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1. Introduction and Main Theorem

In this note we construct the evolution operator of parabolic type, or the funda-
mental solution of the linear ordinary differential equation

du(t)

(1.1) o

+A@u() = f(), a<t<b,

of parabolic type in a Banach spaée . The equation (1.1) is said to be “of parabolic
type” if it satisfies the condition:
(A1) —A(r) is a linear operator with dense domain, and there exist constants
m/2 and Co such that the resolvent set ofA(¢r) contains the sectoz, = {\ €
C; larg)\| < &} for anyt € I := [a,b] and ||AM\ + A()) Y| x—x < Co holds for
any A € ¥, and anyr € I.

—A(t) generates an analytic semi-grogip~"4®; 7 > 0} on X.

Our result is stated as follows:

Main Theorem. Assume(Al), and the following hypothesd#2), (A3):
(A2) The domainD(A(z)) = Y for anyr € I and A(-) € C(I; L(Y, X)), whereY is a
Banach space continuously imbeddedXn
(A3) Defining

1.2) w(h) :=sup|]A(t +h) — A@W)|ly—x; a <t < b —h},

w(h)/h is integrable on(0, ) for some positive). Then, there exists the evolution op-
erator to the equatior(1.1), i.e., there exists a strongly continuod{X)-valued func-
tion U(t, s), a <s <t < b, having the following properties

@ Ue,r)U@,s)=U¢,s)fora<s<r<t<b,

(b) U,t)=1 fora <t <b,

(c) @/on)u(t,s)x =—A@)U(t,s)x foranyx € X anda < s <t < b,

(d) ©/0s)U(t,s)x =U(t,s)A(s)x foranyx € Y anda < s <t <b.
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Moreover, the evolution operatot/(z, s) is uniquely determined bYA(r)}.<:<p.
and satisfies the estimates

M
-

M
(1.3) AU )llx—x < —.  [UE)AG)ly—r < 7
for anya < s <t <b, whereM is a constant.

It is well known that any strong solutiom ¢ () to (1.1) with the initial dater () =
up must be of the formu #( ) ¥/ t(a o + F(t), where

(1.4) F(t) := /1 Ul(t,s)f(s)ds.

It is also known that the conditiorf € C(I; X) does not guarantee differentiability of
F(t). Regard to this we have

Theorem 1.1. Assume(Al), (A2), (A3), f € L*I;X) N B2 ,((a.b); X)ioc, and
defineF by(1.4). ThenF € C(I; X)NC(a, b); X), F(t) € D(A(r)) for anyr € (a, b),
and u(r) = U(t, s)ug + F(t) is the unique strong solution t¢l.1) with the initial con-
dition u(a) = uo.

Study of the evolution operator of parabolic type has a rather long history, but we
recall here only a few articles related to our result. Tanabe [7] constructed the evolu-
tion operator under the hypotheses (Al) (A2) and

(A3 wh)<Cch?, 0<O<1.

(i.e., A) is a Hlder continuousC(Y, X)-valued function.) It is easy to see that (A3)

is a true improvement of (A3 Kawatsu [2] gave also an improvement of (A3i.e.,

under the assumption thatu(k)|logh|/h is integrable on (05)” he proved the exis-
tence of the evolution operator. Our assumption is better than that of Kawatsu, and we
hope that our theorem will be useful in studying non-linear problems.

Our result was announced in [3]. The proof given by one of the authors eleven
years ago is based on the approximation theory of integral equations with operator-
valued unknown function and it is rather long. In this note we will give a simple and
straightforword proof which contains some new methods to investigate abstract differ-
ential equations in a Banach space.

The result corresponding to Theorem 1.1 for the case whHere () is independent
of r has been given in [4].



EvoLuTioN OPERATOR OF PARABOLIC TYPE 421

NoTtaTION.  ||x||x denotes the norm of in a space
L(X,Y) denotes the space of bounded linear operators fkom lnto , whose norm is
denoted by||U||x—y, L(X) = L(X, X).
C(€2; X) denotes the space &f -valued continuous functions on a dofaain
LP(Q; X) denotes the space of -valued strongly measurable functjpms () with

[F@Dx € LP(R).

2. Preliminary observation

We first observe that Main Theorem follows from the following fact:
For some small positive numbérthere exists a strongly continuou¥ X)-valued func-
tion U(z, s) on the areals := {(¢,s); a <s <t < b,r—s < §} satisfying the conditions
(b), (c), (d) in Main Theorem and the inequality

My
ti

(2.1) U, 8)|x—y < for a<s<t<b with t—s <.

