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0. Introduction

In this paper we investigate complex analytic completenessof certain unramified
covers of proper families of analytic spaces with -dimensional fibers. When = 1,
T. Ohsawa has studied the stability of unramified covering spaces of complex analytic
families of Riemann surfaces, and proved the following ([13], [14]):

Theorem O. (1) Let be a connected complex manifold of dimension2 and
the unit disk ofC. Let π : −→ be a proper surjective holomorphic submersion.
Then every unramified covering space of is holomorphically convex.(2) Let be
any contractible complex space, and X a complex space. Letπ : −→ be a proper
surjective holomorphic map with one-dimensional fibers, and σ : ˜ −→ an unram-
ified cover. Then a point ∈ has an open neighborhood such that(π ◦ σ)−1( )
is holomorphically convex if and only if(π ◦ σ)−1( ) is holomorphically convex.

In connection with Theorem O, the author ([10]) and M. Coltoiuand V. Vâjâitu
([4]) have investigated completeness of the covering spaces of proper families with
higher dimensional fibers. Here we shall prove a new result inthis direction.

Let π : −→ be a proper surjective holomorphic map of connected complex
manifolds, and = dim − dim the relative dimension. Letσ : ˜ −→ be an un-
ramified cover. We remark that when is an analytic subset,π−1( ) and (π◦σ)−1( )
have possibly non-reduced structures. Then we prove the following.

Theorem. Let be a point of satisfying the following two conditions: (i)
π−1( ) is a reduced connected complex space of dimension, (ii) (π ◦ σ)−1( ) has no
compact irreducible component of dimension, where = dim − dim is the rela-
tive dimension. Then there exists an open neighborhood of such that (π ◦σ)−1( )
is -complete.

It is well known that every -dimensional reduced paracompact complex space is
-complete if it has no compact irreducible component of dimension ([12], [6]). Our

theorem is a relative version of this fact. We also remark that Coltoiu and V̂ajâitu have
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shown in [4] the result in the case whereπ is a holomorphic submersion in our theo-
rem.

In §1, we prepare notation and terminology. In§2, we study convexities of certain
subdomains in . In§3, we recall the construction of -convex functions by using the
argument of J.P. Demailly([6]) and prove the existence of special -convex functions
on (π ◦ σ)−1( ). In §4, we use the argument of Coltoiu and Vâjâitu in [4] and prove
the above theorem.

In Appendix, we explain the following two facts. In AppendixA, we describe
constructions of ‘holomorphic motions’ of complex analytic families of relatively com-
pact complex manifolds by using the argument of M. Kuranishi([8]). In Appendix
B, we prove the existence of certain exhaustion functions onthe unramified covering
spaces by using the argument of T. Napier([11], [2]).
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1. Preliminaries

Let be a complex space and the Zariski tangent space of at∈ . We
put =∪ ∈ .

A real-valued ∞-function ϕ on is said to be -convexif there exists an open
covering { λ}λ∈ of such that each λ is isomorphic to a closed analytic set in
an open set λ ⊂ C λ and eachϕ|

λ
has an extensioñϕλ to λ such that the Levi

form of ϕ̃λ has at most ( − 1) non positive eigenvalues at each point ofλ. This
property does not depend on the covering nor on the local embeddings.

A real-valued functionϕ on a topological space is said to be anexhaustion
function if the sublevel set :={ ∈ | ϕ( ) < } is a relatively compact set
of for any ∈ R.

A complex space is said to be-completeif there exists an exhaustion function
ϕ, which is -convex on .

A set M ⊂ is said to bea linear set over Xif, for every point ∈ ,
M( ) := M∩ is a complex vector space. We put codimM := sup ∈ codimM( )
andM| := M∩

(
∪ ∈

)
for ⊂ .

DEFINITION 1.1. Let be a complex space andM be a linear set over .
(1) Let be a point of . A real-valued ∞-function ϕ is said to be weakly 1-
convex with respect toM( ) if there exists a local embeddingι : −→ , where

denotes an open neighborhood of in and denotes an open set inC , and
an ∞-extensionϕ̃ to of ϕ| such that ∂∂ϕ̃(ι( ))(ι∗(ξ) ι∗(ξ)) ≥ 0 for every
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ξ ∈ M( ).
The functionϕ is said to be weakly 1-convex with respect toM if ϕ is weakly

1-convex with respect toM( ) for every ∈ .
(2) The functionϕ is said to be 1-convex with respect toM if every point of has
an open neighborhood ⊂ and a 1-convex functionψ on such thatϕ − ψ is
weakly 1-convex with respect toM| .

Then the following hold.

Proposition 1.2 ([15]). Let be a complex space andϕ a -convex function on
. Then there exists a linear setM over with codimM ≤ − 1 such thatϕ is

1-convex with respect toM.

Lemma 1.3 ([15], Lemma 1.2). Let be a complex manifold with a hermitian
metric . Let M be a linear set over . Then a real-valued∞-function ϕ is 1-
convex with respect toM if and only if, for every compact set ⊂ , there exists a
constantδ > 0 such that ∂∂ϕ( )(ξ ξ) ≥ δ · ‖ξ‖2 holds for every ∈ and ξ ∈ M,
where‖ · ‖ denotes the norm induced by .

We introduce the following class which consists of continuous functions.

DEFINITION 1.4. Let be a complex space andM a linear set over . A real-
valued continuous function on is said to beM-convex if every point of has
an open neighborhood and finitely many functions1 . . . : −→ R which are
1-convex with respect toM| satisfying | = max{ 1 . . . }.

We denote byB( M) the set of allM-convex functions on .
From the argument of [17], we approximate anM-convex function up to second

order derivative. Then we have the following result.

Proposition 1.5 (cf. [17], Theorem 1). Let be a complex manifold with a her-
mitian metricω and L a linear set over . Letη : −→ (0 ∞) and κ : −→ (0 ∞)
be continuous functions. Let : −→ R be an L-convex function such that ev-
ery point of has an open neighborhood = ( ) and finitely many functions

′
1 . . . ′ : −→ R with

| = max{ ′
1 . . . ′}

∂∂ ′ ( )(ξ ξ) ≥ κ‖ξ‖2
ω

for ∈ and ξ ∈ L( ). Then there exists a ∞-function ˜ : −→ R which is
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1-convex with respect toL such that

≤ ˜ < + η

∂∂˜ ( )(ξ ξ) ≥ κ‖ξ‖2
ω

for every ∈ and ξ ∈ L( ), where‖ · ‖ω denotes the norm induced byω.

On the other hand, we can approximate -convex functions by -convex Morse
functions as follows.

Proposition 1.6 ([3], [17]). Let ( ω) be a hermitian manifold andϕ be a -
convex function. Then, for any continuous functionε : −→ (0 ∞), there exists a -
convex Morse functionψ on with distinct critical values such that, for every ∈ ,
(i) |ϕ( ) − ψ( )| < ε( ), (ii) ‖ ϕ( ) − ψ( )‖ω < ε( ), (iii) ‖∂∂ϕ( ) − ∂∂ψ( )‖ω <
ε( ).

Let be an -dimensional complex manifold with a hermitian metric . Let
{( 1 . . . ) } be a local coordinate neighborhood of∈ and ( )1≤ ≤ the
matrix representation of with respect to{( 1 . . . ) }. For a real-valued ∞-
function on , we introduce the trace of the Levi form with respect to defined
by

△ ( ) = Trace ∂∂ ( ) :=
∑

1≤ ≤
( )

∂2

∂ ∂
( )

where ( ) is the conjugate of the inverse matrix of () (cf. [6]). Then △ is a
∞-function on . We will say that isstrongly -subharmonicif △ ( ) > 0 for

every point ∈ . The ∞-function is -convex if is strongly -subharmonic.
Let be a complex submanifold of and :−→ R be a ∞-function. We define

△ | ( ) :=
∑ ∣∣∣∣ ( ) · ∂2

∂ ∂

∣∣∣∣ ( )

for ∈ in the similar way. We will say that isstrongly -subharmonic on if
△ | ( ) > 0 for every point ∈ .

Let be a reduced complex space of dimension . It is known that is -
complete if has no compact irreducible component of dimension ([12], [6]). In-
deed, we can prove it as follows. We find that there exists a sufficiently small -
complete neighborhood of Sing( ). Then we prove the -completeness by showing the
following proposition. We need this to show our claim.

Proposition 1.7 ([6], p. 290). Let be a reduced complex space of dimension
with no compact irreducible component of dimension . Let be aproper open
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subset of , which is -complete neighborhood ofSing( ). Let ϕ : −→ [0 ∞) be
an -convex exhaustion function on . Let∈ (0 ∞) be a constant with{ϕ < } ⊃
Sing( ). Then there exist a hermitian metric onReg( ) and an -convex exhaustion
functionψ on such that(i) ψ = ϕ on { ∈ | ϕ < }, and {ϕ < } = {ψ < },
(ii) ψ is strongly -subharmonic onReg( ).

Moreover, we use the following theorem in [6] to examine neighborhoods of sin-
gularities.

Theorem 1.8 ([6], Theorem 1). Let 1 be an analytic subset in a complex space

2. If 1 is -complete, then 1 has a fundamental family of -complete neighbor-
hoods ′ in 2.

To construct special -convex functions, we also need to notice the following
claims whose proofs are more or less immediate. For the detailed proofs, the reader
is referred to [4].

Lemma 1.9 (cf. [4], Lemma 3). Let be a complex space and∗ an analytic
subset containing the singular partSing( ) of . Let { λ}λ∈ be connected compo-
nents of \ ∗. Let be an open neighborhood of∗ with \ 6= φ. For λ ∈ ,
let λ := { 1 . . . } be finite points of λ \ with 6= if 6= , and let

λ := { 1 . . . } be finite points of λ \ with 6= if 6= . Then there exist a
diffeomorphism : −→ and a compact subsetλ of λ with λ ∩ = φ such
that (i) ( λ) = λ, (ii) is biholomorphic near λ, (iii) is the identity map on
\ λ.

