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1. Introduction

In this paper we discuss a kind of Lefschetz number definedafgeneralized
multiplicative G -equivariant cohomology theowy, = {h%}, where G is a compact
Lie group, andi € Z runs along some at most countable set of indi€e&f. [22, 3]).

For every pairY < X of finite G-CW-complexes the cohomology alge-
bra hf(X,Y) has the structure of amng(pt)-module and, consequently, also of an
h%(pt)-module, given by the multiplicative structure. Assuhath; (X, Y) is either
(a) a finitely generated projectivigs; (pt)-module, or
(b) a finitely generated projectivle%(pt)-module respectively.

Let f:(X,Y) — (X,Y) be aG -equivariant map. Under assumption (a) a gen-
eralized trace, tf*, of the induced mapf*: h;(X,Y) — hi(X,Y) is well defined
(cf. [23, 4]) and will be called thdull generalized Lefschetz numband denoted by

Ly (f) € hg(pt),

(in fact, one may prove thal; (f) € h(pt)). TakingZ = NU{0} and using the same
argument ([23, 4]), assumption (b) guarantees the exist@ficcach trace # (f)) of
the induced homomorphismg’ hy; X(Y - hi;(X,Y) and consequently allows us
to take their alternate sum to define another generalizedchetz number

Lys () = Y (1) tre (1) € h(pY).

i=0

called thecut generalized Lefschetz numbalote that, sinceh%(pt) C hg(pt) is a sub-
ring, assumption (b) is much more restrictive. On the ottardy since the rin@%(pt)
is smaller and simpler thahyg; (pt), the Lefschetz number is easier to handle with in it.
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An illustrative example of this is the stable (equivariacdhomotopy theory, which we
shall discuss later in more detail.

In this paper we study general properties of the two notiorentioned above,
pointing out their differences and giving applications ke tproblem of the existence
of fixed orbits of aG -equivariant map, in the case tldat is finite that end we
make use of the equivariant stable cohomotopy theory tedswith the rational num-
bers. More precisely, in Section 3 we discuss the nonegaivacase ¢ =€). A direct
use of the Lefschetz-Hopf-Dold formula shows in this casat tine full generalized
Lefschetz number is given by

Ly-(f) = e(L(f)),

whereL (f ) is theclassical Lefschetz numbederived in the singular cohomology with
rational coefficients, and: Z — h°(pt) is the homomorphism given by the natural
transformation from stable cohomotopy to the given geimsdlcohomology theoryt*
(Theorem 3.1), or, equivalently, given by just mapping: Z to 1 € h°(pt). Next we
prove Theorem 3.3 which asserts that in the nonequivariasé ¢he cut generalized
Lefschetz number is given by

Lyo(f) = e(L(f)) Lyo(idpy)

whereL (f ) is the classical Lefschetz number, derived in dargcohomology with ra-
tional coefficients, and: Z — h°%(pt) is as above. Our proof of this fact is based
on the Atiyah-Hirzebruch-Whitehead spectral sequencevazging to 2*(X, Y). This
shows that in the nonequivariant case the full and the cuergdimed Lefschetz num-
bers are nonzero only if the classical Lefschetz numberfferdint from zero. This is
not the situation in the equivariant case

The generalized Lefschetz numbers are interesting in thevadgant case. First
the equivariant version of the Lefschetz-Hopf-Dold forengdroved by the second au-
thor ([15, 16, 19]) allows us to show that for every equivatizohomology the-
ory, which is stable with respect to suspensions given byesgmtations, and for any
equivariant mapf :X,Y »— (X,Y), the full generalized Lefschetz number is equal
to

Lz (f) = (Lo ()

where e: wi(pt) — hg(pt) is the natural homomorphism, now from the equivariant
stable cohomotopy theory to the given cohomology theoryeffém 4.1). Using the
mentioned Lefschetz-Hopf-Dold theorem for the equivaristable cohomotopy theory
and the Ulrich formula ([24]), the right hand side can be esped by the Lefschetz
numbers of the restrictions of to the fixed point sets of sobgs of G, as was
already studied by tom Dieck, Marzantowicz and Ulrich ([3, 24]). In particular it
vanishes if f has no fixed point.
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In an earlier paper by the first author ([12]) the generalit&fischetz number
in the equivariantKk -theory tensored with the complex nummbleas been studied.
The trace, and consequently the Lefschetz number, is a esmplued class function
Lk:(f)(g) on G. The main result of [12] states that ff is an equivariaelfmap of
a finite G -CW-complexX , satisfyind.x:(f)(g) # O, then there exists a pointe X¢
such that

f(x) = hx,

for someh € G; that is, f maps the orbit of into itself.

In what follows, we use the equivariant stable cohomotomotthw, for a finite
group G , graded by the elements of the real representatignRD(G ), or by the non-
negative integers, respectively.

The geometric meaning of the cut generalized Lefschetz euroén be drastically
different. To show this we study the equivariant stable cobimpy theorywg;, graded
by the nonnegative integers. Tensoring with Q@ we get an equivariant cohomology
theory, also graded bW U {0}, for which the cut generalized Lefschetz number is
well-defined. This is due to the following two facts.