In fact, when {, s )e T, the derivative ofyU ,r i £ s ) with respeat vanishes in
the interval §, ¢t ). Thereforely ¢(r U r(s ) is independent 0k (s, t). Together with
the strong continuity ofU «(r i (s ), this implies thdf ¢,¢ U)r,6 )& t,6 ) holds
when ¢, s )e Ts. (1.3) follows dirctly from (2.1), since suyp; [|A()|x—y < oo.

Whend <t —s < 25, we defineU (,s ) :=U {,r ¥ £, s ), wheree is a point
with max{s,r — §} < r < min{s +4d,¢}. U(t, s) is independent of the choice of ,
since for any mafs,r — 0} < r < r1 < min{s +4,¢} we haveU {,r ¥V £,s ) =
U(t,r))U(r1, r)U(r,s) = U(t, r1)U(r1, s). Thus, the evolution operatds ¢, ) can be
defined whery — s < 26. The fact thatU 1, s ) has the properties (a), (b), (c) and (d)
in Main Theorem is a simple consequence of the definition.

Repeating this argument, we can finally construct the evolution operator for any
point (¢, s) witha < s <t < b, and we see easily that (1.3) holds for any< s <
t <b.

Finally, if U(z,s) is another£(X)-valued strongly continuous function satisfying
(b) and (c) in Main Theorem, the derivative &f 7, { U{r, s) with respectr van-
ishes in the intervals(s ). Sol/ t,(r U)r,s) is independent of , which implies that
U(t,s) = U(t, r)U(r,s) = U(z, s). This gives the uniqueness of the evolution operator,
which completes the proof of Main Theorem.

3. Lemmas

Lemma 3.1. If f € LY[a, f]; Z), then ff f(s)ds € Z. Here Z is a Banach
space.

Proof. See Yosida [10] p. 133. [l
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Lemma 3.2. If F(\) is holomolphic and satisfieF(A\)||x < CIA|* in Z,N{\ €
C; |\l = 1}, || [ e*F(\dA||x < C(a, co)Ct=*~1 holds for any0 < 1 < ¢p < oo,
where C(«a, ¢g) is a constant depend only am ¢y and . Here,I' denotes a path =
Mo) (o € R) contained inT, N {\ € C; |A] > 1} such that|]\(c)] — 00, 0 < e <
targA\(e) — /2 as o — +oo.

Lemma 3.3. From (Al) and (A2) it follows that

3.1 I+ A@) x—y
3.2) M+ A@) vy

Ci1+ A7),

<
< C;

hold for any\ € ,, and anyt € I :=[a, b]. Here C; and C, are constants.

Proof. Assume (Al) and (A2). Since the identity

(LA ' =Q+Aw) Y _{(Al) — AL +A) "

n=0
holds if |A(r) — A(to)|ly—x < || + A(to))*1||;iy, we see that (1 A () €
C(I; L(X, Y)), which implies thatC’ := sup,,., [|[(1 + A@))" | x_y is finite. Hence,
by the identity A+ A)~1 = {1+(1—A)(A+A) 1} (1+A)"! we have (3.1). Also, by the
identity \+ A)"1=(1+A) (A +A)"}(1+A) we have (3.2). O
Lemma 3.2, (3.1), (3.2) and the identities™ ) = (1/(2i)) [, e} (A+A(r)) "2 A,
A+A@) = A+ AE) =+ A@)) HAG) — AN+ A@s)

give the following

Lemma 3.4. Assume(Al) and (A2). Then,

(3.3) le"™@||x_x < Mo,

(3.4) ||€_TA(’)||Y%Y < My,

(3.5) e ™A x_y < MT7H,

(3.6) le™ ™40 — ™Ay x < Pol|A(t) — A(s)]ly—x.
(3.7) le™™40) — =AW ||y Ly < Py|A®E) — AGs)|ly—x.
(3.8) e TAD — e TAW |y Ly < PTTHA() — AGS)lly—x.
(3.9) lle™ ™40 — &=y _x < P'7]|A(r) — A(s)|ly—x.

hold for anya < s <t < b and0 < 7 < ¢o. Here My, M1, M, Po, P1, P and P’ are
constants independent ofs  and
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By (3.6), (3.7), (3.8) and the strong continuity of semi-graug4¢®) we see that
e—TA(I) _ e—O‘A(S) = {e—TA(I) _ e—‘rA(.?)} + {e—‘rA(.?) _ e—o‘A(I)} — 0 as Q_’ t) N (0', S).
Hence, we have

Lemma 3.5. Let0 < ¢ < oo, and assumdAl) and (A2). Then,e~74® is an
L(X)-valued (and L(Y)-valued strongly continuous function dfr, r) € [0, ] X [a, b].

e~ ™0 is also anL(X, Y)-valued strongly continuous function @f, ) € (0, c]x[a, b].

