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1. Introduction

Let be an elliptic curve overQ. We denote by ˆ ( 1 2) the formal group
associated to the minimal model overZ for . Let ( /Q ) =

∑
≥1

− be

the L-series attached to the -adic representations of Gal(Q/Q) on . We denote by
ˆ ( 1 2) the formal group of the L-series (/Q ), that is, the formal group with
transformer

∑
≥1

−1 . Then Honda shows:

Theorem 1.1 ([6], [7]). ˆ ( 1 2) is defined overZ, and it is strongly isomorphic
over Z to ˆ ( 1 2).

He also shows that̂ ( 1 2) determines the L-series (/Q ). Namely, the co-
efficients of ( /Q ) can be obtained explicitly from the coefficients of the trans-
former of ˆ ( 1 2).

We call an elliptic curve overQ a Q-curve if it has an isogeny overQ to
σ for each σ in Gal(Q/Q) (cf. e.g. [4]). An elliptic curve overQ is a Q-curve.

We attempt to get a similar result of Theorem 1.1 to formal groups of Q-curves over
quadratic fields. The problem is to find an L-series whose formal group is strongly
isomorphic to the formal group of a fixed Weierstrass model ofa Q-curve over a
quadratic field.

Let be a quadratic field with maximal orderO . We denote byσ a generator
of the Galois group Gal(/Q) of over Q. Let be aQ-curve defined over . We
assume that it has an isogenyϕ over from to σ of non-square degree not equal
to one. Let be the restriction of scalars of from toQ. Then is of type
for some quadratic field . We fix a Weierstrass model overO for . We denote
by ˆ ( 1 2) its formal group. For the fixed Weierstrass model of , we define the L-
series α( ) by (3.8) in Section 3. α( ) is a linear combination of L-series attached
to λ-adic representations of Gal(Q/Q) on , and it has coefficients in . Then, for a
finite set satisfying the conditions (4.2) in Section 4, we have:
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Theorem 4.1. ˆ
α( 1 2) is defined over the ringO of -integers in , and

it is strongly isomorphic overO to ˆ ( 1 2).

As a corollary, we see that̂ ( 1 2) determines the -factors of the L-series at-
tached toλ-adic representations on for almost all primes . Since each -factor of
the ordinary L-series is obtained from that of the L-series attached toλ-adic represen-
tations, ˆ ( 1 2) also determines the -factors of the ordinary L-series.

When is reduced toQ, λ-adic representations of Gal(Q/Q) on is reduced
to -adic representations of Gal(Q/Q) on . Thus Theorem 4.1 is a generalization of
Theorem 1.1 to the case of aQ-curve over a quadratic field in the sense that
ˆ ( 1 2) determines the L-series attached toλ-adic representations of Gal(Q/Q) on
, though we can not exclude some assumptions on and on .

The contents of this paper are as follows. In Section 2, we review the classifi-
cation theory, studied by Honda, of formal groups overp-adic integer rings. In Sec-
tion 3, after some investigations on the L-series of the restriction of scalars of a cer-
tain Q-curve which we deal, we define an L-series associated to a certain Q-curve and
we discuss its associated formal group. In Section 4, we investigate the formal group
structure of a certainQ-curve and we prove Theorem 4.1.

The author would like to express his sincere gratitude to Professor Yoshihiko Ya-
mamoto for his useful suggestion. The author also wishes to thank Professor Hirotada
Naito for his warmful encouragement.

2. Formal groups over p-adic integer rings

We review some results needed in Sections 3 and 4.

2.1. Let be a commutative ring. We denote by [[1 2 . . . ]] the ring
of formal power series on variables1 2 . . . with coefficients in . We say
that two power seriesϕ( 1 . . . ) and ψ( 1 . . . ) in [[ 1 . . . ]] are congru-
ent modulo degree, if they differ only in terms of total degree greater than or equal
to . Then we writeϕ( 1 . . . ) ≡ ψ( 1 . . . ) mod deg . We put

[[ 1 . . . ]]0 := {ϕ ∈ [[ 1 . . . ]] | ϕ ≡ 0 mod deg 1}

A power seriesϕ( ) in [[ ]] 0 is said to beinvertible, if ψ(ϕ( )) = holds for
someψ( ) in [[ ]] 0. The power seriesψ( ) is then uniquely determined byϕ( ),
and is writtenϕ−1( ). We note that a power seriesϕ( ) in [[ ]] 0 is invertible if and
only if ϕ( ) ≡ mod deg 2 holds for some unit in .

We define a (one-dimensional commutative) formal group over as a power se-
ries ( 1 2) in [[ 1 2]] satisfying the following:
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(i) ( 1 2) ≡ 1 + 2 mod deg 2

(ii) ( 1 ( 2 3)) = ( ( 1 2) 3)

(iii) ( 1 2) = ( 2 1)

For example, the additive group̂G ( 1 2) := 1 + 2 and the multiplicative group
Ĝ ( 1 2) := 1 + 2 + 1 2 are formal groups over .

Let ( 1 2) and ( 1 2) be formal groups over , and letϕ( ) be a power
series in [[ ]]0. We call ϕ( ) a homomorphismover from ( 1 2) to ( 1 2),
if it satisfies

ϕ( ( 1 2)) = (ϕ( 1) ϕ( 2))

Moreover, if ϕ( ) is invertible, we callϕ( ) a (weak) isomorphism. The power series
ϕ−1( ) is then an isomorphism from (1 2) to ( 1 2). We call an isomorphism
ϕ( ) a strong isomorphism, if ϕ( ) ≡ mod deg 2 holds. We see that a strong isomor-
phism from ( 1 2) to ( 1 2) is uniquely determined by (1 2) and ( 1 2)
if it exists. We say that two formal groups are (weakly) isomorphic(resp.strongly iso-
morphic) if there exists an isomorphism (resp. a strong isomorphism) between them.

