “I+R ngRe(x)\
~ = ~ 2
= |0 VA= L+ R O 0()|
= ~ 2
< {supr(“V)l(x)} Qt\\/A —~L+R Q,“RH] (x)

s>0

= {supr(”V)l(x)}Qfg*(x, ).
s>0

From this,

G 0(x) = {/Oootgﬁ(x,t)dt} = {4/Oootgﬁ(x, 2t)dt}

o 1/2
< 2{ / t{supr(”V)l(x)} 0.3 (x.1) dt}
0

s>0

1/2 o 1/2
< 2{supr(’\+V)1(x)} {/ tQtEf(x,t)dt}
0

s>0

1/2 1/2
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12
:2{supr<*+V>1(x)} H™0(x).

s>0

909

For the scalar function, it holds tha#—~u < 2Hu since we havelQ,u(x)]?> <

O |u*(x).
Let us next estimaté& Tu.

00 1/2
Glu(x) = {/ t|VQ;\u(x)|2dt}
0
o 1/2
= {4/ t|VQ§‘tu(x)|2dt}
0

o 1/2
2{ / r|Q?*RVQ?u(x)|2dz}
0

1/2
2{ t{Q?”WQ?u(x)nzdt}

IA

IN

2

r
r

0

1/2 oo 1/2
=2 supr“*”l(x)} { / zQ,gT(x,z)dt}
0

s>0

1/2
:2{SupTS2(’\+V)1(x)} H'u(x).

s>0

Thus we have (4.24). This completes the proof.

1/2
r{supr“*”l(x)}Q,|VQ%u|2(x) dr}
s>0

O

In the next section, we use the diffusion process generatel 9?. So we will

do some calculation od. 2.

Lemma 4.4. For any 0, set f(x,a) = |Q}R0(x)| and fore > 0, f.(x,q) =

V F(x,a)2+¢=. Then we have

(4.25) (L+02)F%>2(\+V)f2+2;.

and for1 < p < 2, it holds that

(4.26) C +ODFL = p(A+ V)PP JE 2+ p(p — DFI 2
where g = g(x, a) was defined by

8(x,a) = |0,0ROx) |2 + (080, 0 R0)(x).

For the scalar casewe definef (x,a) = |Q)u(x)|, f-(x,a) =/ f(x,a)>+e. Then
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we have

(4.27) (L+32)f?>2)f?+2g

and forl < p <2,

(4.28) (L+07) f2 = pAf2fI 72+ plp — DfI 2.

Proof. We first show (4.25). To show this, we note thét—( A — R+ 0% x
QMRf(x) = 0. Moreover, using the identity[Z0, ) = L|0|> — 2(L#, 0), it holds that

LIONRO1> = 2(LO) R0, Q)R) + 20 (0)R6, 0)k0).
Hence
(L+02)F% = (L+02)|Q)""0)

= 2020080, 0,7°0) +2(0,00"*0. 0,0, 0)
+2(LO*R0, Q2 0) + 21(0*"0, 02 *0)

=—2((L — A~ R)0)*"0, 0)™R0) + 20,0, ™0
+2(L 00, 02R0) + 20(02 R0, 02*0)

> 20\ + V)| Q0RO + 28 (x. a).

Secondly we show (4.26). To show this we recall the followfngdamental re-

lationship betweenl. an®: for F(¢,€2,...,&") € C®(R") and f1, f2,..., f" €
Dom(L),

1 g2 o~ OF N PF
LF(f,f,---,f)—;a—g,-Lf +IZW(Vf,Vf’)

J=1
(see [5, Lemma 1]). Hence we have, foxlp < 2,

(L+32)fF = (L +02)(f2)r/?
=L+ )2

"3 (% B 1) (P22 f27 + IV 2P
= SR DI+ Lo — 270 M@ T+ VIR,
Let us recall that (see, e.g., [14, (3.11)])

IV 722 = [V(Q) R0, QXRO)[P < 4T (Q)*Ra, 0)R60)| 02 R o).
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Taking this into account, we have
(L+ NP = ZJ272{200+ V)| Q2 R0l + 26}
+ 2 (p — 272740, 00"0, 0207 + 41 (020, 00)| 0270}
> S0 V)OO + 28) + plp — 20724 7%

> pfP N+ V)| 0RO+ p P28 + p(p — 2)f7 7%
> p(A+ V) P2 F2+ p(p — 1)FP%.