Lemma 1.10 (cf. [4], Lemma 4, [10], Proposition 3.2).Let be a complex
space and ∗ an analytic subset containing the singular partSing( ) of . Let
{ λ}λ∈ be connected components of\ ∗. Let be an open neighborhood of∗

with λ \ 6= φ for eachλ ∈ . Let { ν}ν∈N be a family of open sets of , and
{ λ ν ⊂ λ | ν ∈ N with ( λ ∩ ν) \ 6= φ} be a family of open sets ofλ for each
λ ∈ such that
(1) { ν} is a locally finite open covering of with relatively compact connected sets,
(2) λ ν is a non empty relatively compact set of( λ ∩ ν) \ and λ ν ∩ µ = φ
if ν 6= µ.

For each λ ∈ , let λ be a discrete set of λ \ and we put := ∪λ λ.
Then there exists a diffeomorphism: −→ such that(i) ( λ) ⊂ ∪ν∈N λ ν for
λ ∈ , and ( ) ⊂ ∪λ ν λ ν , (ii) is biholomorphic near λ for λ ∈ , (iii) is
the identity map on .



64 K. M IYAZAWA

Proof. We may assume that \ ∗ has only one connected component1, and
= 1 is non empty set. We put ν := 1 ν and ν := 1 ν for ν ∈ N.

We put =∪ν=1 ν for ∈ N. By using induction, we will construct a sequence
of diffeomorphisms{ : −→ } ∈N satisfying the following:
( ) there exists a compact set of with ∩ = φ and is the identity map
on \ ,
( ) ( 1 ∩ ) ⊂ ∪ν≤ ν ,
( ) is biholomorphic near 1 ∩ ,
( ) = −1 on \ .

For = 1, we put 1 ∩ 1 = { 1 . . . } and choose finitely distinct many points
{ 1 . . . } ⊂ 1 with { 1 . . . } ∩ { 1 . . . } = φ. Let 1 be a compact set of

1 with 1 ∩ = φ. From Lemma 1.9, there exists a diffeomorphism1 : −→
such that 1( ) = for = 1 . . . , and 1 is biholomorphic near 1 ∩ 1, and 1

is the identity map on \ 1.
Suppose that there exist diffeomorphisms1 . . . satisfying ( ) ,( ) ,( ) ,( )

for = 1 . . . . From Lemma 1.9, there exists a diffeomorphism+1 : −→ and
a compact set ′

+1 with ′
+1 ∩ = φ such that +1( 1 ∩ +1) ⊂ +1, and +1

is biholomorphic near 1 ∩ +1 and +1 is the identity map on \ +1. We put

+1 := ◦ +1 and +1 := ∪ ′
+1. Then the map +1 satisfies ( )+1 – ( ) +1.

From ( ) , there exists the limit := lim . Then is a diffeomorphism satisfy-
ing (i)–(iii).

Let be an ( + )-dimensional complex manifold and be a domain ofC
which contains , where denotes the unit ball inC . Let ̟ : −→ be a surjec-
tive holomorphic map with maximal rank. We put :=̟−1( ) for ⊂ . Suppose
that there exists a ∞-map : 0 × −→ satisfying the following: (i) is a dif-
feomorphism, (ii) ∋ 7−→ ( ) ∈ is a holomorphic retraction over for every
∈ 0, and is the disjoint union of{ ( ) | ∈ 0}, (iii) the map : −→ 0,

defined by ( ( )̟( )) = , is a ∞-retraction onto 0, (iv) there exist an -convex
Morse function : 0 −→ [0 ∞) with distinct critical values and an open neighbor-
hood 0 of all critical points of such that | −1( 0) is holomorphic.

We put :={ ( ( ) ) | ∈ } and :=̟−1 ◦ ̟( ) for ∈ . Then the
following holds.

Lemma 1.11 (cf. [4], Lemma 7). There exists a hermitian metric on such
that and are orthogonal with respect to .

We fix an open neighborhood ′
0 of all critical points of satisfying ′

0 ⊂ 0.
We put 1 := −1( 0) and 2 := 0 \ −1( ′

0). Let N be a linear set over 0 with
codimN ≤ − 1 such that is 1-convex with respect toN over 0. We putM1 :=
∗(N ) over 1, which is a linear set over 1 with codimM1 ≤ − 1. Let ′ denotes
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the holomorphic tangent space at to the real smooth hypersurface { ◦ = ◦ ( )}
and ′′ denotes its orthogonal complement in with respect to a hermitian metric

on in Lemma 1.11. We putM2( ) := ⊕ ′′ for ∈ 2, which is a linear
set over 2 with codimM2 = − 1.

We also suppose the following for the function : (v) There exists a ∞-function
: [0 ∞) −→ (0 ∞) such that

|〈∂( ◦ )( ) ξ〉| ≥ ( )‖ξ‖2

holds for ∈ [0 ∞) and ∈ { ◦ = } ∩ ̟−1( ) ∩ 2 and ξ ∈ ′′, where‖ · ‖
denotes the norm induced by . Then the following holds.

Proposition 1.12 (cf. [4], Lemma 9). There exists a strictly increasing convex
function λ : R −→ R with λ(0) = 0 such that(i) ∂∂(λ ◦ ◦ )( )(ξ ξ) ≥ ‖ξ‖2

for ∈ ̟−1( ) ∩ 1 and ξ ∈ M1( ) ∩ , (ii) ∂∂(λ ◦ ◦ )( )(ξ ξ) ≥ ‖ξ‖2 for
∈ ̟−1( ) ∩ 2 and ξ ∈ ′′.

We put ∗ := λ ◦ ◦ , whereλ denotes the ∞-function in Proposition 1.12. We
put ϕ := − log( − ∗) + ‖̟‖2, where denotes a positive constant. Then we have
the following.

Theorem 1.13 (cf. [4], Lemma 10, Lemma 11). (1)The functionϕ is 1-
convex with respect toM1 on 1 ∩ { < } for every constant > 0 and > 0.
Moreover, for any positive constant> 0 and any relatively compact open set of

0, there exists a constant > 0 such that ∂∂ϕ ( )(ξ ξ) ≥ ‖ξ‖2 / holds for
0< ≤ and ∈ 1 ∩ { < } ∩ −1( ) and ξ ∈ M1( ) and ≥ .
(2) Let > 0 be a positive constant and be any relatively compact open setof

0. Then there exists a sufficiently large constant> 0 such that ∂∂ϕ ( )(ξ ξ) ≥
‖ξ‖2 / holds for 0 < ≤ and ∈ 2 ∩ { < } ∩ −1( ) and ξ ∈ M2( ) and

≥ . Especiallyϕ is 1-convex with respect toM2 on 2∩{ < }∩ −1( ) for
≥ .

Proof. (1) The first part follows from Proposition 1.12 (i) and the fact that is
holomorphic on 1.

We show the second half as follows. We put ( ) :=M1( ) ∩ for ∈ 1.
Then ( ) and is orthogonal with respect to the hermitian metric . We put
ξ = (ξ′ ξ′′) ∈ M1( ) for the orthogonal decompositionM1( ) = ⊕ ( ). Then
there exists a constant 0 = 0( ) > 0 satisfying the following:

∂∂‖̟‖2( )(ξ ξ) ≥ 0‖ξ′‖2

for 0 < ≤ and every ∈ 1 ∩ { < } ∩ −1( ) and ξ ∈ M1( ). By using
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Proposition 1.12 (i), we have

∂∂ϕ ( )(ξ ξ) ≥ 0‖ξ′‖2 +
‖ξ′′‖2

− ∗( )

for 0 < ≤ and every ∈ 1 ∩ { < } ∩ −1( ) and ξ ∈ M1( ). We put
= ( 0)−1. Then we have

∂∂ϕ ( )(ξ ξ) ≥ ‖ξ′‖2 + ‖ξ′′‖2

=
‖ξ‖2

for 0 ≤ ≤ and every ∈ 1 ∩ { < } ∩ −1( ) and ξ ∈ M1( ).
(2) We put ξ = (ξ′ ξ′′) ∈ M2( ) for the orthogonal decompositionM2( ) =
⊕ ′′. Since is a compact set of 0, there exist constants = ( )> 0

for = 1 2 3 satisfying the following:

|〈∂ ∗( ) ξ〉| ≥ 1‖ξ′′‖2

∂∂ ∗( )(ξ ξ) ≥ −2 2‖ξ′‖ ‖ξ′′‖ + ‖ξ′′‖2

∂∂‖̟‖2( )(ξ ξ) ≥ 3‖ξ‖2

for 0< ≤ and every ∈ 2 ∩ { < } ∩ −1( ) and ξ ∈ M2( ). Then we have

∂∂ϕ ( )(ξ ξ) ≥ 1

( − ∗( ))2
‖ξ′′‖2 +

(
−2 2‖ξ′‖ · ‖ξ′′‖ + ‖ξ′′‖2

)

− ∗( )
+ 3‖ξ′‖2

≥
(
−α 2

2 + 3
)
‖ξ′‖2 +

(
1

( − ∗( ))2
− 1
α · ( − ∗( ))

+
1

− ∗( )

)
‖ξ′′‖2

for 0 < ≤ and every ∈ 2 ∩ { < } ∩ −1( ) and ξ ∈ M2( ) and α > 0. We
put α = 1/ 1 and = 3(1/ + 2

2/ 1). Then we have

∂∂ϕ ( )(ξ ξ) ≥ ‖ξ′‖2 + ‖ξ′′‖2

=
‖ξ‖2

for 0< ≤ and every ∈ 2 ∩ { < } ∩ −1( ) and ξ ∈ M2( ).

2. Convexity properties of certain subdomains ofX

Let be a connected complex manifold of dimension = + and be theunit
ball in C . Let π : −→ be a proper surjective holomorphic map andσ : ˜ −→
an unramified cover. We put :=π−1( ) and ˜ := (π ◦ σ)−1( ) for every subset

⊂ . We denote by Sing(π) the set of all points ∈ such that the differen-
tial of π does not have maximal rank at . We denote by Reg(π) the complement of
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Sing(π) in . We put Reg(̟ ) := σ−1(Reg(π)). To show our theorem, we may prove
the following claim from the result of Coltoiu and Vâjâitu in [4].

CLAIM . Suppose that (i) 0 is a reduced connected complex space of dimen-
sion , (ii) dim Sing(π) ∩ 0 ≤ − 1, (iii) 0̃ is connected, (iv) Sing(̟ ) ∩ 0̃ and
Reg(̟ )∩ 0̃ are non empty, and̃ 0 has no compact irreducible component of dimen-
sion . Then there exists an open neighborhood of 0 such that˜ is -complete.