The set Hom ( ) of all homomorphisms over from (1 2) to ( 1 2)
forms an additive group by the addition law: (ϕ1 + ϕ2)( ) := (ϕ1( ) ϕ2( )). We put
End ( ) := Hom ( ). Then the additive group End ( ) forms a ring by the mul-
tiplication law: (ϕ1ϕ2)( ) := ϕ1(ϕ2( )). We denote by [ ] ( ) the image of an integer

under the canonical ring homomorphism fromZ to End ( ).
We suppose that is an integral domain of characteristic zero. Then, for every

formal group ( 1 2) over , there exists an unique strong isomorphism ( ) over
its quotient field from (1 2) to Ĝ ( 1 2) (cf. e.g. [7]; Theorem 1). We call ( )
the transformerof ( 1 2). We see that (1 2) = −1( ( 1) + ( 2)).

Now we suppose that is a field of characteristic> 0. Then the endomorphism
[ ] ( ) of ( 1 2) satisfies either [ ] ( )≡ mod deg( + 1) with non-zero
element for some integer or [ ] ( ) = 0 (cf. e.g. [6]; Lemma 1). Wesay that
the height of ( 1 2) is or infinity, according as in the former case or in the latter
case.

2.2. We review the classification theory of formal groups overp-adic integer
rings, which is studied by Honda [7].

Let be a finite Galois extension of the -adic number fieldQ . We denote by
O and p its maximal order and its maximal ideal, respectively. We fixa Frobenius
endomorphismσ for p in Gal( /Q ). We also fix a prime elementπ in O.

Let σ[[ ]] (resp. Oσ[[ ]]) be the non-commutative power series ring in with
the multiplication law: = σ for ∈ (resp. ∈ O). We define the action of
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σ[[ ]] on [[ ]] 0 from left hand side by the following:

( ∗ )( ) :=
∞∑

ν=0

ν
σν ( ν)

for :=
∞∑

ν=0

ν
ν ∈ σ[[ ]]

An element inOσ[[ ]] is said to be special, if ≡ π mod deg 1. A power series
( ) in [[ ]] 0 is said to be oftype , if ( ) ≡ mod deg 2 and ( ∗ )( ) ≡

0 modp. For example, (−1π) ∗ is of type . A formal group over is said to be
of type , if its transformer is of type .

Let ( 1 2) and ( 1 2) be formal groups over with transformer ( ) and
( ), respectively.

Proposition 2.1 ([7, Theorem 2 and 3]). Suppose that ( 1 2) is of type for
some special element . Then( 1 2) is defined overO. In addition, suppose that

( 1 2) is of type for some special element . Then the mapping:

{ ∈ O | = for some ∈ Oσ[[ ]] } → HomO( ) : 7→ −1( ( ))

is a group isomorphism. In particular, ( 1 2) and ( 1 2) are strongly isomorphic
over O if and only if = for some inOσ[[ ]] .

As below in this section, we assume that we take as fixed primeπ when p

is unramified. In the case wherep is unramified, the converse of the former part of
Proposition 2.1 holds.

Proposition 2.2 ([7, Propositions 2.6 and 3.3]).Assume thatp is unramified. If
( 1 2) is a formal group defined overO with transformer ( ), then the ideal

{ ′ ∈ Oσ[[ ]] | ′ ∗ ≡ 0 modp} is a left principal ideal generated by some special
element . In particular, ( 1 2) is of type .

Let ′ and ′ be elements inOσ[[ ]]. We say that ′ is left associatewith ′,
if ′ = ′ holds for some unit inOσ[[ ]]. A formal group over O is said to be
of height , if its reduction modulop is of height . In the case wherep is unram-
ified, it follows from Propositions 2.1 and 2.2 that the strong isomorphism classes of
formal groups overO correspond bijectively to the left associate classes of thespecial
elements.

Proposition 2.3 ([7, Proposition 3.5]). Assume thatp is unramified. The strong
isomorphism classes of formal groups overO, of height (1 ≤ ≤ ∞), correspond
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bijectively to the special elements of the following form:





if = ∞

+
∑

ν=1

ν
ν with 1 . . . −1 ∈ p and ∈ O∗ if 1 ≤ <∞.

The following propositions are needed in Section 4.

Proposition 2.4 ([7, Lemma 4.2]). Let ( ) be a power series in [[ ]] 0 of type
for some special element u. Letψ1( ) be a power series in [[ ]] 0 and letψ2( ) be

a power series inO[[ ]] 0. Then, (ψ1( )) ≡ (ψ2( )) modp if and only if ψ1( ) ≡
ψ2( ) modp.

Proposition 2.5. Let =
∑
ν=0 ν

ν and =
∑
ν=0 ν

ν be elements of
Oσ[[ ]] . Assume that = for some =

∑∞
ν=0 ν

ν in Oσ[[ ]] . If ≥ ,

0 . . . −1 ∈ p, and ∈ O∗, then ν = 0 holds for eachν > − .