(i) For G finite, there is the Segal theorem which asserts tfafpt) = A(G) is
the Burnside ring andui(pt) @z Q = 0 if i # O ([21]). More generally, a theorem
of Kosniowski ([9]) states that for ever§f -spade  we have amizrphism

WG(X) @2 Q= @ W (X7 /W(H)) @2 Q,

where the sum is taken over the conjugacy classes of subgdupf G andwW H )
denotes the Weyl groupy H /H of H.
(i) The Dress description of the ring G(®)Q as the ring of rational-valued functions
on the setSg of one representative in each conjugacy class of subgrotgs o

From (i) it follows thatw{ (pt) is a finitely generatedt & ¢ Q-module for every
finite CW-complex. (ii) implies that every ideal iId G( & Q is projective and con-
sequently everyA ¢ ® Q-module has a projective resolution of length less than or
equal to 2. Theorem 4.5 states that the cut generalized mceﬂzsmumbeerg@Q(f) €
A(G) ® Q is a function onSg such that for every subgrouff C G we have

Lo oo(f)(H) = L(f™/G)

where f#) denotes the restriction of t&®) = GX and f()/G is the map in-

duced by f() on the orbit space. This shows that here the cut generalieésthetz

number is different from the full generalized Lefschetz fwem Moreover, the cut gen-
eralized Lefschetz number is an invariant measuring thstexx¢e, and structure, of or-
bits mapped byf into itself. In particular it can be nonzero éofixed point free

equivariant map. In the proof of this theorem we use the ahbmemtioned Segal-
Kosniowski theorem (cf. (i)).
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We would like to emphasize the following.
(1) The equalityw(pt) ®z @ = 0 for i > 0 is not true in general for a compact
Lie group G (see [7] for a description of:(pt) ®z Q when G is an infinite abelian
compact Lie group).
(2) The equivariant cohomotopy theofp,~,w is only a portion of the full equivari-
ant cohomotopy theorgp wg, graded by the elements of the real representation ring
RO(G) (cf. [9, 15]). In particular, the former admits suspensisomorphisms only
with respect to trivial representatior’s [R2.

2. Generalized Lefschetz numbers for equivariant maps

Let G be a compact Lie group anfh,;} be a generalized equivariant multi-
plicative cohomology theory, e.g. stable equivariant ecobtopy theory, equivariant
K-theory, equivariant cohomology theory in the sense of Beljjman and Matumoto,
tom Dieck and others (see [3, 2, 6, 9, 13, 15, 21] for furthexcdsion and exam-
ples). We say thak; = @, ., he is ROG)gradedif Z = RO(G). If, otherwise,
7 = N* U {0} then we say thahj is N-graded in case thatZ = Z, then hj; is
Z,-graded

Given a pair of finiteG -CW-complexesX(Y Y C X, sincehg, is multiplica-
tive, one has thatj(X,Y) is an hg(pt)-module, and thus, for every, hg(X,Y)
is an h%(pt)-module. Let nowf :X,Y ) — (X,Y) be an equivariant selfmap
of the pair ,Y ). Our aim is to define a trace of the induced hornmmpimem
f*hi(X,Y) — hi(X, Y) as endomorphism of ahg(pt)-module and of the homo-
morphism fi :hi. X, Y ) — hi(X,Y) as endomorphism of anl(pt)-module, thus
defining the generalized full and cut Lefschetz numbersfof n .géneral, the ring
h%(pt), and hence also the superring (pt), is not a field, but one can use a gen-
eral definition of trace introduced by Thomas ([23]) or, ipdedently, in a different
but more general context, by Dold and Puppe ([4]). To do it veedthe following
alternative finiteness assumptions on the thegty

1, For every pair X,Y ) of finiteG -CW-complexe&y; (X, Y) is a finitely generated

h (pt)-module.

1c For every pair X,Y ) of finiteG -CW-complexegl, X(Y ) is a finitely geated
h.(pt)-module for everyi € N.

2; Every finitely generated;(pt)-moduleM has a finitely generated projective reso-
lution of finite length, which exists if in particulaé is a ftely generated projective
module overhg(pt).

2¢ Every finitely generated%(pt)—moduleM has a finitely generated projective reso-
lution of finite length, which exists if in particulaé is a ftely generated projective
module overh2(pt).

Under the assumptionszl orp2 , for eveny(pt)-endomorphisme of an
hg(pt)-module M , there exists a well-defined elementip{pt), denoted by 1 (),
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or shortly tf(y) if there is no danger of confusion, which we call thel trace of ¢
([4, 23]).

The assignmenp — try: py(¢) has the following properties.
(P1) Exactness For every short exact sequence &f(pt)-modules and endomor-
phisms

0 My M M> 0
wll wl wzl
0 My M M> 0

we have tr{) = tr(p1) + tr(p2).
(P2) Commutativity. For every twoh(pt)-endomorphisms, ¢ of an ag(pt)-module
M, we have trp o b)) =tr(yp o ).