Here we note that the assumption (i) in our Claim contains (ii) and the latter
part of (iv). Indeed,π is a flat morphism on each point of 0 from the assump-
tion (i). On the other hand, 0 contains a smooth Zariski open subset such that
π is a holomorphic submersion on since0 is a reduced complex space. Hence
dim Sing(π)∩ 0 ≤ dim( 0 \ ) ≤ − 1 holds. Moreover, since Reg(π)∩ 0 contains

and σ is surjective, Reg(̟ ) ∩ 0̃ = σ−1(Reg(π) ∩ 0) is non empty. However we
formulate such assumptions in our Claim for the plainness ofthis paper.

First of all, we have the following by using the argument of Kuranishi. It is a
revising version for complex analytic families of relatively compact complex manifolds
of so-called ‘holomorphic motions’ (cf. [7]).

Theorem 2.1 (cf. [8], [10], [4]). For every relatively compact open set ⋐

Reg(π) ∩ 0 and every set of finitely many pointsP := { 1 . . . } ⊂ , there exist
an open neighborhood of0 ∈ and a ∞-map : × ∋ ( ) 7−→ ( ) ∈

, where denotes the topological closure of in0, satisfying the following:
(i) : × −→ ( ) is a diffeomorphism, (ii) ∋ 7−→ ( ) ∈ is
a holomorphic section over for every ∈ , and ( ) is the disjoint union
of { ( ) | ∈ }, (iii) The map : ( ) ∋ 7−→ ( ) ∈ , defined by

( ( ) π( )) = , is a ∞-retraction such that there exists a relatively compact open
neighborhood ⋐ of P in such that | −1( ) is holomorphic.

Proof. See Appendix A.

From now on, denotes a Stein neighborhood of 0 in and denotes astrictly
plurisubharmonic exhaustion function on . We will replace with a sufficiently
small one if necessary.

For any subset of a topological space , we denote by∂ the topological
boundary of in . Let be a neighborhood of 0∈ C and be a ∞-retraction
in Theorem 2.1 for any relatively compact open set⋐ Reg(π)∩ 0 and any finitely
many pointsP in . Then we define the following from Theorem 2.1.

DEFINITION 2.2 (cf. [14]). For any ⊂ 0 such that contains its boundary
∂ , we define ∗ ⊂ with the boundary∂ ∗ = −1(∂ ) in , and ∗ ∩ 0 = .
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Here we consider the geometry of Sing(π) ∩ 0 and its neighborhood.

Lemma 2.3. There exist an open neighborhood of0 ∈ , and a sufficiently
small open neighborhoods ′ of Sing(π)∩ 0 in , and an -convex exhaustion func-
tion ϕ : ′ −→ [0 ∞) satisfying the following: (i) ′∩ 0 and 0̃\σ−1( ′∩ 0) have
no compact irreducible component of dimension, (ii) ′ containsSing(π) ∩ .

Proof. Let 1 be an open neighborhood of Sing(π)∩ 0 in 0 such that 1 and

0̃ \ σ−1( 1) have no compact irreducible component of dimension . Such aneigh-
borhood 1 exists from assumptions (ii) and (iv) of our claim and the fact that ˜ is
locally isomorphic to and 0 is compact.

Then there exists an -convex exhaustion functionϕ1 : 1 −→ [0 ∞) from result
of Ohsawa in [12] (cf. [6]). Let 2 be an open set of such that1 is an analytic
subset in 2 with 2∩ 0 = 1. From Theorem 1.8, there exist an open neighborhood

′ of 1 in 2 and an -convex exhaustion functionϕ : ′ −→ [0 ∞) with ′∩ 0 =

1. Moreover there exists an open neighborhood of 0∈ such that ′ contains
Sing(π) ∩ , since π is a proper holomorphic map. Hence we have Lemma 2.3.

Let be a relatively compact open set of Reg(π) ∩ 0 satisfying

( ′ ∩ 0) ∪ = 0

Let ′ be an open neighborhood of′ in 0 such that ′ and 0̃ \ σ−1( ′) have no
irreducible compact component of dimension . Such a neighborhood ′ exists from
Lemma 2.3 (i). Let ∗ > 0 be a constant such that

:= { ∈ 0 | ϕ( ) < ∗} ⊃ 0 \ ⊃ Sing(π) ∩ 0

whereϕ| is an -convex exhaustion function on with∪ = 0. We put

N := { ∈ | ϕ( ) < ∗}

Proposition 2.4. For a sufficiently small positive constantε, there exist a hermi-
tian metric 0 on Reg(π)∩ ′ and an -convex exhaustion Morse function0 : ′ −→
[0 ∞) satisfying (i) | 0( ) − ϕ( )| < ε for ∈ and ⊂ { 0 < ∗ + ε}, (ii)

0 is strongly 0-subharmonic onReg(π) ∩ ′ and ϕ is strongly 0-subharmonic on
Reg(π) ∩ .

Proof. From Proposition 1.7 There exists an -convex exhaustion function ′
0 :

′ −→ [0 ∞) with ′
0 = ϕ on and{ ′

0 <
∗} = .

From Lemma 6 in [6], there exists a hermitian metric0 on Reg(π) ∩ ′ such
that ′

0 is strongly 0-subharmonic on Reg(π) ∩ ′. We apply Proposition 1.6 and
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approximate ′
0 by an -convex Morse function up to second order derivative. Then

there exists an -convex Morse function0 such that| 0 − ′
0| < ε and |△ 0 0( ) −

△ 0
′
0( )| < ε on ′. This function 0 satisfies (i) and (ii), ifε is sufficiently small.

Let be a neighborhood of 0∈ and a ∞-retraction satisfying properties of
Theorem 2.1 for the relatively compact open set of Reg(π) ∩ 0 and finitely many
points P ⊂ , which will be chosen later. By replacing with a sufficientlysmall
one, we may suppose that

∗ ∪ ∗ =

holds. Then the following holds.

Proposition 2.5. For a sufficiently small of0 ∈ , there exist an open set
of ′ with ⊂ , and a hermitian metric on and positive constants1 and 0

with 1 > 0 and a bounded ∞-function ∗
0 : ∗ −→ [0 1) such that

(i) and 0̃ \ σ−1( ( )) have no compact irreducible component of dimension,
where we put ( ) := { ∈ | ∗

0 < } for ∈ [ 0 1],
(ii) ∗

0 ◦ σ ≡ 1 on ∂ and [ 0 1) ⊂ ( ∗
0 ◦ σ)( ) for every ∈ , where { } ∈

denotes connected components ofσ−1( ),
(iii) contains \ ( 0) and ∗ ∪ ∗ = ,
(vi) ∗

0 has no critical point on \ ( 0), and ∗
0 = ∗

0 ◦ on ∗ \ ( 0)∗,
(v) ∗

0 is -convex on ∗ ∩ for every ∈ , and { ∈ | ∗
0 < } is a relatively

compact open set of ∗ ∩ for every ∈ and ∈ [0 1),
(vi) ∗

0 is strongly -subharmonic on each subset∗ ∩ Reg(π) ∩ of for every
∈ ,

(vii) ∗
0 is -convex on the subset∗ \ ∗.

Proof. Let 1 be a regular value of 0 satisfying the following:
(2.5.1-a) = { ∈ 0 | ϕ( ) < ∗} ⊂ { 0 < 1},
(2.5.1-b) 0 ◦ σ ≡ 1 on ∂ for every ∈ , where{ } ∈ denotes connected com-
ponents ofσ−1({ 0 < 1}).
Such a constant1 exists from Proposition 2.4 (i) and the fact that̃0 is locally iso-
morphic to 0, and 0 is compact.

Let 0 < 1 be a constant satisfying the following:
(2.5.2-a) ⊂ { 0 < 0},
(2.5.2-b) [ 0 1] has no critical value of 0,
(2.5.2-c) [ 0 1) ⊂ ( 0 ◦ σ)( ) for every ∈ .
Such a constant1 exists if 1 − 0 is sufficiently small. We put

:= { 0 < 1}
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Then contains \ ( 0) since ∪ = 0, and ∗ ∪ ∗ = for a sufficiently
small . Hence (ii) and (iii) hold.

The set ′\ ( ) has no compact component in , and the boundary of each con-
nected component of ′ \ ( ) intersects∂ in 0. Indeed, if one of the two claims
does not hold, there does not exist an -convex exhaustion function 0 : ′ −→ [0 ∞)
in Proposition 2.4. Thenσ−1( ′ \ ( )) has no compact component inσ−1( ) and the
boundary of each connected component ofσ−1( ′ \ ( )) intersectsσ−1(∂ ) in 0̃,
becausẽ 0 is locally isomorphic to 0. On the other hand,̃ 0\σ−1( ′) has no com-
pact irreducible component of dimension . Hence (i) holds because 0̃ \ σ−1( ( )) is
the union of 0̃ \ σ−1( ′) and σ−1( ′ \ ( )).

From Proposition 2.4, there exists a hermitian metric0 on Reg(π) ∩ such that
(2.5.3-a) 0 is strongly 0-subharmonic on Reg(π) ∩ ,
(2.5.3-b)ϕ is strongly 0-subharmonic on Reg(π) ∩ .

Then there exist a sufficiently small neighborhood of 0∈ and a hermitian
metric on such that
(2.5.4-a) 0 ◦ is strongly -subharmonic on (∗ ∩ ∗) ∩ ,
(2.5.4-b)ϕ is strongly -subharmonic on Reg(π) ∩N ∩ for every ∈ ,
since 0 is bounded up to second order derivative on and is a∞-map (cf. [14],
Theorem 1).

Let 1 ∈ (0 ∗) be a constant with

∗ \ ∗ ⊂ { ∈ | 0 ◦ ( ) < 1} ⋐ N

for a sufficiently small neighborhood of 0∈ . Let 2 ∈ ( 1 1) be a constant and
ρ1 : −→ [0 1] be a ∞-function with ρ1 ≡ 1 on { 0 ≥ 2} and suppρ1 ⊂ { 0 ≥

1}. Let 1 be an open set with{ 0 ≤ 2}∗ ⊂ 1 ⊂ N , and 2 an open set with

1 ⋐ 2 ⊂ N . Let ρ2 : ∗ −→ [0 1] be a ∞-function with ρ2 ≡ 1 on 1 and
suppρ2 ⊂ 2. Then we haveρ2 ≡ 0 on { 0 ≤ 0 ≤ 1}∗.

