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1. Introduction

In Taiwan’s market, there are lower and upper bounds on edays stock price.
The lower bound of today’s stock price is defined by 93% of timalfiprice of yes-
terday’s stock. And the upper bound of today’s stock pricdafined by 107 % of the
final price of yesterday’s stock. Under this background, we iaterested in the effect
of the lower bound and upper bound that cause every day’& gtgce in a long term.
In words, what is the influence of the bounds on every day’sksfwrice?

On the other hand, by the empirical studies [1] [2] [6], if ttistribution of finan-
cial time series such as stocks returns are compared witindghmal distribution, then
fatter tails are observed. Besides, the standardizedhfoudment for a normal distri-
bution is 3 whereas for many financial time series a value aletive 3 is observed by
Mandelbrot [6]. Many other researchers [3] [4] [5] [7] [8] alseport this feature and
adopt the model with fat tail property to research financiabfems. However, those
researches above did not give the definite reasons of leddintils. Thus verifying
the reason theoretically is a difficult problem but is a calicesearch.

In order to research those problems in Taiwan's market, we agne kinds of
difussion processe$s,},>o to drive the price of the stock. Furthermore we suppose
that the stock price must be stopped at the bounds until tdeoénthat day when the
process hits the bounds. From this restriction to diffusjome get a discrete Markov
chain {X,},>0 in (0, c0). The rigorous definition of the Markov chain is given in the
following section.

Due to the motivation above, we attempt to probe the relatign between the
bounds (lower and upper) and the asymptotic behaviof2f},>o. And if the invari-
ant probability measurg(-) of {X,},>o0 exists, we are interested in the tail pf).

Therefore, the purpose of this paper is to research thetpggsrecurrence and
transience of{X,},>o. Also we compare the tail of the invariant probability mea-
sure of {X,},>0 with {S;};>0. Our results imply that if{S,},>o is recurrent and the
bounds satisfy some conditions, then the effect of lower @pgker bounds gives a phe-
nomenon of fat tails. Indeed, in other countries, the gavemts also give a restriction
on stock processes when stock market falls down. But theigish is not so clear as
Taiwan’s market. Also the restriction is sometimes ambiguand is difficult to de-
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scribe faithfully. Hence financial researchers often igwaothe effect of the restriction
in their visionary mathematical model. Is this the one of thasons of leading the fat
tails in empirical studies? In our framework of modellingiwan’'s market, we verify

theoretically that the effect of the lower and upper bourgishe one of the reasons
to give the fat tail property. The details of our results fat fails will be presented
below.

Since the proces$X, },>o is obtained by time change dfS,},>o and the speed
of {S,};>0 slows down, intuition says that the degree of recurrencgXf},>o de-
creases compared withsS, },>0. In conclusion, we can prove that {fS;},>o is tran-
sient, then{X,},>o is transient, too. This means that the barriers have no teffec
all to help the default stock process not to default in thegleerm. Also if {S,},>0 is
recurrent, then X, },>o is recurrent, provided thafp*(x)} satisfies some weak condi-
tions. Moreover, we show that there exigs™(x)} such that{ X, },>o is null recurrent
even though{S, },>o is positive recurrent. As for the fat tail, we obtain the doling
results. Here, for simplicity, we consider the diffusioropess{S;},>o in nature scale
(see Sect. 3).

1. if []x|m(dx) < oo and {X,},>0 is positive recurrent, then the tail qf(-) is
fatter thanm (), that is,

/ ) = [ " i) = oo.

— 00

2. assume that
cilx|7¢ < m(x) < e2lx|”%, for any |x| > M,

and {pT(x)} satisfiesp®(x) > x+c*|x[*, p~(x) < x — ¢ |x|" whenever|x| > M, where
a,c1, ¢, M, c*, s, t are all positive constants. KAt € (0, 1A a/2), then the tail of
u(:) is fatter thanm {), that is, for anyy € 2(s A7) — 1, a — 1)

[e's) 0
/ xu(dx) = / |x]7 p(dx) = o0, / |x|"m(dx) < .
0 —00 R

The content of this paper is organized as follows. In Sect.e2imroduce some
definitions and the setting which we need later. In Sect. 3 vesgnt the main Theo-
rems and some remarks. In Sect. 4 we give the proofs of the faorems.

2. The setting and definitions

Throughout this paper, assume thd{x), p~(x) are both not dependent on time,
continuous and & p~(x) < x < p*(x) < oo for any x € (0, co). We usep*(x) (resp.
p~ (x)) to denote the upper (resp. lower) bound at the state .&pphat{s;},>o is
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a time homogeneous diffusion on, (&), and is generated by a generator

1,02 0
= EU(X) @-Fb(x)a_x’

which o(x) and b (r ) are continuous ang(x) > O for all x € (0, o0). Here notice that

we don't give any boundary conditions {g, },>o, since the boundary conditions are
irrelevant to the definition of our Markov chain below. Denotg) by

dz.