DerinimioN 2.1, Let (X, Y ) be a pair of finite&G -CW-complexes anfd X, —»
(X,Y) be an equivariant selfmap of this pair. Let alsp be an equivariant multi-
plicative cohomology theory satisfyingz1 o2 , afd: h5(X,Y) — h;(X,Y) be
the induced homomorphism. Under this assumption the elemen

Li: (f) =tz oo (f*) € he(pt)
is well-defined and is called thgeneralized full Lefschetz numbef f in &f.

Since h%(pt) is a ring with 1, there exists a natural homomorphismZ —
h%(pt), defined by

e(1) = 1.

Note thate is the restriction of the natural transformation from thab& cohomotopy
theory w; to the theoryh; evaluated at a point, sincgé C w2(pt).

Analogously, under assumptions: 1 of 2 , for every(pt)-endomorphismy
of an hOG(pt)-moduIeM , there exists a well-defined elementh@f(pt), denoted by
tl’h%(pt)(go), or shortly tf(y) if there is no danger of confusion, which we call thet
trace of ¢ ([4, 23)]).

The assignmenp — trhg(pt)((p) also has the Propertig3l and P2 given above.

DeriniTioN 2.2, Let (X, Y ) be a pair of finite&G -CW-complexes afd X, —»
(X,Y) be an equivariant selfmap of this pair. Let alsp be anNU{0}- or Z,-graded
equivariant multiplicative cohomology theory, satisfyiti- or 2- , and for each degree
i, let f':1hi;(X,Y)— hL(X,Y) be the induced homomorphism. Suppose also that
3c h§(X,Y) is a finitely generateoi%(pt)-module.
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Under these assumptions, the element

Lyo () =D _(—1) tho (£ € hE(pY)

is well-defined and will be called theut generalized Lefschetz numbafr f.

3. Universal property of the classical Lefschetz number in he nonequivari-
ant case

We show now that in the nonequivariant case the given variatbdf the Lefschetz
number are not essential from the point of view of the fixechptiheory. We assume,
therefore, thatG = is the trivial group. We have the following.

Theorem 3.1. Let (X, Y) be a pair of finte CW-complexes amd = {h'};cr be
a generalized multiplicative cohomology theory satigfyassumptiondy or 2x. Then
the full generalized Lefschetz number exists and satisfies

Ly-(f) =" (L(f)),

where L(f) is the classical Lefschetz number ¢f  obtained by using &nglordi-
nary) cohomology with rational coefficientand ¢*: Z — h°%(pt) is the natural ring
homomaorphism.

Proof. The statement of this theorem is part of Corollary id.$4] which is ob-
tained by purely algebraic means. For convenience to thdereae include a proof
outline based on the Lefschetz-Hopf-Dold theorem (cf. J1Bjssume first thatr .
Indeed, from this formula we geL,-(f) = I(f, h*), where thel § h*) € ho(pt)
is the fixed point index off onX . From the functoriality of thedex we have
I(f, h*) = e*(I(f,w")), wheree* is the natural homomorphism from the stable co-
homotopy theoryw* to any multiplicative cohomology theory. On the other hand,
the same argument applied to the singular cohomology thébry ; Q) with rational
coefficients shows that f(w*) = L(f), sincec?: w°(pt) — HO(pt; Q) is the inclusion
Z — Q. The relative case follows from proper/L U

Corollary 3.2. Let (X,Y), f and h* be as before. Then there exisis € N U
{0} such thatL,-(f) is equal to the remainder of(f) modulom .(If m = 0, then
the remainder is equal to the given integérm = 1, then it is equal toO for every
numbey.

Proof. The image im((Z)) c h%pt) is equal toZ, Z,, or zero respectively.
O

Now we give a formula expressing the cut generalized LetzchamberLo(f)
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in terms of the classical Lefschetz numbkeerf ( ).
Let »* be any multiplicative cohomology theory. Sinéé(pt) is a ring with 1,
there exists a natural homomorphisfft Z — h°(pt), defined by

1) =1.

Note thate® corresponds to the zero-th level of the natural homomonphisfrom
the stable cohomotopy theoty* to A* introduced above.
We have the following theorem.

Theorem 3.3. Let 2* be a generalized cohomology theory satisfying assumptions
1c, 2 and 3¢, and £°: Z — hO(pt) be as abovelet f: (X,Y) — (X,Y) be a self-
map of a pair of finite CW-complexes. Then the cut generalizfdchetz number ex-
ists and we have the equality

Lo (f) = e(L(f))Lyo(idpy).

For a proof we use the Atiyah-Hirzebruch-Whitehead spectral sequeoceerg-
ing to ~*(X,Y) (see [14]). This and the Hopf lemma stated below (3.4) welliluce
the computation ofL,0(f) to deriving the Lefschetz number of the homomorphism in-
duced by f on theE,-terms of the spectral sequence. Consequently, replaging b
a homotopic cellular map, we can use the-terms of the spectral sequence to deduce
L,o(f), and the statement will follow by an algebraic argument.

As it is for the classical trace, we have the following faclled the Hopf lemma
(cf. [4, 23]).