The scalar case can be proved similarly. This completes ttbef.p U

5. Equivalence ofLP-norms

In this section, we give estimates 6f a#fl  functions by a goiistic method
and then show the domination of norms. The original idea is thuP.A. Meyer [9]
but we mainly follow Bakry [4].

Let (X;, P,) be the diffusion process oM  associated witlas before. We need
an additional 1-dimensional Brownian motioB;(,~9 and we regard4 as a vertical
space. We writeP, in place of P, . Let B,, P,”) be a 1-dimensional Brownian mo-
tion starting ata € R with the generatow?/da?. Note that this Brownian motion is
different from the standard one up to constant. tdbe the hitting time of B, ) to O,
ie.,

T=inf{t > 0; B, =0}.
We consider the following diffusion}{, P, ,)) on the state spac#f x R;
(5.1) Y, =X, B/} Pua =Pl ®@P .

So the generator ofy{ ) i& 82 We denote the integration with respectRg ,) and
Jis Pe.ayi(dx) by Eq oy and E x5, respectively.

We use the following identities (see Meyer [9] for the prodft n: M x R+ —
[0, c0) be measurable. Then, far> 0,

(5.2) E.xs, [/o n(X;, B,)dt} = /M,u(dx)/o (a ANt)n(x, 1) dt
and
(5.3) E.xs, [/o n(X,, B;)dt | X; =x :/0 (ant)Qn(x,t)dt.

We need an inequality for submartingales. L&t () beam-negativecontinuous
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submartingale with the following Doob-Meyer decompositio

where (M, ) is a continuous martingale and, ( ) is a continuouseasing process
with Ag = 0. Then, forp > 1, it holds that

(5.4) E[AL] < C,E[ZE].

For the proof, see Lenglart-Lépingle-Pratelli [8].
Before going to estimaté& -function we prepare the following

Proposition 5.1. For any p > 1, we have

T p
(5.5) SUPE,, x5, [{/ e Vb ds} } < 00.
0

a>0
N>0

Proof. By the Itd formula, we have

1 1
e Vb = g=VaBo _ \/a/ e Vabs dB; +/ ae VB gs.
0 0

Hence
INT
/ ae VOB gg = g VoBinr _ p=VabBo 4 pp
0

where (M, ) is a martingale defined by
INT
M, :\/a/ e VoBigp
0
which satisfies
INT
(M), = Za/ e~ 2VaBs g,
0
Now, by the Burkholder inequality

T p
E.xsy H/ e Vobs ds} }
0

< CpBpuxsy [(e_\/aBT - e_\/aBo)p] + CPENX6N[<M>£/2]

T p/2
< Cp+CLE x5y H/ Aoe— V3B ds} }
0
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Thus it is enough to show (5.5) whegn =1.

E.xoy {/ e VB ds} :/ (N /\a)oze_\/a" da < / ace Vg = 1.
0 0 0

This completes the proof. U
G-functions are now estimated as follows.

Proposition 5.2. For any 1< p < ¢ < 2, we have

(5.6) 1GOl, < 1101l
and
(5.7) 10llgr S 11G 0|

where p’ and ¢’ are the conjugate exponent of  agd respectively.
For scalar functionswe have

(5.8) 1Gullp < lullp-
Proof. Setf(x,a) = |0 R0(x)| and fore > 0, f-(x,a) = \/f(x,a)? + . Define
Z = f.-(Xinr, Binr)”
and

Z; = }‘(Xt/\T’ Binr)P.