Proof. Since

=

( ∞∑

ν=0

ν
ν

)(∑

ν=0

ν
ν

)
=

∞∑

ν=0

( ν∑

µ=0

µ
σµ

ν−µ

)
ν

where we put ν = 0 for ν > , it follows from = that

(2.1) ν−
σν−

= −
(
ν− +1

σν− +1

−1 + · · · + ν
σν

0

)

holds for eachν > . Since 0 . . . −1 ∈ p and ∈ O∗, it follows from (2.1) that

ν− ∈ p for ν > , that is, ν ∈ p for ν > − . Thus by using (2.1) again, we
have ν ∈ p2 for ν > − . In the same way, we inductively getν ∈ pµ for each
positive integerµ and ν > − . Hence we haveν = 0 for ν > − .

2.3. We give certain formal groups overO in the case ofσ2 = 1. They are re-
lated to the formal groups, over quadratic fields, which we deal with in Sections 3 and
4.

We fix an integerχ( ) in the set{−1 0 1}. For each commutative ring , we
define the linear action χ on [[ ]]0 from right hand side by

(2.2)
∑

≥1

| χ :=
∑

≥1

+ χ( )
∑

≥1

Let
∑

≥1 be a power series inO[[ ]] 0 with 1 = 1.
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Proposition 2.6. Assume thatp is unramified. If

(2.3)
∑

≥1

| χ =
∑

≥1

σ

then
∑

≥1
−1 is of type − + χ( ) 2.

Proof. It follows from (2.3) that
{

= σ for each positive integer coprime to

2 − σ + χ( ) = 0 for each positive integer

Together withσ2 = 1, we have

(
− + χ( ) 2

)
∗
∑

≥1

=
∑

≥1

−
∑

≥1

σ

+ χ( )
∑

≥1

2

=



∑

≥1
( )=1

+
∑

≥1
|


 −

∑

≥1

σ

+ χ( )
∑

≥1

2

≡
∑

≥1

−
∑

≥1

σ

+ χ( )
∑

≥1

2

modp

≡
∑

≥1
( )=1

− σ

+
∑

≥1

2 − σ + χ( ) 2

modp

≡ 0 modp

Proposition 2.7. Assume thatp is ramified andχ( ) = 0. If
∑

≥1 | χ =
0, then

∑
≥1

−1 is of typeπ.

Proof. It follows from our assumption that = 0 for≥ 1. Thus we have

π ∗
∑

≥1

= π
∑

≥1
( )=1

≡ 0 modp

3. Formal groups associated to L-series of Q-curves over quadratic fields

Let be a quadratic field with maximal orderO and discriminant . We de-
note byσ the generator of Gal(/Q). Let be an elliptic curve over such that it
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has an isogenyϕ over from to σ of non-square degree. Then is aQ-curve.
By taking bases, conjugate overQ, of one-dimensional -vector spaces of differ-

entials of over and of σ over and by looking at the actions of the pull-backs
of ϕ andϕσ, we see that

(3.1)
[

2
]

= ϕσ ◦ ϕ and 2 = αασ

for some square-free integer , some natural number , and someα in , where [ ]
is the multiplication-by- map of . The integer is positive ornegative according as
the dual isogeny ofϕ is equal toϕσ or −ϕσ. The degree ofϕ is the absolute value
of 2 . Since the degree ofϕ is not square, is not equal to±1.

3.1. Let ( η) be the restriction of scalars of from toQ. By definition,
is an abelian variety overQ of dimension two andη is a homomorphism over

from to such that the homomorphism (η ησ) is an isomorphism over from
to × σ. We denote by and the conductors of over and of overQ,
respectively (cf. e.g. [9]).

Proposition 3.1 ([9, Proposition 1]). = (N /Q )| |2, where N /Q is the
norm.

Let ( / ) and ( /Q ) be the L-series attached to the -adic representa-
tions of Gal(Q/ ) on and of Gal(Q/Q) on , respectively.

Proposition 3.2 ([9, Proposition 3]). ( / ) = ( /Q ).

Now we discuss endomorphisms defined overQ of .
We put := Q

(√ )
. Since is a square-free integer not equal to±1, is a

quadratic field not equal toQ
(√

−1
)
. Furthermore is real or imaginary according

as the dual isogeny ofϕ is equal toϕσ or −ϕσ. We denote byτ the generator of
Gal( /Q).

The isogenyϕ induces the endomorphism [ϕ×ϕσ] satisfying the following com-
mutative diagram:

[ϕ×ϕσ ]−−−−−−→y(η ησ )

y(ησ η)

× σ ϕ×ϕσ

−−−−→ σ ×

We note thatϕσ ◦ ϕ is the multiplication-by- 2 map of . We can check that

([ϕ× ϕσ] )σ = [ϕ× ϕσ] and ([ϕ× ϕσ] )2 = [ 2 ]

Thus we have isomorphisms from into theQ-algebra End0( ) of endomorphisms
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defined overQ of .
We take an isomorphismι from to End0( ) satisfying ι

(√
2
)

= [±1] ◦ [ϕ×
ϕσ] . Then ( ι) is of type , and so is ( ι ◦ τ ).

We recall the definition of the L-series attached to theλ-adic representations of
Gal(Q/Q) on ( ι).

