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1. Introduction

Let G, denote the additive group of complex numbers, ahd a oamaffine
variety. By an action ofG, onX we will mean an algebraic actidnislwell known
(e.g. [4]) that every such action can be realized as the exg@ of some locally
nilpotent derivationD of the coodinate rinG[X] and that every locally nilpotent
derivation gives rise to an action. The ri@, of G, invariants inC[X] is equal to
the ring of constants of the generating derivation.

Given an actions: G, x X — X, leto: G, x X — X x X denote the graph
morphism andr? C[X] — C[X, ] (resp.c: C[X x X] — C[X, ¢]) denote the induced
maps on coordinate rings.

The action is said to be proper if is a proper morphism (i.e. i€[X, ] is in-
tegral over the image of)” The action is said to be equivariantly trivial if there is
a variety Y for whichX is aG, equivariantly isomorphic % x G,, the action on
Y x G, being given byg * (y,h) = (y, g + h). The action is locally trivial if there
are affine varietie¥; and a cover &  loy, stable affine open ssib&ebn which
the action is equivariantly trivial. Equivariant trivigli of an action onX is equivalent
with the existence of a regular functione C[X] for which Ds = 1. Such a function
is called a slice and, if one exist§€[X] = Cy[s]. Local triviality is equivalent with the
intersection of the kernel and the image Bf  generating theideal in C[X].

Locally trivial actions are proper, and proper actions@hare locally trivial pro-
vided C[X] is a flat ring extension ofCy [4, Theorem 2.8]. It was also shown there,
for X = C", that properness is equivalent with surjectivity @f It had been believed
e.g. [13] that propeiG, actions on normal varieties are lgcalial, until an exam-
ple of a proper action oi€® which is not locally trivial was produced [5]. In that ex-
ample, Cy is affine, but the associated variety has a line of singigatitThe fibers
of the morphismC® — Y over the singular points are all two dimensional. The first
example of a locally trivial but not equivariantly triviak, c@on on complex affine
space was discovered by Winkelmann [18]. In that exam@lgjs affine and regular
and, at this writing, no example of a locally trivial actiom €" with non regular ring
of invariants is known.
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As a consequence of the main result of the paper, Theoremsihdularities in
the variety associated t6p are shown to be the only obstruction to local triviality of
a proper action. Moreover, the structure of the morphiSfn — Y is elucidated in
some cases wherB s singular. Finally, the main result léadsgeneralization from
n = 3 to arbitraryn of an algorithm given in [12] to determine ler a set ofn — 1
elements ofC[xy, ..., x,] is part of a set of variables.

2. Smooth points ofY

Denote the polynomial ringC[xa....,x,] by C". Suppose tha® is an affine
subring of Cl"l whose quotient field has transcendence degree 1 over C, and
let S be a multiplivatively closed subset @t . If, for somef, ..., fu-1} C R,
{dfi,...,df,—1} generates the module of differential®—15,c, then Qg-1cm/s-15 is
the quotient of the free module generated fafx; | 1 < i < n} by the submodule
generated by{df; | 1 <i < n—1}. Thus the first Fitting ideal of25-1cm/s-1¢ is gen-
erated by ther—1)x (n—1) minors of the Jacobian matriX)f;/0x;] [10, Sec. 20.2].
In particular, Qg-1cm/g-1¢ is free of rank one if and only if the first Fitting ideal is
s—tchl,

Theorem 2.1. Let D be a locally nilpotent derivation of!"! whose associated
G, action is fixed point free. Suppose that the ring of invasaf is finitely gener-
ated and letY denote the associated affine variety: & Y is a smooth point defined
by a maximal idealn 0ofCo, and § = Co —m, thenQg-1cm/5-1¢, is free of rank one.

Proof. Sincey is a smooth point there arec Co, 1 <i < n—1, which generate
the maximal ideal ofCo,. These elements define@ derivation D, of cli py

le = det\]aCf, 81, .-+, gnfl)'

Since the action generated by  is free, @& module of derivations ofC!"
over Cy is free of rank one [9, Prop. 2.1]. Thus there atg a1 < CI with
aoD = a;D;. The fixed point freeness of the action generatedlby is elpntvavith
(Dxy, ..., Dx,) = Cl"l_ 1t follows thata; dividesag and thusD; is a C"l multiple of
D.

It is well known that2 = Q¢, ,c is generated by thég; . By the remarks above,
the D1(x;), i.e. the —1)x (n—1) minors of Pg;/0x;], generate the first Fitting ideal
of @', the module of differentials o§—*Cl" over Cy,. According to [3, Cor. 3.9],
this ideal is contained in no height one prime ideal. THusis a multiple of D by a
unit in $~1CM. Since theDx; generate the unit ideal @, the D.x; generate the
unit ideal in S~Cl"l. Thus the first Fitting ideal iss—*Cl" and Q' is free of rank 1.