Lemma 3.4. Let(C', d;) be a chain complex of finitely generaté@(pt)-modules
f=1{fi}, fi: C' — C', be an endomorphism of this complex and

H' = kerd; /imd;+1

be the homology of the complex. If assumptinis satisfied andC’ = 0 for almost
everyi, then

D (1) trhoy(f) = D (1) oy H'(f) -

Let »* be a multiplicative cohomology theory and (Y ) be a pair of @&nit
CW-complexes. Then the Atiyah-Hirzebruch-Whitehead spésequence{ EF?, d,}
converges tah*(X, Y), i.e.

g _ KETRPI(X,Y) — hPra(xP-1) y))
< 7 ker(h*a(X,Y) — hPr(X0), Y))

Moreover E{*¢ = pp*a(x ), x(»=DUY) and the first differentiali; is equal to the con-
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necting homomorphism
dy =8 hP*e (X(”), xP=1 Y) — h1’+q+1(X(”+l), x® Y Y)

of the exact sequence of the triple. The Atiyah-Hirzebrihitehead theorem
states that everyE,-term EJ? is equal to thep -th singular cohomology group
H?(X,Y;hi(pt)), of (X,Y) with coefficients ink? (pt).

Furthermore, any continuous selfmgp X, —)» (X,Y) induces an endomor-
phism £7: HP(X,Y;hd(pt) — HP(X,Y;h?(pt)) commuting with differentialssy,
thus providing a homomorphism of spectral sequences. Ifeower, f is a cellular
map, thenf induces also endomorphisms of feterms E}4.

In case that the theork* is Z,-graded, the second variabde in the bigrading of
the above spectral sequence runs also over the elemedfits dhen, the symbop 4 ,
if peZ andq € Z,, means the sum of the remainder of modulo 2 gnd Zin

Since h* is a multiplicative theory,{E!*?,d,} is a multiplicative spectral se-
quence. Consequently each gro@? is a module asRP =~ E2C But E° =
ho(X© y) is itself a module oveh®(X©). Furthermore, the homomorphishi(pt) —
hO(X®), induced by the mapx©@ — pt, endowsh®(X©) with the structure of
an h°(pt)-module. Therefore, finally, each?Y  has the structure roh¥pt)-module.

The structure described above induceskéfpt)-module structure oEZ2:¢ coincid-
ing with the structure oh°(pt)-module onk*(X, Y). The existence and convergence of
the Atiyah-Hirzebruch-Whitehead spectral sequence allewo verify assumption 3
using the following proposition.

Proposition 3.5. Let 4* be a generalized cohomology theory aiid C X be
a pair of finite CW-complexes. Theri(X,Y) is a finitely generated:®(pt)-module if
and only if »*(pt) is a finitely generated:°(pt)-module.

Consequently, instead of assumption 3 , we can put the folpwequivalent as-
sumption.

3. h*(pt) is a finitely generated®(pt) module.

Suppose that for a given cohomology thedry, assumption 3 is satisfied. For
a selfmapf :K,Y »— (X, Y) of a pair of finite CW-complexes we define, for each

r,

R () =) (=17 oy (£9)

p.q

where £/ :EPY — EP? is the endomorphism induced by  in th&  -terms
of the spectral sequence. For convenience, we might demdie(f) also by

A{S T AEDD.
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Fflq/FOqfl’ FOq/qufl’ qu/Fqul’
F_lq+l/FOq, F0q+l/qu, F1q+l/F2q,
F71q+2/F0q+1’ F0q+2/qu+1, qu+2/F2q+1’

Table 1.

Proposition 3.6. Let 2* be a generalized cohomology theory such théfpt) is
a finitely generated:°(pt)-module and letf: (X,Y) — (X, Y) be a map of a pair of
finite CW-complexes. Then for every> 2 (or r > 1 if f is a cellular maj) we have

we(f) = Lio(f).
Proof. From the Hopf lemma, it follows that
i () = AP AERTY) = A{ R AERAD = 255

for r > 1, becausee”;{ is the homology atE”? of the corresponding complex of
E,-terms of the spectral sequence. Sindg’?} is strongly convergent ta*(X, Y),
there existsg such that for every > rg

(EL?y = (BP9} = (E2),
and consequently

A= () = A0
It is sufficient to show that

Lyo(f) = AR ()

A i 4 isiP 4 in-
But EZ? is t+he associated module arff;? is equal to the homomorphlsmp_l) in
duced by £, on

FPa

PYqg = __
EOO Frtlq—1"

where FP4 = kerg?*4(X,Y) — h?* (X~ Y)). Consequently, it is enough to show
that

D 0P oy (Fiy ™) = Lio(f) -

Indeed, writing out theE.-terms{EZ:?} in tabular form, we obtain the Table 1.
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By the above, taking an alternate sum with appropriate ség using the addi-
tivity of the trace we get

S 1P oy (f21) = S (— 1 trhe( £ )
= (=1 thoey(fE )
q
= Lyo(f),

since FO" = h"(X, Y). This proves the desired result. [l

We now pass to the proof of Theorem 3.3.