For each prime integer , let ( ) be the -adic Tate module attached to ; ( )
is a Z -free module of rank four. We put ( ) :=Q ⊗Z ( ); ( ) is a Q -vector
space of dimension four. We put :=⊗QQ . Then ( ) is an -module sinceι( )
operates on ( ); in fact, ( ) is a free -module of rank two (cf. [10, Theorem
(2.1.1)]). Since the actions of End0( ) and of Gal(Q/Q) commute with each other, the
action of Gal(Q/Q) on ( ) is -linear. On the other hand is decomposed into
the product

∏
λ| λ of the λ-adic completions λ of at the primesλ dividing .

For eachλ dividing , we put λ( ) := λ⊗ ( ). Then Gal(Q/Q) acts λ-linearly
on λ( ). We get a continuous homomorphism

ρλ : Gal
(
Q/Q

)
→ GL

λ
( λ( ))

The homomorphismρλ is called theλ-adic representationon ( ι).
For a prime integer , letP be a prime inQ and P be its inertia group in

Gal(Q/Q). Let σP be a Frobenius automorphism forP in Gal(Q/Q). We define the
local L-series ( ι ) attached toλ-adic representations by

( ι ) := det(1− · ρλ(σP) | λ( ) P)

where λ( ) P is the fixed subspace for the action ofP. It does not depend on the
choice ofP and σP.

Proposition 3.3 ([11, Proposition 11.9]). For each prime which does not di-
vide , ( ι ) is a polynomial with coefficients in the maximal orderO of ,
which is independent of 6= and λ dividing .

We put

χ( ) :=





0 if divides
1 if does not divide and > 0
( / ) if does not divide and < 0

where ( /∗) is the Kronecker symbol for .

Proposition 3.4 ([2, Proposition (2.3)]). Assume that > 0. For each prime ,

(3.2) ( ι ) = 1− + χ( ) 2 with ∈ O

which is independent of 6= and λ dividing .
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In the following we will see that (3.2) also holds in the case where < 0 and
does not divide .

For each primep in , we denote by p( / ) the p-factor of ( / ), and
we put

εp :=

{
0 if p divides
1 otherwise.

Then we can write

p( / ) = 1− p
degp + εpNp 2 degp

for some integer p, whereNp is the cardinarity of the residue fieldO /p and degp
is the degree of the extension ofO /p over its prime field.

We identify ( ) with ( )⊕ ( σ) through the isomorphism (η ησ). Then we
have ι

(√ )
( ) = ( σ). Thus eachQ -basis of ( ) can be seen as a -basis of

( ). We note that ( )P = ( ) P ⊕ ( σ) P if is unramified in . In the
following we put p := P ∩ .

In the case where splits completely in we have the following:

Lemma 3.5. If splits completely in , then ( ι ) = 1− p + χ( ) 2.

Proof. Since splits completely in ,σP is a Frobenius automorphism forP
in Gal(Q/ ). SinceσP( ℓ( ) P ) = ℓ( ) P , we have ( ι ) = p( / ). The
assertion follows by the definition ofχ( ). We note that p( / ) = pσ ( / )
since and σ are isogenous over .

Next we consider the case where remains prime in . ThenσP( ℓ( ) P ) =

ℓ( σ) P = ι
(√ )

ℓ( ) P . Suppose that either > 0 or p does not divide . It
follows from Proposition 3.3 or 3.4 that ( ι ) = 1− + 2 with ∈ Z

√
and

∈ Z. Now σ2
P is a Frobenius automorphism forP in Gal(Q/ ) andσ2

P( ℓ( ) P) =

ℓ( ) P . Thus we have

(3.3) p( / ) = 1−
(

2 − 2
)

+ 2 2

If p divides , then we have = 0 and2 = 0 ±1. Otherwise we have2 = 2, that
is, = ε with ε = ±1.

Lemma 3.6. Assume that > 0. If remains prime in andp divides ,
then ( ι ) = 1. Namely has additive reduction atp.

Proof. We recall =Q
(√ )

is a quadratic field not equal toQ
(√

−1
)
. Since

∈ Z
√

and 2 = 0 ±1, we have = 0, namely, ( ι ) = 1. Furthermore it
follows from (3.3) that p( / ) = 1. Thus has additive reduction atp.
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Lemma 3.7. If remains prime in and it does not divide , then
( ι ) = 1− + χ( ) 2 for some inZ

√
.

Proof. Since = ∈ Z
√

and = ε , it is enough to showε = χ( ).
Weil’s Riemann conjecture asserts that the absolute value of the inverse roots

(
±√

2 − 4ε
)
/2 of the equation 1− + ε 2 = 0 are equal to

√
. It occurs only if

either ε > 0 or = 0. ε > 0 implies ε = χ( ) by the definition ofχ( ). If = 0,
(3.3) implies p = −2ε and thenε = χ( ) is verified from the following Lemma 3.8.
Thus the assertion is verified.

Lemma 3.8. Assume that remains prime in and it does not divide . If
divides p, then p = −2χ( ) and ( ι ) = 1 +χ( ) 2.