4. The series giving the evolution operator

According to Tanabe [7], to construct the evolution operdfor, s ( ) we make use
of the series

(4.1) Ul(t,s) = Z W, (2, s) := Wo(t, s)+z / Wolt, r)Ru(r, s)dr

n=0 n=1
where Wo(r, 5) 1= e~ =40), Ry(t, s) 1= —{A(r) — A(s)}e~(~94¢) and
t
(4.2) R,41(t, s) = / Ri(t, r)R,(r,s)dr forn=1,2---
To prove the convergence of the series (4.1) we start with

Lemma 4.1. Let w(t) be a non-negative bounded measurable functiorr af
(O, 5p) such that

!
(4.3) ~(t) ::/ w(s)d—s < 00
0 S
for 0 <t < dg. Then, puttingu; = w
(4.4) wWpr(t) ::t/ wgt Ss) w”(s)d forn=1,2--
o _

can be defined inductively, and

(4.5) / ORI

S
(4.6) wa(t) < M),

hold forn=1,2 .- and 0 <t < do, where M’ := supy_, 5, w(?).
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Proof. Clearly (4.5) and (4.6) hold for = 1. Assume that (4.5) and (4.6) hold
for n. Then, noting thaty is a increasing function, by Fubini’s theorem we have

Also, takingr =nt/(n + 1), we have

M n t _ M 2 n—1
o) <1 [ Moy, / wlt =) MO )0 o ey 0+ 1
o t—1 s , t—s r
This gives (4.6) fom + 1. ]

In the following of this note we always assume that (Al), (A2) and (A3) hold,
and byw we denote the function defined by (1.2).
Lemma 4.2. Leta <s <t <b. Then,

wn(t — S)

(47) ||Rll(t7s)HX—>X < M" ,n=12--,

(4.8) IWalt, )l x—x < Mo(MA(t —5))', n=0,1,---.

Proof. As|A(r) — A(s)|ly—x < wi(t —s), (3.5) implies (4.7) form = 1. Assume
that (4.7) holds fom . Then, by (4.2) we have

t
t— — t —
||R”+1(t’s)||X—>X < Mn+l/ w( r) wy(r S)dr _ M’”lw_
s t—r r—s t—s

Clearly (4.8) holds fom =0. (4.1), (4.5) and (4.7) imply (4.8) for> 1. O

5. Norm of W,(t, s)

We make use of the symbol&o(z, s) := e (=940, Q,(t,5) = Zo(t, s){A(t) —
A@)}, H(t, 0,5) = {e7 (740 — o240}~ (=940) G (1, 5) = Ht, 5, 5).

Lemma 5.1. Leta <s <o <t <b. Then
61w = [ {0401, Yol ) — G VR, )}
+H(t,o0,5) + /S(7 Wo(t, r)Ra(r, s)dr,
62 Woeslt:9) = [ 101010+ GO Rr25) = Ryl )

+ / " IWolt, ) Rusa(r, ) + H(t, 0. F)Ro(ro )dr - (n > 1).
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Proof. By the formula
Zoft, RAr,5) = Qalt, YWl ) — o e -0 -]
we have
(5.3) / 2ot 1Y Ra(r, 5)dr = / ' 0u(t, YWl s)dr + H(, 0, 5),
which implies (5.1), forWy(t, s) = Zo(t, s) — G(t, s). By (5.3) we have
(5.4) / ' Zo(t, 1) R, )dr
= /U t [ /T 2o, R, T)dr] Ru(r. s)dr
" / 0 [ /U 2ot R r)dr| Ry(r. s)dr
= /U ’ [ /T 046, PYWolr, )dr + G, T)] Ru(r. s)dT
+ / 0 [ /a 040, YWolr, ) + H 1. 0, 7| Rulr. s)dr
= /I{Ql(t,r)Wn(r, $)+ G(t.r)Ru(r, s)}dr +/U H(t, 0. T)R,(7, s)d,
which gives (5.2). Ul