Proof. We may assume that our mgp is cellular. Otherwise, g raplace it
up to homotopy by one if necessary. The mgp X; Y —) (X,Y) induces a endo-
morphism

LAY (B — (Ep)

of the Ej-terms of the Atiyah-Hirzebruch-Whitehead spectral segae By Proposi-
tion 3.6, it is sufficient to derivd\,llo(pt)(f). We have

EP = hPra(x®, xP-1yy)
= CP(X,Y; hi(pt)
= CP(X,Y;Z)®z hi(pt).

SinceC? X,Y Z) = EBUGX(,,)\Y Zs, Z, = Z, where the sum is taken over gl -cells
which are not inY , we have

traoy(f7 ) = Y t(FlHomez,. e o) -
ceXP\yY

But the mapf induced by f on Hon#,, Z) ¥ Z is multiplication by the incidence
number inc§, o) = m,. Therefrom it follows that it is enough to compute the trace
over h°(pt) of the endomorphism aof¢ (pt) given by multiplication Wik, € Z.

(i) If h4pt) is a free h°(pt)-module, then Wy (me) = e(mo) tr(idpa py)-

(i) Suppose thath? (pt) is a projectivei®(pt)-module. Then there exist an
hO(pt)-modules and an integer such that h?(pt) = (h°(pt))*. Then the following
diagram is commutative

1.® h9(pt) —— (RO(pt)y’

O@mgl lmaa

I ® hi(pt) —— (h°(pt)y",
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where a: (R°(pt)y — (h°(pt))" is the endomorphism induced by @ idpy
on (:O(pt)y".

(iii) The general case, wheh? (pt) has a finite projective Iggm, follows from (ii).
We obtain thopy(ms) = e(mg) tr(iduepy). Adding up over the cells, we have

()= Y elmo) tr(idu ) -

oceX\y

Taking the alternate sum over the indgx we have

Z(—l)”tr(ff’q)=2(—1)”€( > m) tr(ico(p0)

oceX\Y

= (Z(—l)” > mg) tr(idpo o)

oceXP\y
= e(L(f)) tr(idpa(py) -
Taking once more the alternate sum, now with respect to ttexip, we get
DD (L () = ) (1 (L) oy (B (PY)
o = (L() L ().

Now the proof of Theorem 3.3 is complete. [l
The following is an example of a theory for whidty,(f) # Ljyo(f).

ExampLE 3.7. Let us fix a pair of CW-complexesA(B B C A. Then define
a generalized cohomology theoky by the formula

h(X,Y)=H (X x A, Y x B;Q),

where H*(—; Q) is the singular cohomology theory with rational coeffi¢gent is not
difficult to check that for every fixed paitA( B Ji* is a generalized cohomology the-
ory. For example, taking the paid( () we get a generalized cohomology theory such
that »*(X) = H*(X; Q) ® H*(A;Q). In particular,h*(pt) = H*(A; Q), which implies
that L,o(id,,;) = x(A) is the Euler characteristic i , thus one can obtain angget
by an adequate choice of

Applying Theorems 3.1 and 3.3 we get formulas for the full @t generalized
Lefschetz numbers in this theory, namely

L= (f) = L(f) 7 Lpo(f) = X(A)L(S) »
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if \(A) # 1.

4. Generalized Lefschetz numbers for stable cohomotopy

To start, recall that for a finite grous , the full generalizedfschetz num-
ber of an equivariant mag’ in the stable equivariant cohopytbeory graded by
i € Z, or in the same theory tensored with the rational numhetsg Q, is equal to
the equivariant fixed point index. This follows from the Leistz-Hopf-Dold theorem
(cf. [16, 19]). This means that it detects equivariantly fixed points of f . Next, we
shall prove the main result of this paper which states thaaf€inite groupG , the cut
generalized Lefschetz number of an equivariant nfap  in thbletequivariant co-
homotopy theory tensored with the rational numberg,® Q, is an invariant which
detects the fixed orbits of , i.e. orbits which are mappedsby to itself.

Let G be a finite group; be an element of

I= {NU {0} or
RO@G).

and (X, Y ) be a pair oG -spaces. Note théit/{0} C RO(G) corresponds to the trivial
representations of arbitrary dimension.

For a = [W] — [W'] € RO(G), we mean bywg(X, Y) the a-th equivariant coho-
motopy group of X, Y ) in the sense of [21], namely,

wa(X, Y) = colimy [SV@W AX/Y): SVEW A (X/Y)}G ,

where S means the one-point compactification of #ie -module nd the col-
imit is taken over a cofinite set of real representatié¢hs Gof deoed by inclusion.
If Z = NU {0}, by definition, {w}} constitutes an equivariant cohomology theory
which is stable with respect to suspensions by trivial repnéations (i.ew} (X, Y) =
WE™(S" A (X/Y)) for everyn € N), or with respect to the suspension by any rep-
resentation ifZ = RO(G) (see [21]). Note that’ (X, Y) is a module over the ring
w2(pt) = colimy [SY; SV] with a module structure induced by the equizat map
X/Y — pt.

The fundamental property of the equivariant cohomotopyiverg by Segal’s the-
orem ([21], see also [9, 20] for a proof), which states

we(pt) = A(G),

where A G ) is the Burnside ring off  (cf. [3] for its definition).