We put ∗
0 := λ1 ◦ (ρ1 · 0) ◦ + ρ2 · ϕ, where denotes a positive constant and

λ1 : R −→ R denotes a ∞-function such thatλ1 ≡ 1 on { ≤ 2} and λ1 is strictly
increasing convex on{ > 2}. Then the function ∗

0 is bounded on ∗, and equal to
(ρ1 · 0) ◦ + ρ2 · ϕ on 1. Hence there exists a sufficiently large constant> 0
such that ∗

0 is -convex on 1 and strongly -subharmonic on1 ∩ Reg(π) ∩ for
every ∈ . We fix a positive constantδ such that 1 contains{ 0 ≤ 2 + δ}∗. Then
∗
0 is strongly -subharmonic on ∗ ∩ Reg(π) ∩ for every ∈ if λ′1 and λ′′1 are

sufficiently large on{ ≥ 2 + δ}. For suchλ1 and > 0, we replaceλ1( ) with
for = 0 1. Then ∗

0 satisfies (iv), (vi). Sinceλ′1 ≥ 0 and λ′′1 ≥ 0 hold, ∗
0 also

satisfies (v), (vii).

REMARK 2.6. Since 0 is compact, there exist a finite open covering{ µ ⊂
0}µ=1 ... of 0 and finitely many pointsP := { µ} satisfying the following:

(i) each µ is connected,
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(ii) σ is biholomorphic from each connected component ofµ̃ to µ,
(iii) if µ \ 6= φ, ∪ι6=µ ι \ does not contain µ \ ,
(vi) if µ \ 6= φ, there exists a point µ ∈ µ \ with µ /∈ ι if µ 6= ι.

From now on, let and be the same as those in Theorem 2.1 for and

P = { µ ∈ µ \ | µ = 1 . . . with µ \ 6= φ}

in Remark 2.6. Obviously, this modifications of and do not affect Proposition 2.5.
For every ∈ ∗, we put :={ ( ( ) ) | ∈ } and :=π−1 ◦π( ). Then
and are closed complex manifolds. From Lemma 1.11, we have the following.

Lemma 2.7. There exists a hermitian metric on ∗ such that, for any ∈
∗, the complex vector subspaces and of ∗ are orthogonal with re-

spect to .

We denote by‖ · ‖ the norm induced by . We may assume that and are
quasi-isometrically equivalent on ∗, by replacing a relatively compact open set′

of satisfying ∪ ′ = 0 (resp. | ′) with (resp. ), if necessary.
We fix constants 3 and 2 with 0 < 3 < 2 < 1. Then the following holds.

Lemma 2.8 (cf. [10], Proposition 3.3 (II)). There exist constants∗1 > 0, 1 > 0
and a linear setM1 over ( 3)∗ with codimM1 ≤ − 1 such that

∂∂
(
− log( − ∗

0) + ‖π‖2
)

( )(ξ ξ) ≥ ∗
1‖ξ‖2

holds for ∈ [ 2 1], ∈ ( 3)∗ and ξ ∈ M1( ) and any ≥ 1.

Proof. From Proposition 2.5 (vi), there exists a 1-dimensional complex subspace
( ) of such that ∂∂(− log( − ∗

0))( )(ξ′ ξ′) > 0 for ∈ [ 2 1], ∈ ( )∗ ∩
Reg(π) and ξ′ ∈ ( ).

Let ′
3 be a constant with 3 <

′
3 < 2. For ∈ ( ′

3)∗ ∩ Reg(π), let ( ) be an
-dimensional complex subspace of with dimπ∗ ( ) = .

We put M′
1( ) := ( ) ⊕ ( ) for ∈ ( ′

3)∗ ∩ Reg(π), which is an ( + 1)-
dimensional complex subspace of . Letθ( ) = {θ ( )} be a basis ofM′

1( )
satisfying span〈θ1( ) . . . θ ( )〉C = ( ) and span〈θ +1( )〉C = ( ) for any ∈

( ′
3)∗ ∩ Reg(π) with ‖θ ( )‖ = 1. We may assume thatθ ’s are ∞-sections, by

taking each ( ) and ( ) adequately.
Then we have

∂∂‖π‖2 =

(
1 0

0 0

)

as the matrix representation with respect toθ, where 1 is an × -matrix valued
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function, sinceπ is constant on for ∈ . The matrix 1 is positive definite on
( ′

3)∗ ∩ Reg(π).
Let 1 be an open neighborhood of Sing(π) with 1 ⊂ ∗\ ∗. Then there exists

a constant 1 > 0 such that det 1 > 1 holds on ( ′
3)∗ \ 1. We put ∂∂(− log( −

∗
0)) = ( ) with respect toθ. The functions are bounded on (′3)∗∩Reg(π). Since

+1 +1 is the matrix representation of∂∂(− log( − ∗
0))| with respect toθ, there

exists a constant2 > 0 such that +1 +1 > 2 on ( ′
3)∗ \ 1.

We put 2 = ( )1≤ ≤ and 3 = ( )1≤ ≤ . Then there exists a positive con-
stant 3 > 0 such that 1 + 2 + 3 > 3 on ( ′

3)∗ \ 1 if ≥ ′
1 for a large

constant ′
1 > 0, where denotes the × -identity matrix. We denote by the

matrix representation of the hermitian form∂∂(− log( − ∗
0)) + · ‖π‖2) with respect

to θ. By a calculation we have

det = ( +1 +1) det 1 + −1( )

≥ 1 2 + −1( )

where −1( ) stands for a polynomial of of degree− 1 whose coefficients are
bounded functions on (′3)∗ \ 1. Hence there exists a positive constant4 > 0 such
that det > 4 on ( ′

3)∗ \ 1 if ≥ ′′
1 for a large constant ′′

1 > 0. Hence, from
Theorem 13.3.2 in [9],

∂∂
(
− log( − ∗

0) + ‖π‖2
)

( )(ξ ξ) > 0

holds for ∈ [ 2 1], ∈ ( ′
3)∗ \ 1 and ξ ∈ M′

1( ) and ≥ 1 := max{ ′
1

′′
1}.

Since the function− log( − ∗
0) + ‖π‖2 is a ∞-function on ( ′

3)∗, there exists a
constant 5 > 0 such that

∂∂
(
− log( − ∗

0) + ‖π‖2
)

( )(ξ ξ) ≥ 5‖ξ‖2

holds for ∈ [ 2 1], ∈ ( 3)∗ \ 1 and ξ ∈ M′
1( ) and ≥ 1.

On the other hand, from Proposition 2.5 (vii), the function− log( − ∗
0) is -

convex on ∗ \ ∗. Let 2 be an open neighborhood of Sing(π) with 1 ⋐ 2 and

2 ⊂ ∗ \ ∗. Then we have
(

( 3)∗ \ 1
)
∪ 2 = ( 3)∗. From Proposition 1.2

and Lemma 1.3, there exist a constant6 > 0 and a linear setM′′
1 ( ) over 2 with

codimM′′
1 ≤ − 1 such that

∂∂
(
− log( − ∗

0) + ‖π‖2
)

( )(ξ ξ) ≥ 6‖ξ‖2

holds for ∈ [ 2 1], ∈ 2 and ξ ∈ M′′
1 ( ) for every > 0, by replacing with

a sufficiently small one.
We denote byM′′′

1 be the restriction ofM′
1 on ( 3)∗ \ 2. We put M1 :=

M′′
1 ∪ M′′′

1 , which is a linear set over (3)∗ with codimM1 ≤ − 1. We put
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∗
1 := min{ 5 6}. Then we have

∂∂
(
− log( − ∗

0) + ‖π‖2
)

( )(ξ ξ) ≥ ∗
1‖ξ‖2

for ∈ [ 2 1], ∈ ( 3)∗ and ξ ∈ M1( ) and ≥ 1.

Let λ2 : R −→ R be a ∞-function in Proposition 1.12 with respect to the func-
tion ∗

0 and the hermitian metric on ∗, and we replaceλ2( ∗
0) and λ2( ) for

= 0 1 2 3 with ∗
0 and for = 0 1 2 3, respectively. Then the following holds.

Proposition 2.9. There exist a linear setM2 over ∗ with codimM2 ≤ − 1
and positive constants 2 and ∗

2 such that ∂∂(− log( − ∗
0) + ‖π‖2)( )(ξ ξ) ≥ ∗

2 ·
‖ξ‖2 holds for ∈ [ 2 1), ∈ ∗( ) and ξ ∈ M2( ) and any ≥ 2.

Proof. Let 4 ∈ ( 0 3) be a constant. From Theorem 1.13 (2), there exist a lin-
ear setM′

2 over ∗ \ ( 4)∗ and a positive constant ′2 such that

∂∂
(
− log( − ∗

0) + ‖π‖2
)

( )(ξ ξ) ≥ 1

1
‖ξ‖2

holds for ∈ ∗( ) \ ( 4)∗ and ξ ∈ M′
2( ) and any ≥ ′

2. Since and is
quasi-isometrically equivalent on ∗, there exists a constant1 > 0 such that

‖ξ‖2 ≥ 1‖ξ‖2

holds for ∈ ∗( ) \ ( 4)∗ and ξ ∈ M′
2( ).

On the other hand, from Lemma 2.8, there exist positive constants ∗
1 and 1 and

a linear setM1 over ( 3)∗ such that

∂∂
(
− log( − ∗

0) + ‖π‖2
)

( )(ξ ξ) ≥ ∗
1‖ξ‖2

holds for ∈ ( 3)∗ and ξ ∈ M1( ) and any ≥ 1.
We denote byM′′

2 the restriction ofM′
2 on ∗\ ( 3)∗ and putM2 := M′′∪M1,

which is a linear set over ∗ with codimM2 ≤ − 1. We put ∗
2 := min{ 1/ 1

∗
1}.

Then we have

∂∂
(
− log( − ∗

0) + ‖π‖2
)

( )(ξ ξ) ≥ ∗
2 · ‖ξ‖2

for ∈ [ 2 1], ∈ ∗, ξ ∈ M2( ) and ≥ 2 := max{ ′
2 1}.