The estimate||Wo(¢, s)|lx—y < M/(t — s) follows from (3.5). For the case > 1
we have

Lemma 5.2. W,(t,s) € L(X,Y) whena <s <t < b, A(t)W,(z, s) is continuous
with respect to(z, s) € {(z,s);a < s <t < b}, and the inequality

Kn®(M~(r —s5))" !
t—s

(5.5) (W, $)l[x—y <
holds forn =1, 2 ---. Here ~(z) is the function given by4.3).

Proof. Case where =1 Since it follows from (3.8) that

Puw(t —s) < PM'
t—s ~t—s’

(5.6) G, 5)lx—y <

and ||H(t, o, s)||x—y < PM'Mo(t — 0)~%, by (5.1) witho = (t ++s)/2, with the aid of
(3.3), (3.5), and (4.7), we obtain
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A

1
IWae, $)llx—r < / 104(t. YWo(r. ) — G(t. )Ry 8) | x—ydr

HH (0, )xoy + / | Wolt. )R1(r. ) | x—ydr

! Mw(t —r)  Pw(t —r)w(r —s)
M/C,{(t—r)(r—s)+ EDICED) jar
+2M’PM0 N 7 M?%w(r —s)

t—s s (t=r)r—y) d
2M +2PM’ 2M'PMy  2M*~(b — K
< ———Myb—-a)+ 04 Vb —a) < .
r—s r—s t—s t—s

Here we takeK so thak > 4M2y(b — a) + 2P M'(M~(b — a) + My).
Since A ¢) is closed, we also see that

A@)Wa(t, s) = / A{Oa(t, r)Wo(r, s) — G(t, r)Ra(r, s) }dr
+A(t)H(t, 0,s) + /U A)Wolt, r)R1(r, s)dr.

Hence A ( Wi(¢, s) is continuous. In view of Lemma 3.1, we see that the conclusion
of the lemma holds for =1.

Assume that (5.5) holds for . Hence, takiag= (nr +s)/(n + 1), by (5.2), (5.6),
(4.7) and (4.6) we have

|Waea(t, s)||x—v
< /t w(t —r) { KM117n71n3 + P { M"w,(r —s) + M’lenﬂ(r —5) }} dr
T Js t—T

r—s r—s

r—=s

| ar

+/U[ M M"Y, (r —s) N Pw(t—r)MOM"w”(r—s)
s Lt—r r—s t—o r—s

KM”'}/"n3+ PM/Mn"y”{I’l2+ (I’l + 1)2M,.Y} N M(M,y)n+l+ PMoM/M”’}/n
g—3S t—o

+ 1M ~"
< (”t#{mﬂ + PM'(2M~ + L)n + PM'(3My + Mo) + M?}
— S
(n + 12K M"~y"
< TV (Here y = ~(t —s).)

Here, we takeK := M%vy(b — a) + PM'(3M~(b — a) + 2My + 1). This estimate gives
that W,.1(¢,s) € L(X,Y). The same argument as fdv; gives thatA { W, {,s ) is
continuous in(, s ) whem <s <t <b. O

Construction of U(t, s) whent—s is small. Takeé small enough so thai(d) <
1/M, where~(9) is given by (4.3). Then, with help of the estimate (4.8) and (4.5), we
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can defineU 4, s ) by (4.1) when—s < 4. SinceW, (,s ),n =0 1.-- are strongly
continuous function and the series (4.1) converges uniformly, we seelUthat ( ) is
strongly continuous.

By (5.5) we see that the series (4.1) converge< (X, Y) when 0< ¢t —s < 6,
since "2 (M~(8))"n® < co. Hence,U {, s ) is a strongly continuou¥X, ¥)-valued
function of ¢,s)e€ {(z,s);a <s <t <b,t —s < ¢}, and satisfies (2.1).