Then
INT ~
0 =70 [V ny
0

is a martingale.
By Lemma 4.4, we have

(5.9) (L+9D)fF > p(A+ V)F2FP 2+ p(p — 1)a fr2
> —p\+V)_F2fP 24 p(p — 1) FP 2

Hence

Z© + /T pA+V)_(X,) f-(X,, B,)P ds
0
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T

INT
=0+ [ @B s+ [ pO V)T B ds
0 0
is a non-negative submartingale. By letting— 0 in (5.9), we have
iminf (L + 027 > —p(A+ V)7 +p(p — D3 f~*

which implies

(5.10) g< liminf (L + PVFr - e+ pi_lv,}z.

1
plp—1)

Now we can estimaté 6.

R [e%e] P/2
||G9||§ :H{/O agr(x,a)da}

< {/Oo{anmmf(“az)f;+ap(A+V) fp} 2= pda}
0

1
p/2

1

p(2—p)/2 o0 R n
< {supT,’\*V|0|} {/ a{nm inf(L+02)F7 + p(A+ V)_f”} da}
0 e—

>0

p/2

1
p||(2=p)/2 p/2

X

< {suth“VI@I}
t>0

/OZ{lim inf(L +02) 77 + p(\ + V),]fp} da
0 e—0

1 1

The first factor of the right hand side can be estimated asvisll By Theorem 3.2,

we have
P
{supr> o1
>0

For the second factor, we have

(2—p)/2 p(2—p)/2

(5.11) ] < o|pe-pr2,

sup7,*"|0|
t>0

1 p

/ " afimint(L+ 377 + pr+ V)7 } da

1

= Jim Eycs, UOT iminf { (L +2)72(X,, B) + p(\+ V)(X,)}P(X,)}dt}

N—oo e—

< lim_liminf E,cs, [/T{(L + 0 FP(X,, B) + p(\ + v)f(X,)}P(X,)} d;}
0

(. the Fatou lemma)

N—oo e—

= Jim liminf E,.5, {z@ z§f>+/ p(/\+V)_(X,)]A”’(X,)dt}
0

= Jm B 2o Zot [ PO V) 0T ()
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< M B IO+ im B, | [ o0+ ¥)- (0700

=615 +

/OO a(\+V)_FPda
0

1

The second term can be estimated as follows:

H /Ooa(/\ +V)_fPda
0

s/ al|V_}? |1 da
1 0

° - 1 1
< allV_||- 1l f? da <—+—:l)
L eVt da (5

o0
< V_|, / al|QXR0||? da
o0
SN
< vl / al 02|, 1617 da

<V, i ae VU0 da (. (4.5))

VAN
()\_’Yq)l?2
Thus we have
-~ _ p/2
1GO|IL < J16]12¢ ”)/2(|I9II£+||9||Z)’/ S 10117

p ~

which shows (5.6).
(5.7) is obtained by the duality argument. In fact, usingp®@sition 4.1, we have

[ 0@ 00) @) =4 [ @) [ a(@.01*00). 0,0 1) da
M M 0

<4 /M G006 n(x)uldx)

< AGTOl, Gl
S 10llg G 7l

Now (5.7) follows easily.
(5.8) for scalar functions can be shown much easily. O

When p > 2, we estimate{u and Hu .
Proposition 5.3. For any 2 < p < r, we have

(5.12) 120, < 1101l
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For scalar functionswe have
(5.13) [Hullp < [lullp-

Proof. We setf(x,a) = |Q)}R0(x)| and define

Zi = f(Xinr, Bins)®
Then,
INT
M, =Z — /O (L + ) fA(X,, By)ds

is a martingale. By Lemma 4.4, we have
(5.14) X< (L+0°)f?+2v_F2.
Then, setting

(5.15) A, = / MT{(L +92) F2(X,, By) + 2V_ (X, B,)} ds,
0

we can see thatA, ) is an increasing process and have that

INT
(5.16) Z + / 2V_ f(X,, B,)ds = M, + A,.
0
HenceZz, + O’AT 2V_ f?ds is a non-negative submartingale and its increasing p&rt ()
satisfies
INT
(5.17) A > / 28 (X;, By)ds.
0