3. Constructions of specialn-convex functions on the fiberX̃z

We put ̟ := π ◦ σ, Sing(̟ ) := σ−1(Sing(π)) and Reg(̟ ) := σ−1(Reg(π)). We
denote by˜ the setσ−1( ) for ⊂ . For ⊂ ˜ , we denote by ( ) or the
topological closure of in˜ .
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Let and be the same as those in Theorem 2.1 for andP , which are fixed
in §2. Let ˜ (resp.˜ ) be the lift of (resp. ) over (̃ ∗). We put M̃2 := σ∗M2

over ∗̃, ˜ := σ∗ on (˜ ), and ˜ := σ∗ on ∗̃. Then ˜ and ˜ are quasi-
isometrically equivalent oñ ∗ since and are quasi-isometrically equivalent on

∗.
Here, we can define the following by lifting results of Theorem 2.1.

DEFINITION 3.1 (cf. [14]). For any ⊂ 0̃ with ( ˜ ) contains∂ , we define
∗ ⊂ ˜ with the boundary∂ ∗ = ˜−1(∂ ) in ˜ and ∗ ∩ 0̃ = .

Let { ⊂ 0̃} ∈ be connected components of̃ = σ−1( ). From Proposition
2.5, ∗

0 ◦ σ ≡ 1 on ∂ and [ 0 1) ⊂ ( ∗
0 ◦ σ)( ) hold for every ∈ . We put

( ) = { ∈ | ∗
0 ◦ σ < } for 0 ≤ ≤ 1 and ∈ . Then we havẽ = ∪ ∈

and (̃ ) = ∪ ∈ ( ).
In this section, we will construct a special -convex function 2 on 0̃ by using

the argument of Demailly (cf. [6]), and show the existence ofa ∞-function 3 on
˜ such that 3 is -convex on˜ for every ∈ as follows.

Lemma 3.2. There exists an open subset1 of 0̃ satisfying the following: (i)

0̃ \ 1 has no compact component, (ii) ∪ ∈ ( 2) ⊂ 1 ⊂ ˜ , and ∂ 1 ∩ ∂ ˜ = φ

in 0̃, (iii) for every ∈ := { ∈ | ⋐ 0̃}, 1 ∩ = ( 2), (iv) for every
∈ \ , there exists a sequence of compact sets{ ( )} ∈[ 2 1) of such that( 1 ∩
( )) \ ( ) = ( ) \ ( ) for ∈ [ 2 1).

Proof. Let ∈ \ . Then each is noncompact and connected, and [0 1] has
no critical value of ∗

0◦σ|e from Proposition 2.5. Hence there exist an open subset1

of and a sequence of compact subsets{ ( )} ∈[ 2 1) of satisfying the following:
(3.2.1-a) \ 1 has no compact component of , and the boundary of each con-
nected component of \ 1 in 0̃ intersects∂ ,
(3.2.1-b) ( 2) ⊂ 1 and ∂ 1 ∩ ∂ = φ in ,
(3.2.1-c) ( 1 ∩ ( )) \ ( ) = ( ) \ ( ) for any ∈ [ 2 1).

We put

1 :=
(
∪ ∈ \ 1

)
∪
(
∪ ∈ ( 2)

)

Then 0̃ \ 1 has no compact component from Proposition 2.5 (i) and (3.2.1-a) and
the fact that \ ( 2) has no compact component of and the boundary of each
connected component of \ ( 2) in 0̃ intersects∂ for every for ∈ . Prop-
erty (ii) follows from (3.2.1-b) and the definition of1. Property (iii) follows from the
definition of 1, and (iv) follows from (3.2.1-c).

Let { } ∈N be connected components of Reg(̟). From the assumption (iv) of
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our claim, ˜0 has no compact irreducible component of dimension . Henceis
noncompact in 0̃. Then we have the following.

Lemma 3.3 ([6], Lemma 10). For each ∈ N, there exists a family of open sets
{ ⋐ } ∈N such that(i) \ ˜ ⊂ ∪ ∈N ⊂ \ 1, (ii) for every connected
component of , there exists a connected component +1 ( ) of +1, such
that +1 ( ) ∩ 6= φ and +1 ( ) \ 6= φ.

We put

:= − log( 1 − ∗
0 ◦ σ) + on ∗ for ∈(3A)

where{ } ∈ are positive constants satisfying
(3A-a) 1 = 0,
(3A-b) ( ( 2)∗) and ( ( 2)∗) do not intersect if 6= ,
(3A-c) is exhaustive on∪ ∈ ( 2).
Such constants{ } exist since ∗(resp. ( 2)∗) and ∗(resp. ( 2)∗) do not inter-
sect if 6= . We put

2 := 0̃ \ ∪

which satisfies̃ ( 2) ⊂ 1 ⊂ 2 ⊂ ˜ from Lemma 3.3 (i). Then we have the follow-
ing.

Proposition 3.4 (cf. [6], p. 290). There exists an -convex function1 : 0̃ −→
[0 ∞) such that(i) 1 = on 2, (ii) for any ∈ [0 ∞), { ∈ 0̃ | 1 < } \ 2 is
relatively compact in 0̃.

Proof. There exists a ∞-function : 0̃ −→ [0 ∞) such that = on 2

and is exhaustive oñ 0 \ 2. From Proposition 2.5 (v) and (3A), the function is
-convex on 2. Hence, from Lemma 6 in [6], there exists a hermitian metric1 on

0̃ \ Sing(π) such that is strongly 1-subharmonic on 2. Lemma 7 in [6] implies
that, for any and , there exists a∞-function : −→ [0 ∞) with support
in ∪ +1 which is strongly 1-subharmonic on , where{ } denotes a
family of open sets in Lemma 3.3. We put1 := +

∑
, for large constants

. By induction, we have a sequence of positive constants{ } such that 1 is
strongly 1-subharmonic on Reg(̟) ∩ 0̃ and 1 = on 2. Since is exhaustive on

0̃ \ 2, 1 is exhaustive oñ 0 \ 2. Hence 1 satisfies properties (i), (ii).

Let and be the same as those in Theorem 2.1 for andP , which are fixed
in §2. Then the following holds.
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Proposition 3.5. There exist a -convex function2 : 0̃ −→ [0 ∞) and a
strictly increasing convex functionλ3 : R −→ R such that(i) 2 = λ3( ) on 1, (ii)
for any ∈ [0 ∞), { ∈ 0̃ | 2 < } \ 1 is relatively compact iñ 0, (iii) 2 is a
Morse function with distinct critical values oñ0 \ 1, (iv) all critical points of 2 in

0̃ \ 1 is contained by˜ = σ−1( ).

Proof. From Proposition 2.5 (iv) and Proposition 3.4 (i), the function 1 =
has no critical point on 2 ∩ σ−1( \ ( 2)). Let ε : 0̃ −→ (0 ∞) be a continuous
function. From Proposition 1.6, there exists an -convex Morse function with distinct
critical values ′

2 : 0̃ \ 1 −→ [0 ∞) satisfying | ′
2( )− 1( )| < ε( ) and ‖ ′

2( )−
1( )‖e < ε( ) for any ∈ 0̃ \ 1.

Let 3 be an open set of̃ 0 with 1 ⊂ 3 and 3 ⊂ 2. Let 4 be an open set of

0̃ with 3 ⊂ 4 and 4 ⊂ 2. Let ρ : 0̃ −→ [0 1] be a ∞-function with ρ ≡ 1 on

3 and supp(ρ) ⊂ 4. We put

′′
2 := ρ 1 + (1− ρ) ′

2

Then ′′
2 is a ∞-function on 0̃ with ′′

2 = 1 on 1. By a calculation, we have

‖ ′′
2 ( ) − 1( )‖e < ε( )(‖ ρ( )‖e + ρ( )) for ∈ 0̃

Hence ′′
2 = holds on 3, and ′′

2 is an -convex Morse function with distinct critical
values on 0̃ \ 1 if ε is sufficiently small. Moreover, for any ∈ [0 ∞), { ∈ 0̃ |

1 < } \ 1 is relatively compact iñ 0.
Let { µ} andP be the same as those in Remark 2.6. Then each connected com-

ponent of 0̃ \ 1 intersectsσ−1(P). For µ = 1 . . . with µ \ 6= φ, let µ be a
relatively compact open neighborhood ofµ with µ ⊂ ∩ ( µ \ ).

Let { µ λ} be connected components of̃µ and { µ λ} connected components
of µ̃. Then we have µ λ ⋐ 0̃ and φ 6= µ λ ⊂ µ λ. By replacing the set of in-
dices{(µ λ) | µ = 1 . . . λ ∈ N} with {ν = ν(µ λ) ∈ N}, we put ν := µ λ and

ν := µ λ. Let be all critical points of ′′
2 in 0̃ \ 1. Then is a discrete set in

0̃ \ 1.
We apply Lemma 1.10 for =̃ 0, ∗ = Sing(̟ ) ∩ 0̃ and = 1. Then there

exists a diffeomorphism :̃ 0 −→ 0̃ with ( ) ⊂ ∪ν∈N ν and is holomorphic
near and is the identity map on1. Then the function ′′

2 ◦ −1 is a ∞-function
on 0̃ such that
(3.5.2-a) ′′

2 ◦ −1 = on 1,
(3.5.2-b) ′′

2 ◦ −1 is a Morse function with distinct critical values oñ0 \ 1,
(3.5.2-c) all critical points oñ 0 \ 1 is contained by˜ and ′′

2 ◦ −1 is -convex in
an open neighborhood of all critical points of′′2 ◦ −1.

We put 2 := λ3 ◦ ′′
2 ◦ −1, whereλ3 denotes a strictly increasing convex func-

tion on R. Then 2 is -convex if λ′′3/λ
′
3 is sufficiently large, and satisfies properties
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(i)–(iv).

We put

3 :=

{
λ3( ) on σ−1( ( 2)∗)

2 ◦ ˜ on ˜ \ σ−1( ( 2)∗)
(3B)

From Proposition 2.5 (iv) and (3A), we have =◦˜ on ˜ \ (̃ 0), where 0 denotes
a constant in Proposition 2.5 with0 < 2. Hence 3 is a ∞-function on ˜ from
Proposition 3.5 (i).

We put ˜ := {˜(˜( ) ) | ∈ } for ∈ ∗̃ and ˜ := ̟−1 ◦̟( ) for ∈ ˜ .
From Lemma 2.7, ˜ and ˜ are orthogonal with respect tõ = σ∗ .