Proof. Since| p| ≤ 2
√

Np = 2 and divides p, we can write p = ε for
an integer such that−2 ≤ ≤ 2. Then it follows from (3.3) that =±√

( + 2)ε .
Since ∈ Z

√
and 6= Q

(√
−1
)
, we have ( ε) 6= (0 2 ±1) (1 3 ±1). Thus

divides unless
√

( + 2)ε = 0.
Suppose that divides . We note that remains prime in . On the one hand,

the order of atp is one since is square-free. On the other hand, it follows from
(3.1) that the order of atp is even. This is a contradiction. Thus does not divide

. We have p = −2ε and = 0.
Next we showε = χ( ). Since p( / ) = 1 + 2ε 2 + 2 4, σ2

P = [−ε ] on

ℓ( ). Sincep does not divide , the reduction ofϕσ◦σP moduloP is an endomor-
phism of the reduction p of modulo p. Furthermore, theQ-algebra of endomor-
phisms of p is a definite quarternion algebra since dividesp. Now (ϕσ ◦ σP)2 =
ϕσ ◦ ϕ ◦ σ2

P = [−ε ] on ℓ( ). Thus the injectivity of the reduction mapping from
the Q-algebra of endomorphisms of to that ofp implies −ε < 0. Hence, by the
definition of χ( ), we haveε = χ( ).

Next we consider the case wherep ramifies over . Then it follows from Propo-
sition 3.1 that divides and thusχ( ) = 0 by definition. Thus Poroposition 3.3
implies that ( ι ) = 1− + χ( ) 2 for some inO .

Lemma 3.9. Assume that > 0. If p is ramified in , then ( ι ) = 1.
Namely, has additive reduction atp.

Proof. By the definition of ( ι ), we have ( ι ) ( ι )τ =
( /Q ). Together with Proposition 3.2, we see that

(3.4) (1− )
(
1− τ

)
= 1− p + εp

2

Suppose thatεp = 1. Then must be an imaginary quadratic integer with| | =
√
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by (3.4). Since is a real quadratic field, this contradicts Proposition 3.3. Thusεp =
0, and consequently we get =p = 0 from (3.4).

We define the L-series ( ι ) attached toλ-adic representations on ( ι) by
the Euler product:

(3.5) ( ι ) :=
∏

( ι − )−1

where the product is taken for all primes (resp. primes whichdoes not divide )
in the case of > 0 (resp. < 0).

We define{ } ≥1 by ( ι ) =
∑

≥1
− . We note is well-defined for

each prime . Since ( ι ) = 1− +χ( ) 2 from Lemmas 3.5–3.9, the Euler
product (3.5) implies the following equations:

(3.6)

{
′ = ′ for ′ ≥ 1 with ( ′) = 1
+2 − +1 + χ( ) = 0 for each prime and ≥ 0

Together with Lemmas 3.5–3.9, we have:

Proposition 3.10. The coefficient has the following properties:

(3.7)





∈ Z if ( / ) = 1
∈ Z

√
if ( / ) = −1

= 0 if ( / ) = 0

We note that = 0 for each by the definition of (ι ), if < 0 andp divides
.

3.2. We take an invariant differentialω on . The invariant differentialω de-
fines the module homomorphismα from Hom ( σ) to by

ψ∗((ω )σ
)

= α(ψ)ω

whereψ∗((ω )σ) is the pull-back of the conjugate differential (ω )σ on σ by ψ. We
define the L-series α( ) by

α( ) :=
1
2

( ( ι ) + ( ι ◦ τ ))(3.8)

+
εα(ϕ)σ

2ι−1([ϕ× ϕσ] )
( ( ι ) − ( ι ◦ τ ))

where ε is 1 or −1 according as > 0 or < 0. We note thatι−1([ϕ × ϕσ] ) =
±
√

2 . The L-series α( ) does not depend on the choice ofι, since (ι ◦ τ )−1([ϕ×
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ϕσ] ) = −ι−1([ϕ × ϕσ] ). The L-series α( ) has coefficients in , and it does not
generally have Euler product. We define{˜ } ≥1 by

∑
≥1 ˜ − = α( ) For sim-

plicity, in the rest of this paper, we assume thatι
(√

2
)

= [ϕ × ϕσ] , and we write
α instead ofα(ϕ).

Proposition 3.11. The coefficient̃ has the following properties:

(3.9) ˜ =





if ( / ) = 1(
/
√

2
)
εασ if ( / ) = −1

0 if ( / ) = 0.

Proof. We get

(3.10) ˜ =
+ τ

2
+

− τ

2
√

2
εασ

from the definition of ˜ . Together with Proposition 3.10, Proposition 3.11 follows.

We denote the formal group over with transformer
∑

≥1 ˜ −1 by ˆ
α( 1 2).

We call ˆ
α( 1 2) the formal group of α( ).

For each primep, we denote byO p and p the p-adic completions ofO and
of . We denote byσp the Frobenius automorphism forp in Gal( p/Q ). We take a
finite set of primes in satisfying the following condition:

(3.11) (i) If α/ /∈ O p, thenp ∈ .

If p /∈ , then ˜ ∈ O p for each . LetO be the ring of -integers in . Namely,

O =
⋂

p/∈
(O p ∩ )

Then ˜ ∈ O for each .

Theorem 3.12. ˆ
α( 1 2) over p is of type − ˜ + χ( ) 2 for each prime

p /∈ . In particular, ˆ
α( 1 2) is defined overO .

Proof. The latter part immediately follows from the former part by using Propo-
sition 2.1. By using Propositions 2.6 and 2.7, for the proof of the former part it is
enough to show

(3.12)
∑

≥1

˜ | χ = ˜
∑

≥1

˜σ
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for each primep /∈ .
We define 1( ) and 2( ) in Q[[ ]] 0 by

1( ) +
√

2
2( ) =

∑

≥1

Then we have

1( ) + εασ 2( ) =
∑

≥1

˜

It follows from (3.6) that

(3.13)
∑

≥1

| χ =
∑

≥1

The equation (3.13) implies the following three lemmas. Theorem 3.12 follows from
them.