Therefore, by (5.4), the following inequality hold.
T p/2
EM><6N [{/ Zg(XSs Bs)ds} :| < EN><5N[Ag<<2]
0

T . p/2
S Euxoy [{Zoo+/ 2V_f2ds} }
0

T . p/2
SEuxéN[Zgo/z]"'EuxéN l:{/ szds} :|
0

T ~ p/2
= 617+ Eps, H/ szds} }
0
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The second term can be estimated as follows. We takepatyg < r.

([ v-7a}]

V_f?d
p/2
= E.xs, H B gnBsy f ds} }

(4=2)p/2q T ”n 2p/2q
< Epxsy H nBsq/(qZ)ds} {/ enBa/2y /2 a ds} }
0

- the Holder inequality for the exponenis/(¢ — 2) andg/2)
T ulg—2)p/2q71/u . pla
< Epxsy H/ e~ 1B:a/(q=2) ds} } E oy {/ enBa/2y /2 a ds}
0 0

. . 1 1
( the Holder inequality for the exponenis agdp Where; + 277 = )

T . r/q
< Epixon {/ e"B:/2y1/2 7a ds} (- Propostion 5.1)
0
0 ) . r/a
= { / u(dx) / (N A a)em/2y4/ (x)|Q;\+R0(x)|’1da} )
M 0
To estimate the integral above, we recall tha@,*?0|, < e~ v>~7|d||,. Therefore,

/ u(dx) / TN A a)ema /2y () D3RO da
M 0

< [ aemiaa [ Vo010 (e
0 M

) 1/v q/r
< | aew/zda{ / qu/z(x)u(dx)} { / |Q2+R0(x)|"’/qu(dx)}

0 M M

(Hi-l)

v or/q
< / ae™/2| 9XRO(x) |4 da

0
S [ aemerze A o) da

0
NRIdIE (o VAX=7q >nq/2).

Thus we have obtained

T [’/2
(5.18) En, H [ ax. Bs)ds} } < oy,
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Now we can estimatéif.

R ) P/2
||H9||ﬁ=H{ /0 aQag(x,a)da}
1

00 /2
:NliHmoo/M/L(dx){/0 (a/\N)Qag'(x,a)da}p

T P/2
= jm_ [ M(dx)EuxaN[ [ a0 myas :x}
N—oo M 0

p/2
< lim //,L(dx)E#X(;N H g(Xg,B)ds}
N—o0 M 0

T p/2
im0t 0}
N—o0 0

S efy. ¢ (5.18)

=]

The scalar case is easier. O
Combining Propositions 4.3, 5.3, we can get

Proposition 5.4. For any2 < p < g < oo, we have

(5.19) ||Gﬁ0||1: S 116llg
and
(5.20) 10l S IGO0,

where p’ and ¢’ are the conjugate exponents pf  andrespectively.
For scalar functionswe have

(5.21) 1Gullp < flullp-
We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. We tak& to be large enough. Recall thdQ;'} is the
subordination of{T*}. Then, by the intertwining property (2.7), we have

Vo) = OMEv.

Now take any 1< p < g < oo. Then we have

i o i 1/2
vl <16-9ul, = |{ [ alo,02*vutw)” dal
0

q
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[ alweramf aa)
0

= ||GTV>‘_L”||11
N ||V/\_L”||q

q

which proves (2.10).
The reversed inequality (2.11) is obtained by the dualiyuarent. This completes
the proof. O

6. Riemannian manifold with boundary

In this section, we discuss the reflected Brownian motion dRiemannian man-
ifold with boundary. LetM be a compact Riemannian manifoldhwboundaryoM.
Let (X;, Pc)xen be the Brownian motion o  with the Neumann boundary condi-
tion. We denote the Riemannian volume ly . In this section, s@migroup{T;} is
generated byL A with the Neumann boundary conditiffi.} is a symmetric and
strongly continuous contraction semigroup irf(m). Further{f,} is the semigroup
generated by the Hodge-Kodaira Laplacifan: —dd* — d*d with absolute boundary
condition. The associated bilinear forms with  ahdare denoted by¥ and E. We
can see that the following intertwining property holds fdf,} and {T,}:

(6.1) VT, =T,V.