* y
s(x) = / e 10gy  where I @, xo) E/ (27?52)
X0 X0

This s(x) is called ‘scale function’ of the diffusiofsS; },>o and satisfiesLs x( ) =
0 and is a strictly increasing function. Formally, the gener L takes the following
simple form;

d d

L dW(x)ds(x)’

where

2
W(x) E/ ey,
X0 (j-(.y)2

Now we construct the time homogeneous Markov chéif,},>o0 on (0, c0) as
follows.
1. Xo= So=x and X1 = S1.,, Where

rE=inf{r>0:8 =pT(x)}, T=7"AT".
2. {X,}5, has a stationary transition probability
p(x,dy) = Pi(Sinr € dy) = pe(x, dy) + pa(x, dy),
where

pL‘(-x’ dy) = Px(Sl € dy’T > 1)5

pa(x.dy) = p (x)01,r )1 (dy) + P~ (X)0g -1 (d),
pE(x) = Pu(r* <77, 7F < 1),

We call the above{X, },>0 “Markov chain induced from{S,},>o and the barrier
{pT(x)}". From the assumptions that"(x), p~(x), o(x), b(x) are all continuous, we
see thatp. has a positive continuous kerpglx, () ono€® x (p~ (x), p*(x)) and
pT are continuous.
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Since the state space ¢fX,},>0 is (0, 00), it is not trivial to define the irre-
ducibility for the Markov chain. We follow the idea of Revuz]{For ¢ € (0, 1), let
U.(x, -) be the resolvent kernel dfX,},>o, that is,

U x, A) = i(l —¢)"Py(Xp+1 € A), A € B((0, x0)), x € (0, o0).
n=0

Supposer(-) is a Radon measure on,(®). Then{X,},>o is called v-irreducible if

v(-) is absolutely continuous with respect . x,() for all x € R andc¢ € (0, 1).

In our case, we can take(-) as Lebesgue measure. Now the recurrence is defined as
follows.

DeriniTion 2.1, A v-irreducible Markov chain{X, },>o is calledrecurrent in the
sense of Harrisf and only if, there exists a-finite invariant measure.(-) such that
1(A) > 0, A € B((0, 00)) implies

(1) Px (Z XA(Xn) = OO) = l’

n=1

for all x € (0, c0).

RemArk. In this framework, an invariant measur€-) is unique under whichv(-)
is absolutely continuous with respect tg-), provided with the irreducibility.

Under this definition, it is trivial that ifu(A) > 0, then
(2) P,(th < o0) =1, for anya € (0, ), A € B((0, o0)),

wheret4 =inf{n > 0: X, € A}. In general, it is not true that (2) implies (1).
The definition of positive recurrence ¢iX,},>o iS given by

DeriNniTion 2.2. A recurrent Markov chaif{X,},>o in the sense of Harris is
called positive recurrentif and only if the invariant measurg(:) is a probability mea-
sure. Otherwis€[ X, },>o is said to benull recurrent

Another definition of positive recurrence fof, can be givenmBs, < oo for
any x € (0, c0) and any open subset  of ,(&). In general, the necessary and suffi-
cient condition was given by Meyn and Tweedie [10]. From Tkeor4.1 of [10], A
Markov chain{X,},>o is positive recurrent if and only if a petite st  exists with
P(t4 < o0) =1 for all x € (0, 00) and sup., Ex74 < co. Moreover, if A is a petite
set, thenu(A) < co.
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Remark. Meyn and Tweedie also showed; Forairreducible Markov chain
{Xn}n>0 With Feller property which mean®f x (3 E f(X1) is continuous for every
bounded continuous functiofi x ( ), if the supportiohas non-empty interior, then ev-
ery compact set of (&) is petite. Since our Markov chaifiX, },>o posseses Feller
property and the support of is (0, ), this gives that every closed bounded interval
is petite.

Finally, we set

() = SUP{W 1/ x7pldx) < OO},
1
1
~v_(u) = inf {fy : / x7pu(dx) < oo},
0
and introduce
DeriniTion 2.3. The recurrent Markov chaifiX, },>o induced from a recurrent
time homogeneous diffusiofiS, },>0 and the barrier{p*(x)} is called to havea fat

tail at x = oo if v+(u) < v+(¥). Analogously it is calledh fat tail at x = 0 if v_(u) >
7- ().