Recall also that for any equivariant cohomology thebty there is an equivariant
fixed point indexIg (, h*), given by the Dold diagram, provided it is stable with re-
spect to every orthogonal representation. We have thewiltp theorem (cf. [15, 16]).
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Theorem 4.1. Let G be a finite group andv’ be the equivariant stable coho-
motopy theory. Assume that is a finite -CW-complexX — X is an equivari-
ant map and thatw(X) is a finitely generatedu(;(pt)-module. Furthermoreassume
that wi(X) is a projective or flat in the sense of4], w¢(pt)-module. Then the full
Lefschetz numbeL,; (f) exists and we have the equality

Lug(f) = 1(f, wg) € wg(pt) = A(G).
In particular, if Fix(f) =0, then L,:(f) =0.

Define S¢ as the the set consisting of one representative of each garyjuclass
of subgroups ofG . The se&f; is partially ordered with the order given by

K>H <= thereexists g€ G suchthat K c gHg 1,

K>H < K>H and K #H.

For every subgroupd C G let x: A(G) — Z denote the homomorphism defined
by

X"(G/K)=1(G/K)"],

on every elementary; -set (orbif/K. We use the standard notatioft?) = GXx*,
and X = G(Ug. , X®))c Xx#) (see [2, 3]). Using this notation, given an equivari-
ant mapf :X — X and a subgroupd C G, we define f(y) to be the selfmap of
the pair (X\#), X(#)) induced by f . As a corollary of Theorem 4.1, we obtain the fol-
lowing.

Corollary 4.2. Let X and f: X — X be as inTheorem 4.1Then L.:(f) is
determined by the classical Lefschetz numbers of the céstis of f to all subsets
X#) | Moreover as an element of the Burnside ring(G), it is equal to

L= Y i erm.
HeSg

Proof. From Theorem 4.1 and [24], it follows that

X (Lugn) =XTU(fowe)) = 1) = L(F7)

for every subgroupd C G. On the other hand, the right hand side of the formula is
an element ofA ¢ ) and

v (5 o) -

KeSg
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(cf. [3, 12]); the statement is a consequence of the fact that homomorphism
*ues,: AG) — [Ixes, Z is @ monomorphism (cf. [5, 3]). O

Now we turn to study the cut generalized Lefschetz numberha rationalized
equivariant stable cohomotopy theory. This will let us gdtaf the algebraic assump-
tion in the hypothesis of Theorem 4.1.

In order to reduce the algebraic considerations in our problwe have to take
the torsion-free part ofvf by tensoring it with the rational numbers. Note that for
everyi € Z and any pair X, Y ) ofG -spaces, the group.(X, Y), being abelian, can
be seen as &-module.

Derinmion 4.3, Let (X,Y) be a pair ofG -spaces. By;(X,Y) we denote
the equivariant cohomology theory, graded I8yJ {0}, defined by

OL(X, V) =wh(X, V)22 Q.

Let us recall that in the nonequivariant case, the nontorpiart of the stable co-
homotopy theory after tensoring it witQ is isomorphic to the singular (cellular) co-
homology with rational coefficients. In the equivariant €dke situation is more com-
plicated and, as we already said, an answer is given in thal $&gl Kosniowski the-
orems ([21, Proposition 5], [9, 4.10]).

To state it, we recall that for a given subgrodp C G and N H) ={g € G |
gHg™' C H} its normalizer, the groupv¥ H )« H /X might be called, by exten-
sion, theWeyl groupof H in G.

Also, as we already said, a result of Dress states that tlgeA{6)®Q is equal to
the function ring{y: S¢ — Q}, and for every subgroupi € Sz the homomorphism
xu ®z idg has the formy — o(H) (cf. [5]). Denote it by A(G).

Theorem 4.4 (Segal, Kosniowski). Let G be a finite group. For every ¢
RO(G), dim¢) # 0, the groupwi(pt) is finite and if dim(i) < O, it is equal toO.
In particular, if i € Z then

0 if 70,

wG(pt):{Z(G) if i=0.

Moreover for any compactG -spack and everye Z, we have

TE(X) = P W (xH/W(H)) 2 Q.

HeSg

where the term on the right hand side is the classical nonegisint stable cohomo-
topy theory.
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We would like to describe the module structure of ever{G)-module &% (X),
n € Z. First we recall that for every; -spacé and every subgréupg G, the in-
clusion X — X induces a homeomorphisnX{{ /W(H)) ~ X®) /G.

Obviously, the isomorphism of 4.4 is induced by the inclosioy: X7 —
X; more precisely, for everym € Z, H C G, and for any equivariant map
fr8V*" A X — SY A X representing an element in%(X), its restriction
FH: SV A xH . sV A XH defines aW M )-equivariant map. I§  has one
orbit type G/H) or, equivalently, if X¥ is a freew K )-complex, thefif  defines
a map fH7/W(H): (SV"" AXHY/W(H) — (SV" A XH)/W(H). Anyway, it de-
fines an element ofuy, ., (X") or, in the case of a fredV H )-action, an element
of w"(X# /W(H)). One can show that for a givem € A(G) anda ={an}ues, €
Brcs, (X" /W(H)) © Q, we have that

a-a= Z YA () ap .