We fix an open set ′ containingP with ′ ⊂ . We put ˜2 := ˜ ∗ \ ( ◦
σ)−1( ′). Let L be a linear set over̃ with codimL ≤ − 1 such that 3|f0

is 1-

convex with respect toL over ˜ . We putL∗ := ∗(L) over ( ◦ σ)−1( ). Let ˜′ be

the holomorphic tangent space at∈ ˜
2 to the real smooth hypersurface{ 3 ◦ ˜ =

3(˜( ))} and ˜′′ be its orthogonal complement.

For any ∈ [0 ∞), there exists a compact set ⊂ 0̃ such that 3 =
λ3(− log( 1 − ∗

0 ◦ σ)) on { 3 = } \ holds from Proposition 3.5 and (3A), (3B).
Hence there exists a∞-function : [0 ∞) −→ (0 ∞) such that

|〈∂ 3( ) ξ〉 |≥ ( )‖ξ‖2e
holds for ∈ [0 ∞) and ∈ { 3 = } ∩̟−1( ) ∩ ˜

2 and ξ ∈ ′̃′ . Then, by using
Proposition 1.12, we have the following lemma.

Lemma 3.6. There exists a strictly increasing convex∞-function λ4 : R −→
R with λ4(0) = 0 such that (i) λ4( 3) is -convex on˜ for every ∈ , (ii)
∂∂λ4( 3)( )(ξ ξ) ≥ ‖ξ‖2e for ∈ ̟−1( ) ∩ ( ◦ σ)−1( ) and ξ ∈ L( ) ∩ ˜,

(iii) ∂∂λ4( 3)( )(ξ ξ) ≥ ‖ξ‖2e for every ∈ ̟−1( ) ∩ ˜2, ξ ∈ ˜′′.

4. Constructions of n-convex exhaustion functions onX̃U

We put ∗ := λ4( 3), whereλ4 denotes a ∞-function in Lemma 3.6. Then∗ is
-convex on for every ∈ . From (3B), we have ∗ = ∗◦˜ on ˜ \σ−1( ( 2)∗).

We put := ( 2)∗ andα := inf{ ∗( ) | ∈ } andβ := sup{ ∗( ) | ∈ }
for ∈ . Since ( ) and ( ) do not intersect from (3A-b), we may assume that
β < α +1 for ∈ , by replacing the index with an adequate one if necessary. We
put ( ) := { ∈ 0̃ | ∗( ) < } \ ( 2) for ∈ [β −1 β ). Let ( )∗ be the open set
of ˜ in view of Definition 3.1, which is well-defined since (˜ ) contains∂ ( ).
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Proposition 4.1. Let κ > 0 be a constant. Then there exist a linear setM over
˜ over ˜ with codimM ≤ − 1 and sequences{ ∈ (0 ∞)} ∈N and { ∈
(0 ∞)} ∈N such that ∂∂ ·

(
− log( − ∗) + · ‖̟‖2

)
( )(ξ ξ) ≥ 2κ · ‖ξ‖2e holds for

∈ (0 ), ∈ ( )∗, ξ ∈ M( ) and ≥ and ≥ for ∈ N,

Proof. LetM2 be the linear set over ∗ with codimM2 ≤ − 1 in Proposition
2.9. From (3A) and (3B), we have

(4.1.1) ∗ = λ4 ◦ λ3 ◦
(
− log( 1 − ∗

0 ◦ σ)
)

on ∗
1

where λ3 (resp.λ4) is a strictly increasing convex function onR in Proposition 3.5
(resp. Lemma 3.6). Hence, by using Proposition 2.9, there exist positive constants ∗

and ∗ such that

(4.1.2) ∂∂
(
− log( − ∗) + · ‖̟‖2

)
( )(ξ ξ) ≥ ∗ · ‖ξ‖2e

for 0 ≤ < and ∈ ∗
1 ∩ ( )∗ and ξ ∈ M̃2( ) and ≥ ∗, whereM̃2 denotes

the lift of M2.
On the other hand, from Proposition 3.5,∗( ) \ ∗

1 is relatively compact in˜ .
From Proposition 3.5 and Lemma 3.6 and Theorem 1.13, there exist a constant ∗ > 0
and a linear setM3 over ˜ \ ∗

1 with codimM3 ≤ − 1 such that

∂∂
(
− log( − ∗) + · ‖̟‖2

)
( )(ξ ξ) ≥ 1 · ‖ξ‖2e

holds for 0≤ < , ∈ ∗( ) \ ∗
1 , ξ ∈ M3( ) and ≥ ∗. Hence there exists a

constant ∗ > 0 such that

(4.1.3) ∂∂
(
− log( − ∗) + · ‖̟‖2

)
( )(ξ ξ) ≥ ∗ · ‖ξ‖2e

holds for 0≤ < , ∈ ∗( ) \ ∗
1 , ξ ∈ M3( ) and ≥ ∗, since˜ and ˜ is

quasi-isometrically equivalent oñ ∗.
We denote byM̃′

2 the restriction ofM̃2 on ∗
1 , andM̃′

3 the restriction ofM̃3 on
˜ \ ∗

1 . We putM := M̃′
2∪M′

3, which is a linear set over̃ with codimM ≤ −1.
We put := max{ ∗ ∗}, and := min{ ∗ ∗}. From (4.1.2) and (4.1.3), we have

∂∂
(
− log( − ∗) + · ‖̟‖2

)
( )(ξ ξ) ≥ · ‖ξ‖2e

for 0 ≤ < , ∈ ∗( ), ξ ∈ M( ) and ≥ . We put := 2κ/ . Then we have

∂∂ ·
(
− log( − ∗) + · ‖̟‖2

)
( )(ξ ξ) ≥ 2κ · ‖ξ‖2e

for 0 ≤ < and ∈ ( )∗, ξ ∈ M( ) and ≥ , ≥ .
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Let κ > 0 be a positive constant. Let{ } and { } be strictly increasing se-
quences in Proposition 4.1 for the constantκ. We put

:= ·
(
− log( − ∗) + · ‖̟‖2

)
+ ◦̟

for ≤ < + 1, where is a strictly plurisubharmonic exhaustion function on .

Lemma 4.2 (cf. [4], Lemma 6, [10]). There exist strictly increasing sequences
{γ ∈ (0 ∞)} ∈N with lim γ = ∞, and {δ ∈ (0 ∞)} ∈N with lim δ = ∞ such that, if
we set := δ and := (δ )∗, the following hold: (i) { ∈ +1 | +1 < γ } ⊂

for every ∈ N, (ii) for every set ⊂ ˜ such that there exists a compact set
= ( ) ⊂ ˜ with σ( \ ) is relatively compact in ∗, there exists an index

= ( ) ∈ N such that ⊂ { ∈ +1 | +1 < γ } holds for every ≥ .

Proof. Let { ∈ (0 ∞)} ∈N be a strictly increasing sequence such that 0≤ ·
‖̟‖ ≤ +1 holds for every ∈ N.

Let and be real numbers with≤ < < + 1. If

− < exp(−( +1 + 1) · +1)

holds, we have

(4.2.1) { ∈ ( ) | < ( +1 + 1) · +1} ⊂ ( )∗

On the other hand, we have

{
∈ ˜

∣∣∣ ◦̟ < +1

}
∩ ( − 1)∗

⊂
{

∈ ˜
∣∣∣ ◦̟ < +1

}

∩
{

∈ ˜
∣∣∣ +1 ·

(
− log( − ∗) + +1‖̟‖2

)
< +1 · +1

}

⊂ { ∈ ( )∗ | < ( +1 + 1) · +1}(4.2.2)

For every ∈ N with 0 ≤ , we take a sequence{ = 0 < 1 < · · · ( ) = + 1}
with +1 − < exp(−( +2 + 1) · +2). We put δ := , where we set = ( ) =∑ −1

=1 ( ) + + 1 and (0) = 0. For every ∈ N, we put γ = ( ( )+1 + 1) · ( )+1,
where ( ) denotes the integer part ofδ . Then the sequencesγ and δ satisfy (i) from
(4.2.1), and satisfy (ii) from (4.1.1) and (4.2.2).

Proposition 4.3 (cf. [4], Theorem 3). There exists a ∞-function ˜ : ˜ −→
[0 ∞) such that(i) ∂∂˜ ( )(ξ ξ) ≥ 2κ‖ξ‖2e holds for ∈ ˜ and ξ ∈ M̃( ), (ii) ˜
is exhaustive oñ \ ∗

1 .
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Proof. Let {γ } ∈N and {δ } ∈N be sequences in Lemma 4.2. By modifying the
sequences, we may assume that there exist sequences{γ }, { := δ }, { :=

(δ )∗} and {ε > 0} such that
(i)′ { ∈ ˜ | +1 ≤ γ + ε } ⊂ for every ∈ N,
(ii) ′ for every subset ∈ ˜ such that there exists a subset = ( )⊂ ˜ with
̟( \ ) is a relatively compact subset of̃∗, there exists a number = ( )∈ N
such that ⊂ { ∈ +1 | +1( ) < γ − ε } holds for every ≥ .

By using induction, we will construct the following sequence { } ∈N such that
( ) ∈ B( M) for every ∈ N.
( ) | \ −1

≥ holds for every > .
( ) = −1 holds on{ ∈ | ≥ γ −1 − ε −1} for = 2 3 . . . .

Indeed, we put 1 = 1. Suppose that there exist functions1 . . . satisfying
( ) ( ) ( ) for = 1 2 . . . . We define a continuous function

+1 :=





on { +1 ≤ γ − ε },

max{ χ ( +1)} on {γ − ε ≤ +1 ≤ γ + ε },

χ ( +1) on { +1 ≥ γ + ε } ,

where we putχ ( ) = − for constant and with

≥ 1 > 0 (γ − ε ) − < 0(4.3.1)

(γ + ε ) − > max{ ( ) | +1( ) = γ + ε }(4.3.2)

(γ + ε ) − > + 1(4.3.3)

From (4.3.1) and (4.3.2), +1 is continuous and ( )+1 holds. From (4.3.3), we
have

+1 ≥ + 1 on { +1 ≥ γ + ε } ∩

On the other hand, by the condition ( ) , we have

+1 ≥ ≥ on { +1 ≥ γ + ε } ∩ ( +1 \ )

Hence ( )+1 holds. Moreover, ( )+1 holds from the condition ( )∗ and the definition
of +1. From ( )∗, the sequence{ } has the limit := lim . Then the function
is continuous andM-convex, and exhaustive oñ \ ∗

1 . Every point of ˜ has an
open neighborhood and at most two functions{ ′ } on with

| = max{ ′ }
∂∂ ′ ( )(ξ ξ) ≥ 2κ‖ξ‖2

for ∈ and ξ ∈ M( ) from Proposition 4.1. Letη be a sufficiently small positive
constant. We apply Proposition 1.5 for =̃ , L = M and ω = ˜. Then there exists
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a ∞-function ˜ : ˜ −→ [0 ∞) which is 1-convex with respect toM such that

≤ ˜ < + η(4.3.4)

∂∂˜ ( )(ξ ξ) ≥ 2κ‖ξ‖2e
hold for ∈ ˜ and ξ ∈ M( ). Property (ii) follows from (4.3.4) and the fact that
is exhaustive on˜ \ ∗

1 .