Remark. In the empirical studies [1] [2] [6], the fat tail propertg argued by
the positive recurrent process. In this paper, we extendatgement to including the
null recurrent process.

For simplicity, we say{X,},>o is ‘recurrent’ instead of ‘recurrent in the sense of
Harris’ and is ‘positive recurrent’ instead of ‘positivecterent in the sense of Harris’
in the sequel. Notice that the definition of the recurrence $f,>¢ is different from

the definition of the recurrence dfX,},>o.

3. The main Theorems

Our main results are the followings.
Theorem 3.1. 1. If —oo < s(0), s(c0) = o0, then
P, <n|Lmoo X, = O) =1, for anya € (0, ).
2. If —oco=15(0), s(c0) < o0, then

P, ( lim X, = oo) =1, for anya € (0, o).

n—oo
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3. If —oco < 5(0), s(0) < o0, then
0 < ¢.(0) = P, ( lim X, = o) <1, 0<qu(x)=P, ( lim X, = oo) <1,

where

_ 5(00) —s(a)
"~ s(c0) — 5(0)

_ s(a) —s(0)

q4(0) = m,

Ga(c0)

for any a € (0, o).

Remark. This result shows that if S, },>o is transient, that iss (0)> —oco or
s(o0) < o0, then{X,},>0 and {S,},>0 have the same asymptotic behaviorras and
t tending to infinity. It also shows that if,@c are the regular boundaries, that is,
s(0) > —oco and s () < oo, ¥(0) > —oc and ¥ (o) < oo, then X,, converges to
the boundaries.

On the other hand, ifS,},>0 is recurrent, namely

lim s(x) = —oc and lim s(x) = oo,
x—0 X—00
then we get the following theorem.

Theorem 3.2. Suppose tha{s,},>o is recurrent. If {p*(x)} satisfies

1) limsupp®(x) < Iirrlior;f p (%),

x—0 X

then {X,, },>o is recurrent.

RemARk. 1. It is trivial that if p*(x) = oo, p~(x) = 0 for all x € (0, ),
then X,, = §,. This means tha{X,},>o is recurrent. But here note that(x) = oo,
p~(x) = 0 for all x € (0, ) do not satisfy the conditions of Theorem 3.2, which
implies the conditions of Theorem 3.2 to be not always nengss
2. As we mentioned in the introductiod,X,},>0 is obtained intuitively by time
change of {S,},>0. Thus we conjecture that it is impossible to get the transien
{X, }n>0 when {S;},>0 is recurrent.

Intuitively, it may be conjectured thafX,},>o0 will be positive recurrent when
{S:}:>0 is positive recurrent for anyp*(x)}. The answer is negative. To see this eas-
ily, we use the transformation of changingr ( ) to and deform feneratorL of
{S:}i>0 into

82
m(x)0x2’

Notice there is no loss of generality when we consider thiusldn {S; },>o in natural
scale in the sequel, that is,x (5 x.
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Before see the answer of the conjecture above, set the otmdialow
a, ¢, c1, C, ci, dy, e, s, t, M,
are all positive henceforth. Suppose that
(2) cilx| 7Y <m(x) < colx| ™, for |x| > M,

and g+(x) = p*(x) — x; g-(x) = x — p~(x). Now {X,},>0 is distinguished from the
null recurrence or positive recurrence by the magnitudd 6f(x)} as follows.

Theorem 3.3. 1. Assume thafp®(x)} satisfies the conditions dfheorem 3.2
If there existss € (0, 1/2) such that one of the following conditions halds

limsupx *g+(x)=0, limsupx*g_(x)=0,

X—00 X—00
limsuplx| g+(x)=0, limsuplx|~*g_(x) =0,
X——00 X——00

then {X,, },>0 is null recurrent.
2. Assume2) holds fora > 1. If there existss € (1/2, o) such that

liminfxSgL(x) >0, liminf|x|gs(x) >0,
X—00 X——00
then {X, },>0 is positive recurrent.

RemArk. 1. Assume that{S,},>o is recurrent. If{p*(x)} satisfies the condi-
tions of Theorem 3.2 and

lim Sup|a(x)sl(x)| < oo, or lim sup\a(x)s'(x)| < 00,

X—00 x—0
then {X,},>o is null recurrent. This implies that ifX,},>0 is induced from Black-
Scholes model takings, 3$,dB, , thefiX,},>o is null recurrent. We omit the proof
because it is similar to Theorem 3.3.
2. We conjecture thafX, },>o is positive recurrent only if S, },>o is positive recur-
rent.

About checking the fat tail, we have the following Theorems.