O
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Corollary 2.2. With conditions as in the theorem, suppose in addition thas i
smooth. Then the morphis@* — Y induced by the ring inlusiorCq — CI is
smooth of relative dimensioh

Proof.  SinceQcu, ¢, is finitely presented, it suffices by the Quillen-Suslin theo
rem to show that it is locally free as@" module. But this follows immediately from
the theorem. O

It should be noted that the fixed point freeness assumpti@sdential. IfD is the
locally nilpotent derivation ofC[x, y, z] given by

D:x—y—z—0

then the ring of invariants for the associated action is wethwn to beC[z, 2xz — y?].
Sinced (2z — y?) = 2zdx — 2ydy +2xdz and [ —y, x] is not a unimodular row over
Clx, y, ], the module of differentials ofC[x, y, z] over C[z,2xz — y?] is not free.

Corollary 2.3. If G, acts onC" without fixed points and’y is affine and regu-
lar, then the action is locally trivial if and only if it is pyoer.

Proof. By the previous corollanG” — Y is smooth and therefore flat. The result
then follows from [4, Theorem 2.8]. ]

The next application of Theorem 2.1 generalizes a critefamlocally triviality
in [8]. The notion of GICO morphism was introduced by Miyarniéh [14].

Derinimion 1. Let¢: X — Y be a morphism of affine varieties. Thenis GICO
over Y provided that for any height one prime idgal @fY] and prime idealP of
C[X] minimal over pC[X], defining a codimension one subvariely &f , the field
C(¢T) is algebraically closed it€(T).

Suppose that &, action on the affine variefy  has finitely geéeerang of
invariants Co. With Y denoting the affine variety with coordinate rin@, the action
is said to be GICO if the morphis’X — Y induced by the inclusiorCy C C[X]
is GICO. It should be noted that X is factorial, i.€[X] is a ufd, thenC[Y] is a
factorially closed subring o€[X], hence also a unique factorization domain. Thus we
are concerned with the extension of the quotient fieldCgf(p) to the quotient field
of C[X]/pC[X] for all principal prime ideals f ) ofCo.

For a G, action on a factorial affine variety, the GICO conditisneasily seen
to be equivalent to the condition that the intersectionCgfand image of the generat-
ing derivation, which is an ideal ofy, is contained in no height one prime ideal of
Co. In [8], it was shown that GICO actions oB” with regular invariants are locally
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trivial, with the added hypothesis that the morphigth — Y has open image. It was
also shown there that proper actions on factorial affineeti@s are GICO. Testing the
GICO condition seems to be difficult, while properness isyveasy to check. On the
other hand, no actions which are fixed point free but not GIC® kamown to the au-
thors.

In light of Cor. 2.2, the hypothesis that the image @f — Y is open can be
dropped:

Corollary 2.4. A GICO action onC" is locally trivial provided thatCq is
finitely generated and regular.

3. Nonregular invariants

Consider a GICO action oX €" generated by the locally nilpotent derivation
D with finitely generated invariant rin@y. Let 7: C" — Y as above be the morphism
induced by the ring inclusioy c C", and let/ denote the idealynim D. Denote
by Z the closed subset d&f defined By , observing that everyunibte component
of Z has codimension at least two and tha§_, 1,: X — 7 1Z — Y — Z is a prin-
cipal G, bundle.

Recall the following lemma of Miyanishi [14, Section 2].

Lemma 3.1. Let (O, M) e a regular local ring of dimensiom > 2 and let A
be a factorial, finitely generated domain with — A. Let f: X — Y be the
morphism induced by the ring inclusion, wheke = SpecA and Y = SpecO. Let
U=Y—-{M}. Assume thafy: f~X(U) — U is an Al bundle. Then eitheX ~ AlxY
or f~Y{M}) =0 (the latter is only possible i = 2).

This lemma applies to the investigation of the dimensiondildrs of C" — Y
over singular points whery  is not regular but the action isngetoically irreducible
in codimension one (GICO). All of the pathological examplasown to the authors,
in particular the proper but not locally trivial action in][&nd the nonproper twin tri-
angular actions investigated in [7], satisfy the hypothesithe following theorem.

Theorem 3.2. Consider a GICO action of5, oX =C”" and assume thafj is
affine and Cohen Macauley defining the affine varigty . Assustethat the singular
locus W of Y has dimension strictly less than the minimum of tineedsions of the
irredicible components of . Then either the action is logdtivial (i.e. 7=1(Z) =0)
or 7(z~%(Z)) ¢ W. In the latter case, fibers over points W  are either empty or
have dimension strictly greater thah

Proof. Assume that the action is not locally trivial, so tlla¢ image ofr has
nonempty intersection with some irreducible compongntof Z. Let p be a prime
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ideal of Co defining Z;, and note that by assumptiaty, is a regular local ring. Set
S = Co— p. By Miyanishi's lemma, applied tod, M ) =(p,, pCq,) and A =S~Cl",
we see that eithed has a slice or the heighipof is equal to 2pehd A. =

The first case leads to a contradiction: Af  has a slice, wtitasiz/k with A,

k € CM k € §. From 1 =D @/k) one readily concludes tha anbt k ( ) have a
common factor, which is impossible for a locally nilpotergriggation, unlessD 4 ) = 0.
It follows thatk =D )€ Conim(D) C p, a contradiction.