As in §5, we use an additional 1-dimensional Brownian motidh, P,”) gener-
ated byd?/da?. Let 7 be the hitting time of B, ) to 0, andY{, P..,)) be the product
diffusion process on the state spakex R.

(6.2) Yt = (Xt, Bt)v P(x,a) = P_x ® PHH.

So the generator ofy{ ) i& &2

We use the notatioft,, x5, = fM Pu.am(dx) in the same way as i§5. For any
f € C>(M), we have

1 1
f(X:, B))— f(Xo, Bo) = a martingale + (L+0?)f(X,, Bs)ds+/ Vi f(Xs, By)dls.
0 0

Here {/,} is an additive functional corresponding to the smooth mesasu (o is
the surface measure ofM), N is the inner normal vector and denotes the covariant
differentiation. In particular we take 1-forih with absolute boundary condition and set
f(x,a) =|Q.0(x)]?. Then,

f(Xinr, Binr) — f(Xo, Bo)
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INT INT
=M, + / (L+02)f(X,, B)ds + / Vi f(Xe, B)dl,
0 0

INT

INT
= M, + / (L +02)f(X,. B)ds + / a(Q50(X.), 05 0(Xy)) dis.
0 0

Here o is the second fundamental form odM (see [15] for this identity.)
The quadratic variation ofM, ) is given by

INAT
(M), =2 / IV 05,0(X,) + 10, 05,6(X,) 2 ds.

Hence we can do the same argument as in the previous sectibnveBhave to tackle
the additional termfé” a(Qp,0(Xy), 0p,0(Xy)) dl;.
Next we see the semigroup domination. We note that for 1$a#mn and f €

COO(M):

—E((0.m). £) +E(F0.m) +EO. fn)
63) =2 / (VO, Vi) fm(dx) + 2 / Ric(0, 1) fm(dx) + 2 / o0, n) Fo(dx)
M M oM

where Ric is the Ricci curvature (refer to [15] for this idign)

We takey > 0 and 3 > 0 so that Ricf, §) > —v|0|> and a(0, ) > —3|0|2. Then
a(f,0)c > —pB|0)?c as measures. It is easy to see thats a smooth measure. We
also note that in the interior a## , it holds that

(6.4) L@, n) — (L8, 1) — (6, L) = 2(V0, Vi) — 2Ric, n).
By (6.3) and (6.4), the semigroup domination theorem insp(igee [14, 15])
(6.5) 7.0 < 1,7777710).

Here Tt’W’ﬁ" is the semigroup which has~ — go as a potential. It can be repre-
sented as

(6.6) 1777 u(x) = Ex [u(X,)e"™ ]

We can also show that-{,) satisfies the assumption of Theorem 3.1. To see this,
take any functiomh € C*°(M) such thatVyh =1 ondM. Such a function can be con-
structed as follows. Take any local coordinate, (.., x,—1, r) such thatoM = {r = 0}
andr — (x1,...,x,—1,7) IS a geodesic with unit velocity perpendicular /. Then
h(xi,...,x,—1,r) = r satisfies the property above. Global existencezof can be ob
tained by using the partition of unity. Then

h(X,) — h(Xo) = M, + /Ot Ah(X,)ds +1;
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where (4, ) is a martingale witld (M), < C dt for a constantC > 0. Hence

E[e"] = E, {exp{qh(xt) — gh(Xo)— qM, — g /O t Ah(xs)ds”.