Theorem 3.4. If {X,},>0 is positive recurrent with the unique invariant proba-
bility measurep(-), then for any fixed{p*(x)}

| xutan = | " i) = o,

— 00
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hence

() <1, () <L

Theorem 3.5. For a > 2, assumem(x) < cx~“ wheneverx > M. Suppose
that {X, },>o0 is positive recurrent andp*(x)} satisfiesp*(x) > dix, p~(x) < d_x
wheneverx > M. If

O0<d-<1l<dy,
then v, (u) = 1.

Theorem 3.6. Assume thaicix ¢ < m(x) < cox~® wheneverx > M and
{p*(x)} satisfieslimsup, . ___ p*(x) < liminf,_ ., p~(x) such thatp*(x) > x +c*x*;
p~(x) <x —c x' wheneverx > M. If s At € (0, 1), then

Ye(p) = 2s N2t ANa) — 1.

To sum up, we conclude the results as follows.
1. If {S,};>0 is transient, the X, },>¢ is transient, too. This means that{i§,},>o
is the default stock process, then the barriers have notedfieall to help the stock
process not to default in the long term.
2. If {S/};>0 is recurrent and{p*(x)} satisfies the conditions of Theorem 3.2, then
{X, }n>0 Is recurrent, too.
3. If {S/}/>0 is positive recurrent, thekX,},>o is null recurrent or positive recur-
rent depending on the magnitude £f*(x)}.
4. Fora > 2, assume that: x( ¥ c|[x|~® whenever|x| > M and {p*(x)} satisfies

p'(x)>dix , p (x)<d_x, wheneverx > M,
p'(x)>ex, p(x)<e_x, wheneverx < —M.

If di,e_ € (1, ), d_, e+ € (0, 1), then we obtain the fat tail atoo, Namely,
1=yi(u) <vye(m)=a -1
5. Assume that (2) holds anfp™(x)} satisfies
prx)>x+ct|xf, p (x) <x —c |x|', whenever|x| > M.
If s At e (0,1Aa/2), then we obtain the fat tail atoo. Namely,

Ye() = (25 A2t) = 1< ya(m) = — 1.
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Although the state space ¢fX,},>o in results 4. 5. above arR, it is easy to obtain
the original Markov chain{X, },>0 with the state space (60) by transforming this
X, into s7X(X,).

4. The proofs of main Theorems

In order to prove the main theorems, we need the followingnies

Lemma 4.1. Suppose tha{X,},>o is a time homogeneous Markov chain with
state spacdc, d) and K is a fixed compact subset @f d). If there exists a positive
numberng such that

Supp(x, K) = ag < 1,
XEK

then P, (X,, € K¢, i.0.) =1 for any x € (c, d).

Proof. It is easy to see that

P.(X, € K.¥n>m) = E,{Px, (X, € K,¥n>0):X, € K}

/ Py(Xy € K,Vn > 0)P; (X € dy)

K

< / Py(XjnK € K,VJ > O)Pa(Xm Edy)
K

The last part of the above calculation allows us to computéhén. To do this calcu-
lation, we note that for any € N,

/ Py(XjnK € K,VJ Z O)Pa(Xm € dy)
K

< / Py(Xjue € K,V € [0, 1)) Pu( X € d)
K

= / {/ .- / an(X, dzl)pi’l[( (Zl’ dZZ) s an(Zr—l’ er)} Pa(Xm € dy)
K K K
< Oz;(Pa(Xm € K).

This shows
/ Py(Xjn. € K,¥j>0)P (X, €dy)=0.
K

Therefore

P, (G{Xn € K.,Vn> m}> =0.

m=1



496 F-R. Hy

Now P, (X, € K¢, i.0.) =1 follows by taking complement on the left hand side of the
above formula. This completes the proof. L]

Lemma 4.2. Let {X,},>0 be recurrent andu(-) be its invariant measure. For
A € B(R) with u(A) >0, setty ={n>0:X, € A}. Then

Ta—1
M [ stutan= [ £, { 3 g(x,-)} (),
i=0

where g(x) is any given non-negative Borel function. In particylér

@ [ gmtan) <oci o< [ ewmia)

then there existg € A° such that
TAfl

3 E, { > g(X,-)} < oo.
i=0

Proof. Since (1) was proved by [11], we see only for the latiethe statement.
Since [, g(x)u(dx) < co, we have

Ta—1
| & { > g(x,-)} ldx) < oo.

i=0
But since

T4—1 o
/A E, { > g(x,-)} j(dx) = /A g()uldx) + /A u(dx) { /A E, { 3 g(x,.)} o, dy)}

i=0 i=0

Ta—1
= /A g()pldx) + /A E, { 3 g(xi)} o(dy)

i=0

whereo(dy) = [, p(x, dy)u(dx). Therefore

Ta—1
4) /AL_ g(x)u(dx) = /A( E, { ,-z:; g(X,-)} o(dy) < .
Since (4) and (2), it implies (A°) > 0 which shows (3). o