As a consequence of the second casfg;—1(Z1)) is not dense inZ;. Since the
dimension ofX is one more than the dimensionlof , ahd is normaheorem
of Chevalley [1] implies that nonempty fibers over points &f must have dimension
strictly greater than 1.

If Y is smooth aty € Z; nim(w) then Theorem 2.1 shows that there are open
neighborhoodsy off i an@ of(y) so thatr|y: U — V is smooth. But a
smooth morphism is open and therefore has dense imagg.isince the image ofr
is not dense inZ; no suchy exists. ]

4. Extendibility to a coordinate system

In [16], Rabier gives a simple algorithm to determinezi€ C[x, y] is a variable,
i.e. if there is anf withC[z, f] = C[x, y]. In [17, Cor. p. 160], a criterion for an
element to be a variable i€[x, y, 7] is given, and in [12], van den Essen gives an
algorithm to determine if two element§ g, are part of a coatlinsystem foC3.
We say that a seffi,..., f,_1} € Cl" is part of a coordinate system f@" if f,
exists so thatC[fi, ..., fu_1, fu] = CIl. We extend the method in [12] to give an
algorithm to decide whether — 1 polynomials are part of a coordinate system @jr.
The algorithm is based on the following theorem:

Theorem 4.1. A set of polynomialgys, ..., y,—1} is part of a coordinate sys-
tem for C" if and only if C[ys, ..., y,—1] is the ring of invariants for a propeiG,
action onC". In this case, the action is generated by the derivation

D:.hw— )\detJacjgl, cey Yn—1, h)
for some\ € C*.

Proof. 1f CIl = Cl[ys, ..., y,—1, w] then the derivationD y; — 0, w — 1 gener-
ates the desired;, action. It is straightforward to verifytti¥h) = \oh/Ow where
A =detJac(y, ..., y,—1, w) € C*.

Conversely, a propeiG, action is fixed point free [4, Theorer8],2so that
Corollary 2.3 shows that the action is locally trivial. Buhee the ring of invariants
is a polynomial ring, [6, Theorem 3.3] shows that the actisrconjugate to a trans-
lation. Thus, with D denoting the derivation generating tlotiom, there is an ele-
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mentw € CI with D(w) = 1. From [19, Proposition 2.1], it follows thaEl” =
Clys, -+ Y1, W] O

This theorem vyields an extension of the algorithm in [12] tecide if
{y1...., yn—1} Is part of a coordinate system fa*. Given{y1, ..., yo—1},
1. Define a derivatiorD o€l by

D(0) = detJad, y1, - - -, yu_1)-

If (D(x1),...,D(x,)) is not the unit ideal ofC"l, then D cannot generate a fixed
point free G, action, and thereforgys, ..., y,—1} is not part of a coordinate system.
2. Check whethe® is locally nilpotent. As in [12], calculate

N = 12a§)/(1{[c(x1’ ces %) 1 C1y ey Y1, X))

using the algorithm in [15, Lemma 2.3p s locally nilpotégfiand only if D¥x; = 0
for eachi . If D is not locally nilpotent, thefiys, ..., y,—1} is not a part of a coordi-
nate system.
3. Check thatC[y, ..., y,—1] = Co, the ring of invariants. While it is not known
a priori that the ring of invariants for a fixed point freg, action C" is finitely
generated fom > 3, the algorithm in [11] can be modified to determine whettnés t
ring is Cly1, ..., yu—1]. By steps 1 and 2, G¢ D"x; € Co for somer ,i . If D"x; is
not in Clys, ..., yo—1), thenC[ys, ..., y,—1] # Co and {y1, ..., y,—1} IS not part of a
coordinate system.

If D"x; is in C[yi....,y,_1], sets =D"~1x;/D"x;, noting thatDs = 1. Follow-
ing algorithm in [11] calculatev; = exp(zD)x;|,=; for eachj . Set; =D" X J}v;
wheren; is the least exponeat for whicB' x; (°9] € Co. Use the subalgebra mem-
bership algorithm [2] to determine whether thg € Cly1, ..., y,—1]. If any ¢; does
not lie in Clys, ..., yo—1], then {y1, ..., y,_1} is not part of a coordinate system. If
¢j € Clys, ..., ya—1] for eachj , then

1
Clyt, - s -1l CCo CCy1, ey Yuo1, 7o

Dr(x;) ]

Assuming these inclusions, the algorithm in [11] conssuah increasing chain
of subrings ofCy beginning withC[ys, ..., y,_1] which eventually reache€) if this
ring is finitely generated. For our purposes, it suffices tastact the first such sub-
ring [11]. If it is properly larger tharC[ys, ..., y,—1] then {y1, ..., y,_1} is not part
of a coordinate system. Otherwisg[ys, ..., y,_1] = Co.

4. Check that theG, action is proper. In view of [4, Theorem 2t83 is equivalent
to

t € Clxy, ..., x,, €XPED Ky, ..., expED ), ],
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and requires one application of the subalgebra membershipithm to decide.

If the action is not proper, thefiys, ..., y,—1} is not part of a coordinate system.
Otherwise, Theorem 4.1 shows thigl, ..., y,—1} is part of a coordinate system.
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