Here we observe general geometric properties of unramified covering spaces of
relatively compact open subsets. For ∈ ˜ , let ( ) be the distance between
and with respect to the metric̃. Fix a point ∈ ˜ and, for each point ∈ ˜ ,
we put ( ) := ( ). Then we have the following by using the argument of Lemma
3.2 of [11].

Lemma 4.4. There exist a ∞-function τ : ˜ −→ [0 ∞) and a positive con-
stant such that(i) · ≤ τ ≤ ·( +1), (ii) ‖ τ‖e ≤ , (iii) − ·˜ ≤ ∂∂τ ≤ ·˜.

Proof. See Appendix B.

A function τ on (˜ ˜) is said to bethe Napier’s function oñ with respect tõ
if τ satisfies properties of Lemma 4.4.

Proof of Theorem. Letτ be the Napier’s function oñ with respect tõ such
that there exists a constant> 0 with (i) · ≤ τ ≤ · ( + 1), (ii) ‖ τ‖e ≤ , (iii)
− · ˜ ≤ ∂∂τ ≤ · ˜.

Let ˜ be a function in Proposition 4.3 forκ = 2 . We put

:= ˜ + τ

on ˜ . Then the function is an -convex exhaustion function oñ from Proposi-
tion 4.3 and Lemma 4.4.

Appendix

A. Constructions of partial holomorphic motions on X (cf. [8], [10])

We consider ∞-families of relatively compact manifolds in the complex mani-
fold and examine their properties. Then we show Theorem 2.1.

Let X be a real 2 -dimensional ∞-manifold and a domain ofC . A ∞-
family of complex local coordinates ofX over denotes a ∞-map : × −→
C , where (resp. ) is an open set ofX (resp. ), such that the map : −→
C defined by ( ) := ( ) is a local coordinate ofX for any ∈ .
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The map˜ : × −→ C × , which is defined by˜ ( ) := ( ( ) ), is
bijective from × to the range. Let : ′ × ′ −→ C be another one ofX over

. The change of local coordinates from to denotes the map˜ ◦ (˜ )−1 .
A holomorphic family of complex structures onX over denotes a collection

of ∞-families of complex local coordinates ofX over satisfying (A) for any
∈ , the change of local coordinates from to is holomorphic if itis defined,

(B) for any ∈ X , ∈ , there exists a ∈ with the domain × such that
( ) ∈ × , (C) if and ∗ are ∞-families of complex local coordinates of
X over , and the change of local coordinates from to∗ is holomorphic for any

∈ , ∗ is in .
Let be a holomorphic family of complex structures onX over . Then there

exists a unique complex structureX ( ) on X × such that, for any ∈ , ˜ is
holomorphic from × , which is considered as an open set ofX ( ), to the product
complex manifoldC × . We setϕ( ) := for ( ) ∈ X × ∼= X ( ). Then
ϕ : X ( ) −→ is a smooth surjective holomorphic map.

From now on, let be a complex manifold of dimension = + and a
domain of C which contains 0∈ C . Let π : −→ be a proper surjective
holomorphic map. We put :=π−1( ) for ⊂ . By Sing(π) we denote the
set of all ∈ 0 such that the differential ofπ at does not have maximal rank.
We put Reg(π) := \ Sing(π). We suppose that dim0 = and Reg(π) ∩ 0 6= φ,
Sing(π) ∩ 0 6= φ.

Let be any relatively compact connected open set in Reg(π) ∩ 0. Let P =
{ 1 . . . } be finitely many points in . Let ∗ be an open neighborhood of in
Reg(π) with ∗ ∩ 0 = satisfying the following:
(A) there exists a local coordinate system of∗ : { µ : Uµ −→ µ× }µ=1 ... , where
{Uµ}µ=1 ... are open subsets of Reg(π) and each µ is biholomorphic to a bounded
open neighborhood of 0∈ C , and is biholomorphic to the unit ball ofC ,
(B) for every µ = 1 . . . , the point µ ∈ P is contained by µ and µ is not con-
tained by ν for any ν 6= µ.

We denote byK the underlying ∞-manifold of . Then the following hold.

Proposition A.1 (cf. [10], Proposition A.1). There exist an open neighborhood
of 0 ∈ , an open covering{ ′

µ}µ=1 ... of K, a diffeomorphism : ∗ −→ K× ,
a holomorphic family = { µ : ′

µ× −→ C } of complex structures onK over ,
an open neighborhood ′

µ ⋐ µ of µ for any µ satisfying(i) ( ∗ ∩ ) = K×{ }
for any ∈ , and : ∗ −→ K× ∼= K( ) is a biholomorphic map, (ii) ◦ −1

µ

is the identity map from ′
µ × to ′

µ × ⊂ X0 × for everyµ.

Proof. We can use the argument of Proposition A.1 in [10] since ∗ has the fi-
nite open covering{Uµ}. We apply the argument, by replacing ,X0, { ′

ν} with
∗, K, { ′

µ} respectively. Then the desired conclusion follows.



-COMPLETENESS OFCOVERINGS OF FAMILIES 83

Lemma A.2 (cf. [8] p. 26, [10], Lemma A.2). Let { ′
µ}µ=1 ... be the open cov-

ering of K and the holomorphic family of complex structures ofK over in
Proposition A.1.Then there exist an open neighborhood∗ of 0 ∈ , a ∞-map

: K × K × ∗ −→ 1 0 × ∗ satisfying (i) ( ) ∈ 1 0 × { } for any
( ) ∈ K × K × ∗ (ii) ( 0) = (0 0) ∈ 1 0 × ∗ for any ∈ K
(iii) for an open neighborhoodK′ ⊂ K × K of the diagonal set{( ) | ∈ K},

: K( ) ⊃ K′ × ∗ −→ (K′ × ∗) ⊂ 1 0 × ∗ is biholomorphic, where we
put { } ×K′ := ({ } ×K) ∩K′ and ( ) := ( ) for ( ) ∈ K×K× ∗.

Proof. We apply the argument of Lemma A.2 in [10], by replacing , 0, X0

and W with ∗, , K and K′ respectively. Then the desired conclusion follows.

Then we have the following by applying the argument in Appendix in [10] in the
similar way to the previous. For the completeness of this paper, we explain the detail
of its proof.

Theorem A.3 (cf. [8], [10]). For every relatively compact connected open set
⋐ Reg(π) ∩ 0 and every set of finitely many pointsP := { 1 . . . } ⊂ , there

exist an open neighborhood of0 ∈ and a ∞-map : × ∋ ( ) 7−→
( ) ∈ satisfying the following: (i) : × −→ ( ) is a diffeomor-

phism, (ii) ∋ 7−→ ( ) ∈ is a holomorphic section over for every
∈ and ( ) is the disjoint union of{ ( ) | ∈ }, (iii) The map
: ( ) ∋ 7−→ ( ) ∈ defined by ( ( ) π( )) = is a ∞-retraction

such that there exists a relatively compact open neighborhood ⋐ of P in such
that | −1( ) is holomorphic.

Proof. Let : ∗ −→ K× { ′
µ} = { µ} be the same as those in Proposi-

tion A.1. Let { ′′
µ }µ=1 ... be an open covering ofK satisfying ′′

µ ⊂ ′
µ. We define a

∞-map ∗
µ : ′′

µ ∋ ( ) 7−→ ∗
µ ( ) ∈ ′

µ such that µ( ∗
µ ( ) ) = µ( 0) for

any ∈ ′′
µ , ∈ . Then the map ∋ 7−→ ( ∗

µ ( ) ) ∈ ′
µ× ⊂ K× is holo-

morphic for any fixed ∈ ′′
µ . Indeed we have (µ( ∗

µ ( ) ) ) = ( µ( 0) ) ⊂
C × for ∈ .

Then there exist a ∞-map :K × K × −→ 1 0 × and a neighborhood
K′ ⊂ K×K of {( )| ∈ K} satisfying conditions of Lemma A.2 for , by replacing

∗ with a sufficiently small if necessary. We may assume that (∗µ ( )) ∈ K′

for any ∈ . Let {ρ̃µ}µ=1 ... be a partition of unity subordinated to{ ′′
µ }. We set

γ : ∋ 7−→ ∑
µ ρ̃µ( ) ( ∗

µ ( ) ) ∈ 1 0 × . The mapγ is holomorphic
on for any fixed ∈ K. Moreover : (K( ) ⊃)K′ × ∋ ( ∗

µ ( ) ) 7−→
( ∗

µ ( ) ) ∈ 1 0 × is holomorphic for any fixed ∈ K from Lemma A.2
(iii).
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We may assume that −1 ◦ γ : −→ K( ) is well-defined. We consider a∞-
map :K × ∋ ( ) 7−→ ( ) := −1 ◦ γ ( ) ∈ ∗ ∼= K( ). Then the Jacobian
of has the maximal rank on × {0}. Hence is a diffeomorphism fromK ×
to ∗ and (K ) = ∗ ∩ for ∈ if is sufficiently small. The open set

∗ is the disjoint union of{ ( ) | ∈ } and : ∗ −→ K × , which is
defined by ( ( )π( )) = for ∈ ∗, is a ∞-retraction. Moreover, ( ·) : ∋
7−→ ( ) ∈ ∗ is a holomorphic section over for any fixed∈ sinceγ is

holomorphic on for any fixed ∈ K.
Let µ ⊂ ′

µ be an open neighborhood ofµ satisfying µ ∩ suppρ̃ν is empty
for any ν 6= µ, where ′

µ is the neighborhood of µ in Proposition A.1 and we put
:= ∪µ µ. Let ( ) be any point of µ× ⊂ K× . Then µ( ) = Projµ ◦ µ ◦
−1( ) = = µ( 0) holds since ◦ −1

µ is the identity map on µ × from
Proposition A.1.