6. Proof of differentiability with respect to t
Lemma 6.1. Let g € C([c, b]; X), a < ¢ < b, defineG(¢) = L’ Wo(t, r)g(r)dr,
and assume thaG < C((c, b); Y). Then,G < C*((c, b); X), and

61) G030~ [ R - AOGO),

c

Proof. Letc<t<b, 0<h <b—t. Then, we have
—hA(t) _

h

t
+ / %{eth(r) o eth(t) }ef(tfr)A(r)g(r)dr.
s

e

l l
E{G(t +h)—G(@t)} = G(r)+ / e~ mhAWh) o (1 4 ho)do
0

Because of the fact thak ¢ (9 D(A(z)), the fisrt term in the right-hand side converges

to —A()G(r) ash — +0. Sincee~74¢) is a strongly continuous function of-(r) €

[0, 70] X [a, b] (see Lemma 3.5), it follows that¢~74")g(r) is a uniformly continuous
function of ¢, r, 1) € [0, 7o] x [a, b] x [c.b]. Hence, e~ —ho)At+ha) ot + ho) — g(1)

as h — +0 uniformly with respect tar € [0, 1], which implies that the second term

in the right-hand side converges ot (). Lebesgue’s dominated convergence theorem
implies that the third term in the right-hand side converges to the second term of the
formula (14) ash — +0, since by the estimate (3.9) we have

w(t —r)
< CTHg(r)HX €L,

1 —hA(r) —hA(@)\ ,—(—r)A(r)
[femr e <

and since

%{eil’A(r) — e AN =AW o () — —Ry(t, r)g(r) ash — +0

for any r € [c, f]. Thus we can conclude that ¢ () is right-differentiable, and its right-
derivative is strongly contimuous. From a well-known lemma (see Yosida [10], p. 239)
it follows that G ¢) is differentiable and (14) holds, which completes the proof of
Lemma 6.1. ]

Lemma 6.2. Leta < s < b. Then,U(z, s)x € D(A(z)) is strongly differentiable
in 7 € (s, min{s + 0, b}) and its derivative is—A(r)U(t, s)x for any x € X.
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Proof. Assume that < s < r < min{s + 4,b}. Then, by (5.5) we see
that > ", W,(r, s) converges toU (s ), and_._, A(t)W,(r,s) converges asn —
o0o. As A(t) is closed, it follows thatU #(s x) € D(A(t)) and A¢ ¢, sx =
Yoo AM)W, (7, s)x for any x € X. Moreover, the estimate (5.5) implies that the
above series converges uniformly with respectrt@& [s + ¢, min{s + §, b}]. Hence
A(t)U(z, s)x is continuous. On the other hand it follows from the above lemma that
W, (zt, s)x is differentiable inr € (s,b) and its derivative with respeat is equal to
R, (t, 8)x — R,+1(t, s)x — A(r)W, (¢, s)x for any x € X. Thus, we have

m

o Z Walt, )x = —Rysa(s. )x — D A(t)W,(t, s)x — =AU (2, s)x

n=0

uniformly with respect tar € [s + ¢, min{s + 6, b}) asm — oo, which completes the
proof of the lemma. [

7. Proof of differentiability with respect to s

To prove differentiability ofU {,s ) ins we make use of another series which ex-
pressed (s ). (See Tanabe [8].)

71) V() —Zz (ts) = e 0™ X>A<f>+z / (e, PYWolr, s)dr.

n=1

where Q1(z, s) := e (=4O A(r) — A(s)} and

1

(7.2) Qult:s) = [ QO s)r forn=1.2.
Lemma 7.1. If a <s <t <b,

M"w,(t —
@3 0y < Tt pmap
(7.4) |0n(t, $)lly—x < MoM'(M~(t — s))”_l for n=12---,
(7.5) Za(t, 8)ly—y < MaM"~(t —s)", for n=0,1,---,
(7.6) 1Za(t, 8)|x—x < Kn(M~(t —s))" L for n=12---.

Proof. By (3.5) and|A(#)—A(s)|ly—x < w(t—s) we have (7.3) forn =1. The in-
equality (7.3) can be proved in the same way as (4.7). It is clear||Dafz, s)||y—x <
Mow(t —s) < MoM’. Assume that (7.4) holds for . Then, by (7.2) and (7.3) we have

t
1Qna(, 5)lly—x S/ MoM'M"~(t — s)"~ 1Md < MoM'(M~(t — 5))".