Lemma 4.3. Suppose that there exists a non-negative functign) which is
twice differentiable forx > M, (x) = 0 for all x < M and

xli_)m(><> P(x) =00, Li(x) < C —0yp(x), forall x>M,
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where C, 0 are constantsf > 0. If {p*(x)} satisfies

GO e (o ()
{ T AT 5

then there exist positive constarifs~ € (0, 1) such that

lim sup

X—00

0~ (1, x)} <1-— 679,

E.(X1) < T +~y(x), for all x € R,
where
0* (L, x)= E {1- G s <7F, < 1}.
Proof. Using I&’s formula, we get
!
9(8) = 0) + M+ [ (Lo,

0

where M, is a martingale. Replacing by\ 7 in the equality above, we obtain

1
¢(SIAT) = /(/}(-x) + Minr +/0 (L/(/})(SM/\T)du - (t - T)X{TS[}(L¢)(ST)'
Since Ly(x) < C — 09(x), we get

0
EExw(St/\T)

Ex(LY)(Sinr) — ExX{r<t}(L1/1)(ST)

ELLY(S)X{r>1}

CP (T > 1) = OE,(Siar)X{r>0)

CP(T > 1) = OEp(Sinr) + OEP(Sinr)X (r<sy

C —O0E,(Sinr) + E{0U(S7) — ClX{r<i}, v — a.e.t.

(VAN

Integrating both sides with respect to , this implies

=0t _ pb(r—1)
Easin) < CEZCD s v + £ 57 ET 0005 - Chvgeen,
= H e () + 0 () Q"0 x) + (o ()01 ),
where

H =

S Ke!

{A—e") = Q" (t,x) — 0 (t.x)}.
On the other hand, since

GO e (o ()
{ O AT &

lim sup

X—00

o0 (1, x)} <1-— 679,
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we see

Ep(X1) < T +v(x), for x € R,
wherev € (0, 1) and

T= sup ]{Exw(Xl) —y¥(x)},

x€(—o0,J

J is a constant greater thal . [
Lemma 4.4.
Q' (Lx)<(L—-eNp"(x), Q0 (Lx)<(1—e ) (v),
where

I RN O
O e YT @

Proof. From the definition, it is obvious that

0F(Lx) < (L-e )P (rF <77, 7% <1
< (l-e )P (rF < 7F)
= (1- e )Pt ). 0

Lemma 4.5. For a giveng € (0, 1), define

. xB for x > M,
®) Mx):{o for x < M.

1. If there exist two barriers{pi(x)}, {pF(x)} such that

p1(x) < p5(x),  p1(x) > p; (x), wheneverx > M,
then forx satisfyingp, (x) > M,

E{1AT} < E{1Am),  E(XD) < Eqp(x(),

where {XP},>o(resp. {XP},50) is induced from{S,};>0, {pi(x)}(resp. {p5(x)})
and

n = inf{t >0:8S, =p; (x) or p1(x)},
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= inf{r > 0:S, =p; (x) or p5(x)}.

2. Foranyx € R, we haveE, {1AT} > E,7—E,7%. Moreover assume that;x~® <
m(x) < cox~* wheneverx > M and {p*(x)} satisfies

(6) pr(x)=x+c"x*, p(x)=x—c x', wheneverx > M.
If s,¢ € (0, 1), then
Cle(s/\t)—a < ExT < szz(SN)_a, Clx4(s/\t)—2a < ExTZ < C2x4(s/\t)—2a’

wheneverx > F, where F > M is a proper positive constant.

3. If m(x) < cox™“ wheneverx > M, then forx satisfyingp~ (x) > M,

B —75)
2

E(X1) < ¥(x) — p~(x)7 T PE{1AT)

Proof. Forx satisfyingp~(x) > M, since P, {1 < m) =1 and {¢(Siar,) >0 IS
a supermartingale witl§y = Xo = x, the statement 1 is trivial. To prove the statement
2, without loss of generality, we assumme 7= . Sincefor 0, 1A T > 7 — 72, it is
obvious E. {1 A 7} > E.7 — E,72. Further, sinces € (0, 1), c1x™® < m(x) < cpx @
wheneverx > M and

(7 w(x) = E 7
_ rwex [
= o @ ) O ey
o " (x)
X070 )~ ymGdy.