HeSg

We are now in position to state the main theorem.

Theorem 4.5. Let G be a finite groupX a finite G -CW-complexf: X — X
an equivariant selfmapand @, the rationalized equivariant stable cohomotopy theory
graded byN U {0}. Then the generalized cut Lefschetz numbgs (f) € A(G) exists
and is given by the formula ‘

Lo (f)(H) = L(f* /W(H) = L(s"/G).

where L(f*)/G) is the classical Lefschetz number of the mé’/G induced by f
on the orbit spacex'®)/G = X" /W (H). In particular, if Lo (f)(H) # 0 then there
existx € X and h € N(G,) such that f(x) = hx or, respectively such that there
exists an orbitGx ~ G/G, of the action ofG withH < G,, satisfying f(Gx) C Gx.

Before proving Theorem 4.5, we give a geometric explanatibthe formula for
the generalized cut Lefschetz numblei:o((f).

Corollary 4.6. Let X and f: X — X be as inTheorem 4.5.Then Lw%(f) is
determined by the classical Lefschetz numbers of the céstis of the quotient map
f/G to all subsetsX)/G. Moreover as an element of the rational Burnside ring
A(G), it is equal to

Loo(f)= Y LM /WH) xu =Y LUF™/G)xn,

HeSg HeSg

where xy : S¢ — Q is a function equal tdl at H and O otherwise.
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We can now pass to the proof of Theorem 4.5.

Proof. First we show the existence of the generalized LefzchumberLz (f)
in the sense of [23, 4]. To do this, let us first remark that

4.7) A@G) = P @,

HEeSG

where the decomposition is as a direct sum of ideals, i.estimmand corresponding
to H € S is equal to the idealy Hp: S¢ — Q | ¢(H) = 0}. Moreover, every
ideal I C A(G) is given by

I=1Ip={p:S¢ — Q| ¢|p =0},

for some subseBB C Sg. Consequently, for every idedl #  there exists an ideal
', namely s\ 5, such thatA(G) = I @ I’. This shows that every submodule of a free
A(G) module is projective, because every idealA{iG) is a direct summand i (G).
To see this it is enough to take the resolution9- kera« — F — M — 0 of
the moduleM . Note that i is finitely generated then so is aisdBy .the above,
kera is projective and finitely generated if  is finitely generatesince A(G) is
a noetherian ring. It is enough to show that for a finite -CWhaptex X, wg(X) is
a finitely generateda(%(pt) = A(G))-module. The latter follows from the fact that
has a finite cover consisting @ -sets, -homotopy equivalenorbits, and that for
every subgroupd C G, Wg(G/H) = 0y (pt) = % (pt) = A(H), as it follows from
the Segal theorem. Obviouslf(H), with the A(G)-module structure given by the ho-
momorphism@éf = Re§ ®Q: A(G) — A(H), is a finitely generatedi(G)-module.

We are still left with the task of deriving ;(G)(T") for the endomorphism
T W (X) — wg(X) induced by f . This is essentially a consequence of Theo-
rem 4.4, but in its statement there is no information aboatittduced map. To com-
pute this trace we have to calculatg(g)(T")(H), for every H € S¢g andn € {O}UN.
We shall do it by carefully following the argument of the pfas Theorem 2.4 of [9],
adapting and restricting it to our case. Kosniowski usedldcalization technique and
got a more general statement on the localization of eqaiméistable cohomotopy the-
ory at any prime ideal oA ¢ ); we only need the special case whenideal is max-
imal, i.e. when its characteristic is equal to 0 (cf. [9]).

First note that the localizatiod G((;)) of A(G) at a maximal ideally is equal
to Q and we have the isomorphism

(4.8) AG)22Q> P Q= P 1, AG) 2Q> P AG)u,)-
HeSg HeSg HeSg
This ring decomposition leads to the decomposition

(4.9) We(X)2Q ¥ P Wi X) Q= P we(X)u,) -

HeSg HeSg
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The above isomorphisms are functorial, thus they can be tsederive the trace
trX(G)(T"). Since the isomorphism in (4.8), and consequently (4.9mes from
the embeddingA @ }— Dycs, Z, We have

i (F) = Y Wiy ma) (7 ®id@\w"a<x)/1;,w'a<x)) Xn
HeSq

(4.10) = Dty ) X

HeSG

where the summands in the first sum are the traces of lineaonsmgbhisms of
the vector spaces’,(X)/I;w(X) over Q = A(G)/I,,A(G) and, in the second, they
are the traces of linear endomorphisms of the vector spa¢dX),) over Q =
A(G)y)-

As a consequence of (4.9) and (4.10), foGa -mfap we get

tro (F")(H) = Uay, (Fi)

for every H € Sg. Kosniowski ([9, Section 4]) shows that for every subgrodpcC
G, the natural homomorphism,(X) — w;i,(H)(XH) given by restriction becomes an
isomorphism

Wi (X)) = JEX M) »

wheree is the trivial subgroup. This.yieldsgg(_fn)_ =trg (f7)(1- .
In the next step in Kosniowski's paper it is shown that theurelt projection
p: X — X" /W(H) becomes an isomorphism after localization