Also, (7.3) and||Zo(t, s)||y—y < My implies (7.5).
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Next, it follows that| Zo(z, s)||x—x < Mo, and it follows from the identity
t
24(t:5) = [ {010.1)G() + 2ot )Rs(r 5))dr = G(e.5)
s

and the estimate

w(r —s)

||Ql(t’ r)G(ra S) + Zo(tv V)Rl(r, s)||X~>X S MO{M/P +M} rF—s

that Z,(r,s) € L(X) and (7.6) forn = 1 holds. Assuming that, ¢,§ o L£(X) and
(7.6) holds forn , by the identity

Zn+1(t7 S) = / [{Qn+1(t7 r) - Ql’l(tﬂ r)}G(r, S) + Zl’l (t’ r)Rl(rﬂ s)]dr

we see that| Z,+1(z, s)||x—x is estimated by

w(r —s)

/Z{MoM/(Mfy(t — ) XMt — 5)+1)P + KnM"~(t — 5)" "} dr

r—s
< MoM'PM" Yt — )" (M~(t — s) + 1) + KnM"~4(t — s)"
< K(n+ )M~ —s))".
HenceZ,.1(z, s) € L(X) and (7.5) holds fon +1. Thus the lemma has been completely
proved. U

Lemma 7.2. Z,(t,s)y € C}((a,t); X) for anya <t < b and anyy € Y, and its
derivative with respect ta is equal t0 Q,(t, s)y + Qn+1y + Z,(t, s)A(s)y.

Proof. This follows from the identity

Q”(I,S _h)y B Q,,(t,S)y —

1
_/ 0,(t, s — ho)e "A=A6=ho) y 45
0

—h
t —hA(r) _ ,—hA(s)
N
‘ —hA(s) _ 1
e
—Z,(t, S)Ty
and the argument which led to Lemma 6.1. ]

In similar way as Lemma 6.2, from Lemma 7.1 and Lemma 7.2 we obtain

Lemma 7.3. Taked so that M~(é) < 1 holds. Then, the serie§/.1) converges
whena < s <t < b, t —s <46, V(,s)y is differentiable with respect te in the
interval (max{s — 4§, a}, t) and its derivative isV (¢, s)A(s)y if a <t <band ify € Y.
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Now, the fact that the derivative of ¢,¢- U)r,(s ) with respectito vanishes im-
plies thatV (,r U ¢, s ) is independent of € (s,1). SinceU {,s) andV £ s ) are
strongly continuous, this gives that r,§ ) ¥ t,(U),§ ) ¥ t,§ ). Thus, by
Lemma 7.3 we know that (s y) is differentiable with respectsto in the interval
(max{t — 4, a},r) for anyt € (a, b] and for anyy € Y.

Thus, the facts stated at the beginnings@fhave been completely proved.

8. Proof of Theorem 1.1

Lemma 8.1. Let f € Booo_l((a,b);X), and defineFy(r) = f[f Wolt, s) f(s)ds.
Then Fy € C(I;Y) N C(a, b); X), A()Fo(-) € C(I; X), and the inequalities

(8.1) [A@OFo@x < CllflIse (@ryxy:  I1Fo@ly < 6||f||B£o_1((u,b);X)
hold for anys € I, whereC andC are constants independent f

Proof. We first prove thatt () ::fa' Zo(t,s)f(s)ds € D(A(z)) for anyt € I,
[IANE@®)|x < C'lIfllse (@ryxy for anyz € I, and A QE() € C(1; X).
If feCXI;X), we have that

82  A() / Zo(t. 5) f(s)ds = £(t) — Zo(t. a) f(a) — / Zolt, 5) f(s)ds

holds for anyt € I, where f'(s) = df(s)/ds (see Proof of Lemma 5 in [4]). Hence,
according to the theory of Besov spaces (see§p)} it suffices to consider the case
where

t—ys

f(t)Z/OCCi_—T/%go (r, =s ) u(r,s)ds, ue LM, c]; L=(I; X)).

T

Here, (¢, s) = (0v/0s)(t, s), ¥ € C°°(R?) such thaty(t,s) =0 if s — (2t —a —b)/(b—
a) > 1. Let be a C°-function such that

n(t) =0 whenr <1, n(t) =1 whenzs > 2 and 0< n(¢) < 1.