The right hand side is bounded n  becauseA#h amt) is bounded (this im-
plies thato is a Kato class potential; for Kato class potentials, seee¥dno-Ma [2]).
Therefore, there exist constanf > 0 and 3, > 0 such that, for q.ex- ,

(6.7) E [ M9 < c e, Vi >0.

Now we can apply Theorem 3.1 tl‘f”’ﬁ”. For simplicity, we introduce the follow-
ing notation:

M7 Poy(x) = Sun,)ﬁV*BUu(x)L
>0

When A —~ =0 andf =0, we simply denoteMu in place d/*~7—7y. Then, if A
is large enough, we have for any> 1,

(6.8) 1M P%ull, < [l

We can also obtain an estimate for the subordination.{l@t "~"?} be the subordi-
nation of {7,771, Then

0777 = ‘ / T up(ds)
0
= / e Sug T 0y (ds)
0 r>0
- efatM)\fazfvfﬁo'u‘
Thus we have
(6.9) sude®| Q)T Pul} < MA By,
>0
We also note tha{7;} is a bounded operator ih”? by virtue of (6.5) and there exist
constantsc, > 0 and~y, > 0 so that
(6.10) T p—p < cpe.
Let {0} be the subordination of7* = e=*7,}. (6.5) implies| Q0| < @}~ ~77|9).

We defineG and A in terms of{Qﬁ}. Now we can easily see that Proposition 4.3
holds in this case. We have more. In fact, by virtue of (6.7¢ ean and do take
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large enough so that sup T,A’V’Bgl(x) is bounded in g.ex- and thereby we have

(6.11) G0 < H™O.

Similar estimate holds foG'u and H'u.
Lastly we note that, by combining the domination and (6.9),

(6.12) Suge™ QMY < MA " 1=Fg).
t>0

Next we extend (5.2) to additive functionals. Take any smaoeasurep and let
A, be the additive functional associated wjth Then we have the following identity.

Proposition 6.1. For any non-negative functioif oM x [0, o) and k on M,
the following identity holds

(613)  Enus, [ / f(xt,Bt)dA,} = [ a0 [@nignar
6- mx T ts Dt | = 1 )
(6.14)  Euxs, [k(X )/0 f(X B)dA} /Mp(dx)/o (a N1)Qik(x) f(x, 1) dt

Proof. Let us first recall the resolvent kernel for the abswrtBrownian motion
on (0 o0). Here, the generator i#?/da?. For a > 0, set

1
Vaa _ ,—v/aay,—+/ab <
2\/5(6 e )e ,a<b,
(6.15) gala,b) = 1
Zﬂefﬁa(e\/&b _ e*\/ab)’ a>b.

Then the resolvenG,, = (o — d/(da?))~! is given by

(6.16) Goh(a) = / N gula, b)h(b) db.
0

Moreover we note that lig.o g.(a, b) =a N b.
By the Revuz correspondence, (see [6, the equation (5]L\4)have

[ n@don | [ e sexnyaa
0 0
:/ Gah(a)da/ f(x,a)p(dx)
0 M
:/ h(a)da/ p(dx)/ gala, D) f(x,b)db (. go is symmetric)
0 M 0
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Hence we have, for a.e.- ,

Eves, [ /0 e“f(xs,Bs)dAs} - /M p(d) /0 gala, b)f(x, b) db.