Wy (X)) = W) (XH/W(H))(,F) .
Consequently we get.ts (") (H) = tru,g,, (f*/W(H)),:
Finally, in the last step of Kosniowski’s consideratiorisisi shown that for a triv-

ial G-spaceX the map which forgets tie -structure becomes @anoiphism after
localization at the trivial subgroup. In particular we have

Wiy (X7 /WH)) (o = wivn (XT/W(H)) ) = " (X /W(H)) @ Q.
Comparing this with the previous formula, we get
troo (F")(H) = trg (£ /W(H))",
which proves the statement. U

Now we give a formula for the cut generalized Lefschetz numdmgalogous to
that of Corollary 4.2 for the full generalized Lefschetz rhen
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Let fy denote the selfmap of the paik{)/G, X /G) induced by .
Let nextu: Sg x S¢ — 7Z be the generalized Mobius function of the partially
ordered setS; (see [8] for references).

Corollary 4.11. Let f: X — X be a G -equivariant selfmap of a finite
G-CW-complexX . Then

Lifm) = Y. wH KL /W)= Y pu(H K) LI /G).

K<HESs K<HeSg

Proof. Using the partial order af; and the induction argument we have

LF™/6)= > L.

K<HEeSg

by the additivity of Lefschetz number. The statement foowom the generalized
Mobius formula applied to the partially ordered s%f. U

Theorem 4.5 leads to the following simple example for whible full and cut
equivariant generalized Lefschetz numbers are different.

ExampLe 4.12. LetG =Z; ={-1, 1}, X ={-1, 1} with the obviousG -structure,
and letf :X — X be theG -equivariant map defined by

f(=1)=1, f(1)=-1.
From Theorems 4.1 and 4.5 it follows that

Lz (f) = I6(f) = 0€ A(G),
but, as a class function,

1 if H=e
Loo (f)(H) = L
0 if H=GeA®G).
Moreover, the same example holds oy, instead ofZ,. We have the following.
ExamvmpLE 4.13. LetG =Z, be the cyclic group of ordem X € ande G
be its generator. Then the translatigh x :— gx is an equivariant fixed point free
selfmap ofX . Therefore, we have

Lo (f) = 16(f) = 0€ A(G).
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On the other hand, from Theorem 4.5 it follows that

1 if =
ng(f)(H)={o ) :;

This is equal to the nonzero class functik(hrl(G) € A(G).

ExavpLE 4.14. LetV be an orthogonal representation of a graupS vV ( ) be
the unit sphere therein anfl S:V(— S(V) be an equivariant map. We have

Lo (f)(H) = L(f) = 1— v(H) deg(r"),
where v(H) = (—1)dmv*-1,
(4.15) Lo (A)(H) = L(f¥/G) = L(f" /W(H)) .

To compute deg((")/G) we use the following result of [2]. For every finite group
and a finiteG -CW-complexX there is an isomorphism

(4.16) H*(X/G) ¥ H*(X)Y,

where H* represents singular cohomology theory with rational coieffits, and
the right hand side means the fixed point (linear) subspacthefaction of G on
H*(X) induced by the action off oX

If the action inV is given byp: G — Iso(V) andH C G is a subgroup, there
is a group homomorphismr: W(H) — Z, given by o(h) = det(p(h)), i.e. o(h) = 1
if 1 preserves the orientation o V& ), andh) = —1 if h reverses the orientation
of S(VH). Note thato can only be nontrivial if W(H)| is even. Next defing(H) =0
if o is the trivial homomorphism, and(H) = —1 if ¢ is nontrivial. Using this nota-
tion, (4.15) and (4.16) we have

Lo (F)(H) = L(f"/W(H)) =1 - &(H)v(H)deg(F™ ).

This last is different fromLg; (f)(H) = 1 — v(H) deg(f™) in general.

If, in particular, we takeV =R?'*! with the antipodal action ofG =Z, and
an equivariant magf’ S W > S(V) of degree—1, thenLz; (f) = 0, but Lz (f)(€) =
1.

Nowadays, we know more about tH& H ( )-modulds(X;Q) and H*(x*)),
than about abelian groupss(X) or Kg(X), thus one can hardly expect applications
of Theorem 4.5, which give new information about the fixednp®iof an equivariant
map f , or of the mapf/G induced by it on the orbit space. However, in some spe-
cial cases, this theorem can be useful to study the inducess rfiain a given coho-
mology theory asvs(X), or Kg(X), and consequently to study the image &t [X ¢ ]



840 W. MarzaNTOWICZ AND C. FRIETO

in [X, X] for simple G-spaces, such as spheres or projective spake attempt in
this direction was made in [11] (Corollary. 7).

Remark 4.17. We have restricted ourselves to the case of filite -Okivptexes,
because results follow there in a very convenient form. Hameone might as well
reproduce all results, either for compaGt -spaces haviegsdtmeG -homotopy type
of G-CW-complexes or, more generally, for compa@t -ENRs (anidh due care,
also for compaciG -ANRS).
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