pr(x) = p=(x) Ji
®) Bt = 20020 [T yu(ym(dy
P (X) P (.X') p(x)
- " (x)
$20 20 ) [T e uym(d,
pr(x) —p~(x) Jy

the statement 2 follows easily by substituting (6) into (B). Finally, sincem £ )<
colx|® wheneverx > M, we get

1 o INT
B = Exi(Sun) =00 - ", [ spetau,
2 0
for x satisfyingp~(x) > M, which shows the statement 3. U

Proof of Theorem 3.1. Sincés(X,)}.>o is a martingale and x( ) is an increas-
ing function, by the Martingale Convergent Theorem and Lendia the statements
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1, 2 and 3 are trivial. Finally, by
E;s(Xso) =s(a),  qa(0) +gq(00) =1,

the last part of the statement 3 is clear. [

Proof of Theorem 3.2. We divide the proof into two parts. Thetfpart is to
claim that there exists a bounded closed interkal such Baty < o) = 1 for
x € (0, c0). To see this, we need to construct the non-negative fumetf®) from s(x).
Let o = limsup,_op"(x), 8 = liminf,_ . p~(x). Because of liminf_. p~(x) >
limsup,_,p"(x), we obtain that there exists an> 0 such that — e > a +e. Set
F =[a+e¢, 5 — €]. Further for thise, there existcg and dp such that

O<p'(x)<a+eforx<cy, B—e<p (x)<oo forVx>do.
Take K = [co, dg] and define

s(x) if x € (8 — ¢, 0),
nx)=< —s(x) if x€(0,a+e),
0 ifxekF.

Since
INT
n(Siar) = n(x) +/ Ln(S,)du + M1,-, wheneverx € K€,
0

where {M, . },>0 is a martingale withMy = 0, E,n(X1) = n(x) for any x € K. Set
x =inf{n > 0:X, € K} and X, = X,rr,. It is evident thatE,n(X1) = n(x) for
all x € (0, 00). This gives that{n()?n)}ﬂzo iS a non-negative martingale. It turns out
that there exists a random varialfe< co such that lim_,.. 7(X,) = Z. Now suppose
P,(tx = o0) > 0, so we have for each

X, (w) = X,(w), on {rx =oc}.

Since it is easy to see that o{¥,},>o satisfies the condition of Lemma 4.1 for any
compact subseK of (@), we get

P,({X,}n>0 is unbounded) =1
Since lim_ o n(x) = oo and lim,_n(x) = co, we obtain
P,({n(X,)}n>0 is unbounded) =1
However

lim n(X,)=Z < o0, on {r¢ = oo},
n—oo
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which is a contradiction. In consequend®, 7k (< oc) = 1 for x € (0, c©).

The second part of the proof is to claim that there exists gue-finite invari-
ant measuregu(-). To show this, seG = I + Uy, we apply the Revuz’'s result; for &
irreducible Markov chain{X,},>o. if there do not exist increasing se{&, }°2, with
lim,_. E, = (0, ) such that the functions&; -,(E,),n > 0 are bounded, then there
exists a uniquer-finite invariant measurex(-) such thaty(-) is absolutely continuous
with respect tou(-) and u(A) > 0, A € B((0, 00)) implies

Px <Z XA(XI‘I) = OO) = 17
n=1

for all x € (0, c0). Thus we will claim that there do not exist increasing sgf } o2,
with lim, . E, = (0, o0) such that the function§; -,(E,),n > 0 are bounded. To see
this, it suffices to claim that there does not exist a Borekfiom f (x), 0< f(x) <1
such thatGf £ X oo for all x € (0, c0). We will show this by contradiction. Suppose
that there exists a Borel functiofi x ( ), © f(x) < 1 such thatGf £ )< oo for all

x € (0, 0). Since

Py(X1 € dy) = pe(x, dy) + pa(x, dy),

we see

Gf(x) = G(Pf)(x) = G(pcf)(x)-
Let f(x) = (pcf)(x) = fo pc(x y)f(y)dy. This implies thatf(x) is a continuous
function and 0< f(x) <1, Gf(x) < oo for all x € (0, o). Furthermore, we have
F(x) > ryx(x), wherer = inf,ex f(x). On the other hand, let

O =inf{n > 74V x, e Kk}, 7P = 7.

By the strong Markov property, we have

Py(T¢ W - o0) =1, for anyk > 1.