But both hands are quasi-continuous in and one point hastiyeostapacity,
the above identity holds for ali > 0. By letting « — 0, we can get (6.13).
To show (6.14), set

INT
H, :/ f(X;, By)dAs.
0

Then H, is a process of bounded variation. Hence, by the Ithita,

tAT tAT
0, k(X;n-)H; = a martingale +/ (L +02)Qp,k(X,)Hy ds + / Q3 .k(X,)dH
0 0

INT

a martingale + 0p.k(X;) f(Xs, Bs) dA;.
0

Here we used thaWyQ.,k = 0 on OM becauseQ,k belongs to the domain of
the Neumann Laplacian. By taking expectation and letting co, we have

Em><(51, |:QB-,—k(XT)/ f(XSs B?)dA€:|
0
=Enxs, [/ QB,\.k(Xs)f(X.ﬁ Bs) dAS}
0
:/ p(dx)/ (@ Nt)Qik(x)f(x,t)dt. (.0 (6.13))
M 0
This completes the proof. [l

Recall that{Q}}, {Q}} are subordinations of 7}, {7*}, respectively andG
and H functions are defined in terms p0;'}. Then we have the following estimate.

Proposition 6.2. For 1 < p < 2, we have

(6.17) GOl < 1161,
and
(6.18) 0]l S NGOl

where p’ is the conjugate exponent @f
For scalar functionswe have

(6.19) 1Gullp < fullp-
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Proof. We only show the 1-form case. We sgtr,a) = |Q)0(x)| and f. =

vV f2+¢e (¢ > 0). Define
7 = f.(Xinr, Bins)”

and

Z, = }(Xtm—, Bins)P.

Then,
ME) =7© — /O MT(L +02) f-(X,, By)" ds — /O M Vn f-(Xs, By)P dl.
is a martingale. Note that
Ut = Vn(f?+ep/2= L7202 2a(026. 026).
Therefore,
Eucss| [ L+ DT BY as]
= Enxon[ 2 — 251 = LEunsy [ / Fr2a(00, 0).0) dls]
< Emeanl 28 - 251+ 22 nww[/‘ﬂ?ﬂQBGFﬂ}

By taking limit, we have

= {nmigf/ (L +02) f-(X, By)P ds]
E— 0

< iminf Eps, [28 - 791+ 22 pﬁ
£—

lim inf E s [/ Fr2103,0(X) diy ]
p pB . > TP—21HAp(2
< |lu||? + = liminf (NAa)da | fP=2Q,0|7c(dx)
! 2 -0 0 M
V4 pﬁ H H Oo A])
< |lu||? + == liminf (NANa)da | fPo(dx).
P 2 -0 0 M

We estimate the second term. We use the interpolation spakeg ¢ = 1—(1/p), we
introduce the interpolation nort- ||¢,, of || - |lo,, and || - ||1,,. Here|| - |0, is the L?
norm in L? (M, dx) and| - ||1, is the Sobolev norm:

ull?, = / u[Pm(dx) + / VulPm(dx).
M M
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Then the following inequality holds (see e.g., [1, Chaptél)V

uPdo(x) S [ullg -
/8M &p
Moreover, the general theory of interpolation implies (feeLEMMA 7.16])
1—
lullZ , < Nl 7 el 7,

Thus we have

(6.20) /8 lul?odn) < i, O

On the other hand

925

~ -~ N ~ 1 - ~ ~ ~
VI =[Oy F2 42| = 507+ AV I < 572 4272271V 016] < [V020).

Using these inequalities, we have

/ (N A a)da / Fro(dx) < / (N A )| 7-1& 97172157, da
0 M 0

S/O (N A @I Fllf + 1 5PV 721157} da

< / (N A @[ J ]2 + 714977 020[ Yda.

By taking limit, we have

EIiLTlo/O (N Aa) da/MfEPU(dx)

§/O (N A @I FIIE + LFIS7 1V 0261157} da

o0 o0
S aeVATr6)) da + / e e A
0 0

o 3
S116)L + (10§ ; ae‘v*—%“—apada{ /M |VQ29(x)|Pm(dx)}

o 1-¢
< lo|% + ||9||(pl—£)p{ i ae\//\%(lﬁ)pall/(l—&)da}

00 §
X { ae VA= wA=9ra g4 / |VQ3,‘0(x)|1’m(dx)}
0 M

(a-5" 7=
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- R ¢
< | + ||e||<;—f>1’{ [ @ [ a0 Qo da}
M 0
< o] + ol -9» [ / m(dx){
M 0