Lemma 3.13. If splits completely in andp /∈ , then ˆ
α( 1 2) over p is

of type − ˜ + χ( ) 2.

Proof. We recall that ∈ Z and = ˜ by Propositions 3.10 and 3.11 in this
case. We also recallσp = 1. Since ∈ Z, it follows from (3.13) that

1( ) | χ = 1( ) and 2( ) | χ = 2( )

Thus we have

∑

≥1

˜ | χ = ( 1( ) + εασ 2( )) | χ = ( 1( ) + εασ 2( )) = ˜
∑

≥1

˜σp

Hence Lemma 3.13 follows from Proposition 2.6.

Lemma 3.14. If remains prime in andp /∈ , then ˆ
α( 1 2) over p is

of type − ˜ + χ( ) 2.

Proof. We recall that ∈ Z
√

and ˜ =
(

/
√

2
)
εασ by Propositions 3.10

and 3.11 in this case. We also recallσp| = σ. Since ∈ Z
√

, it follows from (3.13)
that

1( ) | χ =
√

2
2( ) and 2( ) | χ = √

2
1( )
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Thus we have

∑

≥1

˜ | χ =
√

2
2( ) + εασ√

2
1( )

= √
2
εασ( 1( ) + εα 2( )) = ˜

∑

≥1

˜σp

Hence Lemma 3.14 follows from Proposition 2.6.

Lemma 3.15. If p is ramified in andp /∈ , then ˆ
α( 1 2) over p is of

type π, whereπ is a prime element ofO p.

Proof. We recall that =̃ = 0 by Propositions 3.10 and 3.11 (resp. by the
definition of ( ι ) and Proposition 3.11) if > 0 (resp. if < 0). Since = 0,
it follows from (3.13) that

1( ) | χ = 0 and 2( ) | χ = 0

Thus we have
∑

≥1

˜ | χ = 0

Hence Lemma 3.15 follows from Proposition 2.7.

3.3. Finally we give a geometric interpretation of˜ in the case where remains
prime in andp does not divide . In this case we have

(
√

2
ϕ

)∗
((ω )σ) =

(
√

2

)
αω = ε˜σω = χ( )˜σω

We consider the reduction of
(

/
√

2
)
ϕ modulo p.

In this case we see that does not divide by Proposition 3.1. Wealso see
that p does not divide σ since σ = ( )σ. We denote byπ the Frobenius -
th power endomorphism of the reduction of modulo . We denote by π

p
the

Frobenius -th power homomorphism from the reductionp of modulo p to the
reduction σ

p of σ modulo p and byπ σ
p

the one from σ
p to p.

Proposition 3.16. Assume that remains prime in andp does not divide
. Then

(
/
√

2 ϕ
)∗

((ω )σ) = χ( )˜σω . Moreover the reduction of
(

/
√

2
)
ϕ

modulop is π
p

+ χ( ) π−1
σ
p

.
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Proof. We have the following commutative diagrams:

π
−−−−→

π−1

−−−−→y(η ησ )p

y(ησ η)p

y(η ησ )p

y(ησ η)p

p × σ
p

π p×π σ
p−−−−−−→ σ

p × p p × σ
p

π−1
σ
p
× π−1

p−−−−−−−−→ σ
p × p

where (η ησ)p and (ησ η)p are the reductions modulop of (η ησ) and of (ησ η), re-
spectively. Since [ ] =π + χ( ) π−1, we have

[ ]
−−−−→y(η ησ )p

y(ησ η)p

p × σ
p

(
π p +χ( ) π−1

σ
p

)
×
(
π σ

p
+χ( ) π−1

p

)
−−−−−−−−−−−−−−−−−−−−−−−→ σ

p × p

which is the reduction of the diagram:

[ ]−−−−→y(η ησ )

y(ησ η)

× σ

(
/
√

2
)
ϕ×
(

/
√

2
)
ϕσ

−−−−−−−−−−−−−−−−−−→ σ ×

Hence the reduction of
(

/
√

2
)
ϕ modulo p is π

p
+ χ( ) π−1

σ
p

.

4. Formal groups associated to certain Q-curves over quadratic fields

Let notations and assumptions be the same as in the previous sections. In this sec-
tion, we fix a Weierstrass model

(4.1) 2 + 1 + 3 = 3 + 2
2 + 4 + 6 ( ∈ O )

for and we take the canonical invariant differential /(2 + 1 + 3) asω . We
denote by andD the discriminant of (4.1) and the minimal discriminant of over

, respectively. Then we can write

( ) = D · a12

for some integral ideala in O .
Let ˆ ( 1 2) be the formal group associated to the Weierstrass model (4.1). Then

ˆ ( 1 2) is the formal group overO with transformer

( ) =
∑

≥1

whereω =
∑

≥1

−1 for := − (cf. e.g. [5]; (33.1.14))
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If necessary, we replace by a larger finite set satisfying thefollowing conditions:

(4.2)

(i) If α/ /∈ O p, then p ∈ .
(ii) If either p or pσ divides a, thenp ∈ .
(iii) If p is ramified, thenp ∈ .
(iv) If < 0 andp divides , thenp ∈ .

We note the condition (i) is the same as in (3.11). Then we have:

Theorem 4.1. ˆ
α( 1 2) is defined overO , and it is strongly isomorphic

over O to ˆ ( 1 2).