Further it is not hard to see

oo oo
> X{r¥<oo} = > X{xek)-
k=1 m=0

This shows) "2, Pi(X,, € K) = co. ConsequentlyG yx (x) = oo, for all x € (0, c0).
But this givesGf £ ) =00, for all x € (0, o0). This contradicts the assumption. There-
fore the second part of the proof follows. ]
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Proof of Theorem 3.3. Because the argument of this proofnislai to Theorem
3.6, we give the concise proof of this theorem in the remarkrb&orem 3.6. The
outline of this proof is the following. For the first part, wéaitn that

/ x7pu(dx) =00, foranyy >2s — 1
0

wheres < 1/2. For the second part, we claim
1. there exist positive constants aad  with(L) > M, p*(—L) < —M such that

9) Evb(X1) < d(x) —r, for [x| > L,

where&(x) = (]x|), ¥(x) is the same as (5) for any € R.
2.

(10) SUPE,Tg < o0,
xX€E

where E = [-L,L] and 7z = inf{n > 0 : X, € E}. Notice thatE is a petite set.
O

Proof of Theorem 3.4. Suppose
/ xp(dx) < oo.
0

Since supE, (X, Vv 0) = f0°° xp(dx) < co and {(X, vV 0)},>0 is a submartingale under
P,, we obtain

P, (n'Lmoo(X” v 0) < oo) =1

However, since the support of the invariant measuf¢ is R, we have
P, <Iim supX, = oo) =1,
X—00
which is a contradiction. ]

Remark. It is clear that{S,},>o is a local martingale but not a martingale under
P,, when

0 [e%S)
/ |x|[m(x)dx < oo or / xm(x)dx < oo.
L 0

However, {X, },>0 is a martingale since for fixed > 0O, X, is a bounded random
variable.
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Proof of Theorem 3.5. Assume thdi(x) below is the same as (5). It is clear
that for eachx > M,

vy 1—do oy de =1 W) _ s T () _ s
¢ (x)—d+_d7, ¢ (x)—d+_d7, ) =dy, T =d_.
Thus by Lemma 4.4, we obtain far > M,
P(p*(x)) Y~ (x)) - B =B (1 -0
oy QW) < (9l +gmal) (1-e )

1—d_ dy—1 _
= dﬂ+ dﬁ 1-— g .
(d+—d_ YU d—d —)( <)
1—¢ 9.

Then by Lemma 4.3, we obtain
C = SUpE,¥(X,) < oc.

Let

n—1
m(A) = %Z P.(X; € A), for any A € B(R).
k=0

Then the ergode theorem tells us that for almost everywhkere R with respect to
(), {ma(-)}»>1 converges weakly to the invariant probability measufg. However,
the above estimate shows

/R PO)mady) < C,

which implies

/ xPu(dx) < . O
0
Proof of Theorem 3.6. By Lemma 4.5, without loss of generakte assume
thats € (0, 1) such that
pr(x)=x+x*, p (x)=x—x*, wheneverx > M.

Since {p*(x)} satisfies the conditions of Theorem 3.2, it implies that theaiiant
measureu(-) of {X,},>0 exists. And we have

INT
Exci(X1) = d(x) + E, /0 (L)(S.)du,
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for x satisfyingp~(x) > M, where(x) is the same as (5). To claim.(u) > (2s A
«a) — 1, we divide the proof of this claim into two steps.

Step 1. for s € (0,«/2), by Lemma 4.5, there exist positive constahts and
N > (M Vv 1) such that

(11) Ep(X1) < 9p(x) — 17272,
wheneverx satisfying~—(x) > N, whereg € (0, 1). Set

A=(—00,N], ma=inf{n>0:X, € A}, K =supl(x)— E.p(Xy)|
XEA

It is clear that for anyy < 2s — 1, there exists3 € (0, 1) such thaty < 3+2s —2 and

by Lemma 4.2,
TAfl
! / {E Z(xm} u(dx)
A i=0

! /R (") uldx)

/ (") () +z M(dX)

Ta—1
{ Ey { > (xm} px, dy)}
i=0
TA—1
/ (") 1u(dx) +z u(dx) { E, { > (X,-*)M—Z} 163 dy)}

[ ey 1 [ wand [ o) - B e} e dy)}

[ 6yt o /A uan { [ oot an}

z /A () u(dx) +1 /A Exp(X2)u(dx)

| /\

| /\

IN

IN

IA

Z/ON x7 p(dx) +1/MN Y(x)p(dx) +IK < oo.

Here notice thatu([0, N]) < oo, u([M, N]) < oo because [ON ,] M, N ] are petite
sets. This gives immediately

/000 x7p(dx) < oo, for v < 2s — 1.
STEP 2. fors > «/2, by Lemma 4.5 and (11), we have
Ecp(X1) = Exp(XP) < Ep(x{P) < ) — 277222
for x satisfyingp~(x) > N, wheres; € (0, «/2) and

T(xX)=x +x, p7(x) =x — x*, wheneverx > M,
P1 P1
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pr(x) = pa(x) =x+x°, p (x) =p, (x) =x —x°, wheneverx > M.