Hence we have ∗
µ ( ) = for any ( ) ∈ µ × ⊂ K × . Then we have

( ) = −1 ◦ γ ( ) = ( ) ∈ µ × ⊂ ∗. Hence ◦ −1
µ is the identity map

on µ× and the ∞-retraction ( ) is the natural projection from−1
µ ( µ× ) to

µ. Therefore |
µ× = | ( µ ) is a holomorphic retraction.

By using Theorem A.3, we have Theorem 2.1 as follows.

Proof of Theorem 2.1. It is suffice to show Theorem 2.1 for the case where
is connected. Let be an open set with⋐ ⋐ Reg(π)∩ 0 andP := { 1 . . . }
a finitely many point in . From Theorem A.3, there exist an openneighborhood
of 0 ∈ and a ∞-map : × −→ . We replace | × , | ( ), ∩ with

: × −→ , : ( ) −→ , , respectively. Then they satisfy properties
of Theorem 2.1.

B. Existences of Napier’s functions on unramified covering spaces([11], [2])

We use the argument of Lemma 3.2 in [11] and will show Lemma 4.4. We re-
mark that E. Ballico [2] and Napier [11] have stated existences of functions satisfying
conditions which are similar to those of Lemma 4.4.

To prove Lemma 4.4, it is suffices to show the following lemma.
Let ( ) be a hermitian manifold andσ : ˜ −→ an unramified covering map.

Let be a relatively compact subdomain of such that˜ := σ−1( ) is connected.
We put the hermitian metric̃ := σ∗ on ˜ .

For ∈ ˜, let ( ) be the distance between and with respect to the
metric ˜. Fix a point ∈ ˜ and, for each point ∈ ˜, we put ( ) := ( ). For
any ⊂ ˜, we put ( ) := inf ∈ ( ). For ⊂ ˜, we denote by ( ) or the
topological closure of iñ . Then we have the following.

Its proof is similar to Lemma 3.2 of [11]. For the completeness of this paper, we
describe the detail of its proof.
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Lemma 4.4′. Suppose that there exists a sequence of points{ ν}ν∈N with
limν→∞ ( ν) = ∞. Then there exist a ∞-function τ : ˜ −→ [0 ∞) and a pos-
itive constant such that(i) · ≤ τ ≤ · ( + 1), (ii) ‖ τ‖e ≤ , (iii)
− · ˜ ≤ ∂∂τ ≤ · ˜.

Proof. The manifold ( (̃ ) ˜) has ‘bounded geometry’. Namely, for every∈
(˜ ), there exist an open neighborhood of iñand positive constants and
and a surjective biholomorphic map : −→ (0 ) with

(1-a) ( ) = 0 holds,
(1-b) ∗ / ≤ ˜ ≤ · ∗ holds,

where and are independent of∈ (˜ ) and denotes the Euclidian metric in
C , and we put (0 ) :={ ∈ C |‖ ‖ ≤ }.

Hence there exist constants for = 0 1 2 3 and for = 0 1 2 such that
(2-a) 2 2 ≤ 2 < 1 < 3 1 ≤ 0 2 < 1 < 0,
(2-b) for every ∈ (˜ ), there exist an open neighborhood of iñ and a
surjective biholomorhic map : −→ (0 0) with
(2-b.1) ( ) = 0,
(2-b.2) ∗ / 1 ≤ ˜ ≤ 1 · ∗ for a positive constant 1,
(2-b.3) ( 3) ⋐ ( 2) ⊂ ( 2) ⋐ ( 1) ⊂ ( 1) ⋐ ( 0), where we
put ( ) := { ∈ ˜ | ( ) < } and ( ) := −1( (0 )) for 0< < ,
(2-c) vol( ( 3))/ 2 < vol( ( 0)) < 2 for a positive constant 2.

Then there exists a sequence of points{ ν ∈ (˜ )}ν∈N such that
(3-a) ( ν 3) ∩ ( µ 3) 6= φ if ν 6= µ,
(3-b) { ( ν 1)} is uniformly locally finite. Namely, there exists a constant∈ N
such that each point has an open neighborhood which intersects at most elements
of { ( ν 1)}ν∈N,
(3-c) { ( ν 2)}ν∈N is an open covering of (̃).

Indeed, we put 1 := and points 1 . . . ν−1 are given. Let and be posi-
tive constants satisfying (1-a) and (1-b). Letν ∈ ∂((∪ν−1

=1 ( 2))∩ (˜ )) satisfying
( ν) = (∪ν−1

=1 ( 2)) ∩ (˜ )). We have defined a sequence{ ν} inductively in
this way. Then we have (3-a)–(3-c) as follows.

Proof of (3-a). Let ν and µ be natural numbers withµ < ν. Then ν ∈
∂( ( 1 2)∪ · · · ∪ ( µ 2)∪ · · · ∪ ( ν−1 2)) holds. Since ν /∈ ( µ 2), we have

( ν µ) ≥ 2 ≥ 2 3. Hence ( ν 3) ∩ ( µ 3) 6= φ holds.

Proof of (3-b). Let ∈ (˜ ) with ( ν 1)∩ ( 1) 6= φ. Since max{ ( ) |
∈ ( ν 1)} ≤ 3 1 ≤ 0, we have ( ν 3) ⊂ ( ν 1) ⊂ ( 0). Let

ν1 . . . ν be distinct natural numbers satisfying (ν 1) ∩ ( 1) 6= φ. Then we
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have∪ν=1 ( ν 3) ⊂ ( 0). Hence

2 ≥ vol( ( 0)) ≥
∑

=1

vol( ( ν 3)) ≥
2

holds. Hence we may take a natural number with> 2
2.

Proof of (3-c). Suppose that (˜ ) \ (∪ν∈N ( ν 2)) 6= φ. Then there exists a
constant > 0 satisfying

(
(˜ ) ∩ ( )

)
\ (∪ν∈N ( ν 2)) 6= φ from (3-b). The

point = 1 is contained by
(

(˜ ) ∩ ( )
)
∩ ( 2). On the other hand, there

exists a natural numberµ ∈ N satisfying
(

(˜ ) ∩ ( )
)
∩ ( ν 2) = φ for ν ≥ µ.

Then we have
(

(˜ ) ∩ ( )
)
∩ (∪ν−1

=1 ( ν 2)) 6= φ, and
(

(˜ ) ∩ ( )
)
\

(∪ν−1
=1 ( ν 2)) 6= φ. Hence

(
(˜ ) ∩ ( )

)
∩ ∂(∪ν−1

=1 ( ν 2)) 6= φ holds. There-
fore we have ( ν) < since ν is contained by∂(∪ν−1

=1 ( ν 2)). On the other
hand, we have ( ν) ≥ + 2 since

(
(˜ ) ∩ ( )

)
∩ ( ν 2)) = φ holds. It

leads to contradiction.
Let λ : (0 1) −→ [0 1] be a ∞-function with supp(λ) ⊂ (0 1) and λ ≡ 1

on (0 2). we put ν :=
ν

and

λν :=

{
λ( ν) on ( ν 1),

0 on ˜ \ ( ν 1).

Then the functionλν is a ∞-function on ˜ with supp(λν ) ⊂ ( ν 1) and λν ≡ 1
on ( ν 2). We put τ ′ :=

∑
exp( ( ν )) · λν( ). Then the following holds.

There exists a positive constant3 satisfying
(4-a) (exp )/ 3 ≤ τ ′ ≤ 3 · exp ,
(4-b) ‖ τ ′‖e ≤ 3 · exp ,
(4-c)− 3˜ · exp ≤ ∂∂τ ′ ≤ 3˜ · exp .

Proof of (4-a). Let ∈ (˜ ) with ∈ ( ν 1) for ν ∈ N. Then we have
( ) − 1 ≤ ( ν ) ≤ ( ) + 1 Hence

exp(− 1 + ( )) ≤ exp ( ν) ≤ exp( 1 + ( ))

holds. On the other hand, we haveλν( ) = 0 if /∈ ( ν 1). Hence

exp(− 1 + ( ))

( ∞∑

ν=1

λν( )

)
≤ τ ′ ≤ exp( 1 + ( ))

( ∞∑

ν=1

λν( )

)

holds. From (3-b) and (3-c), we have 1≤ τ ′ ≤ . Hence exp(− 1) · exp ≤ τ ′ ≤
exp( 1) · exp holds.
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Proof of (4-b). For ∈ ( ν 1) ∩ (˜ ) and ∈ ,

|(∂λν)( )( )| = |(∂λν)( ν( ))(( ν)∗( ))| ≤ 4‖ ‖

holds for a positive constant4. Hence we have‖( λν)( )‖ ≤ 4. Therefore we ob-
tain

‖ τ ′( )‖ ≤
∑

exp( ( ν)) · |( λν )( )| ≤ 4 exp 1 · exp ( )

since ( ν) ≤ 1 + ( ) holds.

Proof of (4-c). For ∈ ( ν 0) ∩ (˜ ) and ∈ ,

∣∣ (∂∂λν
)

( )( )
∣∣ =
∣∣ (∂∂λν

)
( ν( ))(( ν)∗( ) ( ν)∗( ))

∣∣

≤ 5‖( ν)∗( )‖ ≤ 5‖ ‖ ∗
ν

≤ ′
5‖ ‖

holds for positive constants5 and ′
5. Hence we have

∣∣ (∂∂τ ′
)

( )( )
∣∣ =

∣∣∣∣∣ ∂∂
( ∞∑

ν=1

exp( ( ν) · λν)( )( )

)∣∣∣∣∣

≤ exp 1 · exp ( )
∞∑

ν=1

∣∣ (∂∂λν
)

( )( )
∣∣ ≤ ′

5 exp 1 · exp ( )· ‖ ‖

Therefore (4-c) holds.

We put

τ := logτ ′ +

where is a positive constant. Then the functionτ satisfies properties of Lemma 4.4′

for a sufficiently large from (4-a) and (4-b) and (4-c).
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