Proof. The former part follows from Theorem 3.12. For the proof of the latter
part, it is enough to show that̂ ( 1 2) over O p belongs to the same special ele-
ment as in Theorem 3.12, that is,− ˜ + χ( ) 2, for each primep /∈ . Theorem
4.1 follows from Theorem 4.2 as below, since each prime whichis not in is unram-
ified by (iii).

As below, we fix an unramified primep in and we denote by the prime in-
teger lying inp. We prove:

Theorem 4.2. Assume thatp is unramified. Unles < 0 and p divides ,
ˆ ( 1 2) over O p belongs to the following special element:

{ − ˜ + χ( ) 2 if p does not dividea
if p dividesa

Proof. We divide our discussion into two cases. In Lemma 4.3 we deal with the
case wherep divides . Next, in Lemma 4.4 we consider the case wherep does not
divide . Theorem 4.2 follows from these two lemmas.

Lemma 4.3. Assume thatp is unramified and it divides .
(i) If p dividesa, then ˆ ( 1 2) over O p is of type .
(ii) Assume > 0. If p does not dividea, ˆ ( 1 2) over O p is of type − ˜ +
χ( ) 2.

Proof. We show (i) and the case ofp = 0 in (ii). In the case where eitherp
divides a or p = 0, the reduction of the group law of modulop is the additive
group, and so is the reduction of̂( 1 2) modulo p. Thus the transformer ( ) of
ˆ ( 1 2) satisfies

(4.3) −1( ( )) ≡ 0 modpO p
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By Propositions 2.2 and 2.4, it follows from (4.3) that

( ) ≡ 0 modpO p

namely, ˆ ( 1 2) over O p is of type . This completes the proof of (i). In addition,
if p = 0, we have = − ˜ + χ( ) 2 by Lemma 3.5 and (3.9). Thus the case of

p = 0 in (ii) is verified.
Now we show the remaining case in (ii). In the case wherep does not dividea

and p = ±1, splits completely in by Lemma 3.6. The reduction of the group law
of modulo p is the multiplicative group over the quadratic extension ofO /p and
is isomorphic to it overO /p if and only if p = 1. So is the reduction of̂ ( 1 2)
modulo p. Thus ˆ ( 1 2) over O p is of type − p by Proposition 3 in [6]. In
addition, − p = − ˜ + χ( ) 2 by Lemma 3.5 and (3.9). Thus the case of

p 6= 0 in (ii) follows.

Lemma 4.4. Assume thatp is unramified and it does not divide . Then
ˆ ( 1 2) over O p is of type − ˜ + χ( ) 2.

Proof. Since the FrobeniusNp-th power endomorphismξ of p satisfies

ξ2 − pξ + Np = 0

( ) satisfies

(4.4) −1
(
Np ( ) − p

( Np
)

+
( Np2)) ≡ 0 modpO p

Sincep is unramified, by Propositions 2.2 and 2.4, (4.4) implies

(4.5) Np ( ) − p

( Np
)

+
( Np2) ≡ 0 modpO p

We first assume that splits completely in . Then (4.5) implies

(4.6) ( )− p

( )
+

( 2) ≡ 0 modpO p

namely, ˆ ( 1 2) over O p is of type − p + 2. In addition, − p + 2 =
− ˜ + χ( ) 2 by Lemma 3.5 and (3.9).

Secondly we assume that remains prime in and dividesp. Then we have

p = −2χ( ) by Lemma 3.8. Since the height of̂ ( 1 2) over O p is two, it
follows from Proposition 2.3 that̂ ( 1 2) over O p is of type + + 2 for
∈ pO p and ∈ O∗

p. From Propositions 2.2 and 2.5, we have

(4.7)





(
− + −1 2

) (
+ + 2

)
= 2 + 2χ( ) 2 + 4

− σp + + −1 = 2χ( )
−1 − = 0
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In particular, the second equation in (4.7) implies

(4.8) σp = −1( − χ( ))2

The orders atpO p of and of are equal to 1 and 0, respectively. Thus that of
the right hand side of (4.8) is odd. On the other hand, that of the left hand side of
(4.8) is even unless = 0. Thus we have = 0, and consequently =χ( ). Namely,
ˆ ( 1 2) over O p is of type +χ( ) 2. In addition, +χ( ) 2 = + ˜ +χ( ) 2

by Lemma 3.8 and (3.9).
Lastly we assume that remains prime in and does not dividep. Since the

height of ˆ ( 1 2) over O p is one, it follows from Proposition 2.3 that̂ ( 1 2)
over O p is of type − for ∈ O∗

p, that is,

(4.9) ( )− σ( ) ≡ 0 modpO p

We note that ˆ σ( 1 2) over O p is of type − σp . By Propositions 2.2 and 2.4,
(4.9) implies

(4.10) ( σ)−1( −1 ( )) ≡ modpO p

By acting σp on (4.10), we have

(4.11) −1
(

( σp )−1 σ( )
)
≡ modpO p

It follows from the congruences (4.10) and (4.11) that the reduction modulop of the
homomorphisms in the left hand side of (4.10) and (4.11) are the formal completion
of the Frobenius homomorphismsπ

p
and π σ

p
, respectively.