0 R p/27¢ 1 1
X {/ a|VQ;\0(x)|”'2/pda} ] <—+—: )
0 v 2/p
o0 . p/2 3
<log 11| [ { [ arvoremiaaf mav)
M
< o]l + 619716

S 1/v
ae—\/k—’y,,(l—ﬁ)puada}

Further, as in the proof of Proposition 5.2, we can show that

p/2

IGOI, < llellp@P72

/ aliminf(L + 92 fP da
0 e

In fact, \+V)_ in the proof of Proposition 5.2 vanishes in this case. Combitthese
inequalities, we have

1GOI5 < N1015EP/2{||6)157/2 + ||6||5 97 P/2| G o||57 7/}
_ ~ 2
0115+ [l011&=4P /2 G o157 /?

—p - p—1)p 1
o1 oI AIG o (e=1- )

IA

p
3—D -1/ p—1.~ 3-p p-1

< 19IlP + 5= (p=1/@=r)||g||P + SIGrone + =1

< 6 + = loll; + E==sl &l o+ B

SN0l + =R g)1L + 5)1Go|l.
Sinced is arbitrary, we can get

GOz < 1015

which is (6.17). Now the rest is easy. U

When p > 2, we estimatef/¢ and Hu .

Proposition 6.3. We further assume that the second fundamental feria non-
negative definite. Theror any p > 2, we have

(6.21) A6, < 1161,
For scalar functionswe have

(6.22) [Hullp < llullp-
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Proof. Setf(x,a)=|0}0(x)| for 1-form # and define

Z; = }(XtATs Bt/\T)Z'

Then

IAT

INT
Z,=Zo+ M, — / (L +0?)FXX,, B,)ds — / a(03.0(X,), 03.0(X,)) dl
0

0

where (M, ) is a martingale with the quadratic variation

INT
(M), =2 /o {IV F(Xs, BS)? +|0a F2(Xs, By)|*} ds.

By the assumption thad is non-negative definite,Z; ) is a submartingale and the in-
creasing part is given as

INT

INT
A= [P B [ a(0h600). 23000) d
0 0
Now, recalling that (see Lemma 4.4)
(L+dD) %> 28,
we have
INT
A > / 28 (X5, By)ds.
0
By virtue of the submartingale inequality (5.4), we obtain

T p/2
Ennxoy H/ 2§(X.c,Bs)dS} } < Enxsy[A27]
0

5 EMX(;N[Z(I;O/Z]
= el

Thus we have
p/2
|H0||1’ —H{ aQag(x,a)da}
1
) P/Z
= lim /M(dx){/ (a/\N)Qagr(x,a)da}
N—=oo Jy 0

T p/2
= lim //L(dx)megN{/ 8(Xy, By)ds XT:x}
N—o0 M 0




928 |. SHIGEKAWA

T p/
< IJ@OO/MM(dx)EmXM [{/O g(XSs Bs)ds}

T p/2
= Jim Ens, H/ g(xs,Bs)ds} }
N—o0 0

S 119115-

2

XT:x}

Scalar case is easier. Ol

By combining Propositions 4.3 and 6.3, we easily obtain tiewing estimates
for G-functions:

Proposition 6.4. Assume thaitx is non-negative definite. Thefor any p > 2,
we have

(6.23) IG0ll, S 1611,
and
(6.24) 10110 S NG~0]],r

where p’ is the conjugate exponent of
For scalar functionswe have

(6.25) 1Gullp < flullp-
Now the following theorem can be proved in the same way as fEme@.1.

Theorem 6.5. For any 1 < p < 2, it holds that

(6.26) ullp, + IVull, S VL= Aullp,
(6.27) VL= Aullp < flully + [[Vullp

where p’ is the conjugate exponent @f
If we further assume that the second fundamental faris non-negative definite
then the inequalities above hold fgr > 2.
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