As in the proof of Step 1, we get for> «/2,
/ x7pu(dx) < oo, whenevery < 2s; — 1.
0

Let s; approach tox/2, we obtainvy.(u) > a—1 for s € [«/2, 1). This completes that
() > (25 A ) — 1.

On the other hand, to claim. (1) < (2s A «) — 1, suppose that
(12) /OOO x7u(dx) < oo, for somey > 2s — 1.
The following is to claim that the assumption is wrong. Let
e=vy—(2s —1).
Take 3 such thats +¢ € (1, 1 +¢). Define

[ xP*e for x > M,
5()‘):{0 for x < M.

By Lemma 4.5, there exist positive constait{s> (M Vv 1) andr such that
INT
B0 = €W E [ LS
0
(13) S f(x)+rx5+e+2S—2,
for any x satisfyingp—(x) > H. Let
B=(—00,H], 71p=inf{n>0:X, € B}.

By Lemma 4.2, we have

T3—1
+ Bte+2s—2 - +\[G+et2s—2
/B E, { >0 }u(dX) /R ()22 (dx)
+\y
< /R (") ()

= / x7 pu(dx) < oo,
0
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Moreover, it is easy to see

T3—1
| & { 3 (Xr)ﬁ“””} (dx)
B i=0

T3—1
— /(x+)6+e+2s—2p(x’ B)u(dx)+/ E, { Z(X;L)B+e+2s—2 "X, € Bc} u(dx)
B B

i=0

T5—1
= [ m uan + [ i) { | & { > (x?)w“} . dy)}
H T3—1
= /0 xXTE 2y dx) + /B Ey { Z(X,-*)ﬁ*““} 5(dy),
i=0

where 6(dy) = [, p(x, dy)u(dx). Since (2) holds forg X )= (x*)****~2 in Lemma
4.2, we get that there existg € B¢ = (H, oo) such that

Tgfl
b S uyr] o

i=0

But since{X, .. }.>o0 is a submartingale witX, = xo and

nATg

E)Cog(Xk/\Tg) = Exog(XI:—/\TB)
kN(Tp—1)

&(xo) +rEy, { Z (X?)B“%Z}, for eachk > 0,

i=0

IA

this shows

Exo { sup g(Xk)}
0<k<7p—1

Exg { sup €(Xk/\TB)}

0<k<rg—1

Exo{ Sup é-(Xk/\TB)}
0<k<oco

C sup E.&{(Xinrs)
0<k<oo

kN(Tp—1)
C su +rE, X )Bretes—2
ogkgﬂo{f(x‘” r { > &) }}

i=0

T—1
Cc {f(xo) +rEy, { Z (le")ﬂ+e+2?—2}} < 00,

i=0

IN

IN

IN

(14)

IN
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[ Bre \7T
c:(r“) .

where

Combine

0<k<7s—1

E{&(X;) i8> j} < Ey { sup  &(Xy) 1T > j},

with (14), we get
le)moo Exo{g(Xj) . Tp > j} =0.
However,

g(-xo) < Exog(Xj/\TB)
E.)Co{é-(XTB) - TB S .1} + Exo{g(xj) 1T > .]}v

Let j approach to infinity, we obtain

f(XO) < Exog(XTB) < f(H) < §(x0)7

which is a contradiction. This completes that(i) < 2s — 1 for s € (0, 1). Similarly
to (13) we can evaluat&,£(X,) as follows also when > «;

INT
Ex£(X1) = £(x) + E, /0 LE(Su)du

< &) rxltere?,

for x satisfying p~(x) > H. Therefore, by the same proceeding above, we obtain
v+() > a—1 for s € [a/2, 1). In consequence, it completes that

() < (25 Aa) — 1.

This completes the proof. ]

Remark. For the first part of the proof in Theorem 3.3, without lossgeheral-
ity, we can assume

1
g+(x) = x*, wheneverx > M, for somes < >

By Theorem 3.2, there exists an invariant measuf¢ of {X,},>0. Moreover, from
(12), it is clear thatu(-) is not a probability measure.
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For the second part of the proof, assume that(x)} satisfies

1
g+(x) = g_(x) = |x|’, whenever|x| > M, for somes > >

By Lemma 4.2, Lemma 4.5 and (11), we get (9) easily. Furtheis hot hard to see
that

n—1
D(Xa) = D) + M, + D (P — DE(XD)),

i=0

where {M, },>o is a martingale withi, = 0 and

(P — 1){(x) = Evib(X1) — (x).

Thus we obtain (10) which shows

L
WR= [ E(rehutan) < u(®) {ngEer} < oo,
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