Since ( − σp ) σp = σp ( − ), it follows from Proposition 2.1 that
( σ)−1( σp ( )) is a homomorphism overO p from ˆ ( 1 2) to ˆ σ( 1 2). Since
the composite of −1( ( σp )−1 σ( )) and ( σ)−1( σp ( )) is equal to [ ]̂ ( ), the
reduction modulop of ( σ)−1( σp ( )) is the formal completion of π−1

σ
p

. Hence the

reduction modulop of ( σ)−1(( −1 + χ( ) σp ) ( )) is that of π
p

+ χ( ) π−1
σ
p

, and

consequently, it follows from Proposition 3.16 that−1 + χ( ) σp = χ( )˜σ, equiva-
lently, χ( )( σp )−1 + = ˜ .

Since (1− χ( )( σp )−1 )( − ) = − ˜ +χ( ) 2, ˆ ( 1 2) over O p is of
type − ˜ + χ( ) 2.

REMARK. In Theorem 4.1, we can not exclude the condition (iii) in (4.2) on .
Indeed, there exists the following example.

We take theQ-curve, over =Q
(√

−1
)
, defined by the Weierstrass model

2 +
(
1−

√
−1
)

+
(
−1 +

√
−1
)

= 3 − 2 +
(
3 + 6

√
−1
)

+ 5− 3
√
−1
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as . It is the minimal model for theQ-curve (5)
3 defined by Hasegawa [4], and it

has an isogenyϕ over from to σ of degree 5 withα = 1−
√
−1. In fact, it is

a modular elliptic curve with respect to0(416) (cf. [4]). We see that

= −23 ·
(
3− 2

√
−1
)
· 13 anda = (1)

Thus we can take the empty set as if we do not assume (iii).
However, ˆ

α( 1 2) and ˆ ( 1 2) are not strongly isomorphic overO p at the
ramified primep =

(
1 +

√
−1
)

lying above = 2. Indeed, it follows from Propo-
sition 2.7 that ˆ

α( 1 2) over O p is of type π for a prime element inp. On
the other hand,ˆ ( 1 2) over O p is not of type π, since it has the transformer

+
(
−1 +

√
−1
)

2/2 +
(
−1 − 2

√
−1
)

3/3 + · · · . Thus these formal groups are not
strongly isomorphic overO p.

Hence Theorem 4.1 does not hold without the condition (iii).

As a corollary of Theorem 4.1 we have:

Corollary 4.5. The congruence ≡ ˜ modp holds for p /∈ .

Proof. We have

0 ≡
(

− ˜ + χ( ) 2
)
∗ ( )

≡
∑

≥1

− ˜
∑

≥1

σ

+ χ( )
∑

≥1

2

≡
∑

≥1
( )=1

− ˜ σ

−
∑

≥1

2 − ˜ σp + χ( ) 2

modp

Thus the congruence − ˜ σ ≡ 0 modp holds for each natural number which is
coprime to . We note that1 = 1. By substituting = 1 to the congruence, we get
Corollary 4.5.

Together with Weil’s inequality:| | ≤ 2
√

and Corollary 4.5, we see that
ˆ ( 1 2) determines for large prime integers . We give a numerical example in
the following.

EXAMPLE. We put ζ :=
(
1 +

√
−3
)
/2 and :=Q(ζ). We take theQ-curve, over

, defined by the Weierstrass model

2 + (1− ζ) − (1 + ζ) = 3 + ζ 2 + (19 +ζ) + 18− 30ζ

as . Then it is the minimal model for theQ-curve (3)
−26 defined by Hasegawa [4]

and it has an isogenyϕ over from to σ of degree 3 withα = 2− ζ. Since we
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(−3/ ) mod

2 −1 −1 + ζ 1 + ζ −
√

3
3 0 0 0 0
5 −1 27 + 7ζ 2 + 2ζ 2

√
3

7 1 57− 196ζ 1 1
11 −1 9403− 26149ζ −2− 2ζ −2

√
3

13 1 −234583 + 113464ζ 2 2
17 −1 −34917577 + 7749873ζ −2− 2ζ −2

√
3

19 1 95051239 + 3653700ζ −4 −4
23 −1 1705031103 + 24795239311ζ 2 + 2ζ 2

√
3

29 −1 21826646904619− 28272514599109ζ 0 0

haveαασ = 3, we haveε = 1, = 1, = 3. Furthermore it is a modular elliptic curve
with respect to 0(63) (cf. [4]). We have

= −ζ2 · 33 · 72 · (3− ζ) and a = (1)

We can take the set of the ramified primes in as .
For each prime such that 2≤ ≤ 29, mod are given in the above

table. We note that is given by Fourier coefficients of the newform with respect
to 0(63), corresponding to the restriction of scalars of . From the table, we can
check Corollary 4.5 for 5≤ ≤ 29.

Conversely, by using Corollary 4.5 and Weil’s inequality:| | ≤ 2
√

, we can
determine (5≤ ≤ 29) from the values of mod in the above table.

For example, when = 5, remains prime in and we have˜5 ≡ 2ασ mod 5 by
Corollary 4.5. Thus we havẽ5/α

σ = 5/
√

3 ≡ 2 mod 5 by Proposition 3.11. Together
with Weil’s inequality | 5| ≤ 2

√
5, we see 5 = 2

√
3.

When = 7, splits completely in . Since it follows from Corollary 4.5 that
˜7 ≡ 1 modp holds for each primep lying above , we havẽ7 ≡ 1 mod 7. Thus we
have ˜7 = 7 ≡ 1 mod 7 by Proposition 3.11. Together with Weil’s inequality| 7| ≤
2
√

7, we see 7 = 1.
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