Then, by Fubini’s theorem we have
‘dr

(8.3) E(r) = / — /{d>1(7', t,r)+ @7, t,r)u(r, r)dr,
o T

Dy(7,t,r) = /I{l—n(t;s)}Zo(t,s)%cp (s, il ;r ) ds,
Dy(7,t,r) = /a’n<t_Ts)Zo(t,s)%gp (s, s;r ) ds.
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As A(t)Zo(t, s) = (0/0s)Zo(t, s), an integration by parts shows that

A<f>¢1<w>=%<rf;f> {1 TEL) PPN PR ELY
>/ Nz D (5 ) as

12 t — _
—/ n’(—s)Zo(t,s)—Z@ (s, i ) ds,
B T T T

where p1(¢t, s) = (0/01)(t, s), wat, s) = (0/0s)p(t, s). Hence we have

1—7

1
/IIA(t)%(T,t,r)IIxder <Cot Y C / dsT' +C3—/ ds < Cy.

j=1,2 t t—21

Since

o (s g (o (350 ) o (550),

where (¢, s) := (0v/0t)(t, s), we also have

A@)Do(r,1,7) = _77( )A(t)Zo(t a)y ( - —r )
[ e ()
[ Bzt (555 ) o

_/tn(t_Ts)A(t)Zo(t,s)zbl <s, S ;’ ) ds,

which implies, together with the fact tha(z)/r < 1, that

r—ay T =T _
/||A(t)<1>2(7', ) lx—xdr < Con(—2) —— +c6T/ (t - 5)"2ds

1—T d t t —
+C7/ —S+Cg/ 7]( S) T ds
—or I — 8 a T t—s

< Co.

As |lu(r, )|z=@:x) € LY(0,c)) and A ¢) is closed, these results and (8.3) give that
E(t) € D(A(z)), A()E(r) = /0 d; / AW Pu(r, 1, 7) + Oo(7, 1, r) }ulr, r)dr

and [A@)E@)||lx < C'[[fllo (w.ryx)- Since this integral converges uniformly with re-
spect tor € I, we also see thaA t(E) () is continuous.



432 T. MURAMATU AND T. TOJIMA
The results proved above imply, with the aid of the following lemma and the
identity Fo(t) = [ Zo(t,s)f(s)ds — [} G(t,s)f(s)ds, that Fo(t) € D(A(t)) for any
t € I, the first inequality in (8.1) andA -)Fo(-) € C(I; X). The second inequality
in (8.1) andFy € C(I;Y) follow from these facts together with the identifip(z) =
(I +A@) X1 + A@) Fo(1).
Finally, these facts and Lemma 6.1 imply thaf € C*((a, b); X). I

Lemma 8.2. Let f € C(I;X) and put G(r) = [ G(t,s)f(s)ds. ThenG €
C(1;Y) and [[G(®)[ly < Py(t — a)ll fl| Lo (@@.0yx)-

Proof. This follows from the inequality (5.6). O

Now, let us proceedo prove Theorem 1.1.
Step 1. Consider the case wherg € Booo,l((a,b);X) and M~v(b — a) < 1,
where v is the function defined by (4.3). The estimate (4.8) implies that the series

Sonso Walt, s) £ (s) converges taU «(s § s( ) inX uniformly ins(s ¥ T :={(t,s);a <
s <t < b}. Hence we have

(8.4) F(t)= / Ut s)f(s)ds = / Walt, 5)f(s)ds = > F,(0).
a n=0

n=0 74

Using Fubini’'s theorem, by (4.1) we have

85) R0 = [ W 956)ds = [ Wolo,)H6)ds
forn=0,1---, where Hyo(t) := f(¢t) and

(8.6) H,() = /t R,(t,s)f(s)ds forn=1,2"---.

By Lemma 8.1 we have € C(I;Y) and || Fo(t)||y < C||f]lgo (1:x)- Assume that
(8.7) Fy e C(1;Y) and [[F,())]ly < K(n+M"y(t —a)"|[ fll g0 1:x)-

Here K is a constant which will be chosen later on. The identity

(8.8) Fua(t) = / [Q1(t, ) Fu(s) + G (1, s){ Hu(s) — Hy+a(s)}]ds

forn=0,1 ---, which is a consequence of (5.1) and (5.2) with= s, together with
(7.3), Lemma 8.2 and the inequality

(8.9) [ H,(@)llx < M"(t —a)"|| flzo(;x)
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forn=0, 1 ---, which follows from (4.7), implies that
| Fpa®lly <{ K@+ D)MA( — @)™+ 2P Mt — )™ } [ £l -

Taking K = ma>{6, 2P/M}, this gives (8.7) fom + 1. By (8.7) we see tht -, F,
converges inC(Z;Y), so thatF € C(1;Y).

Furthermore, by (8.5) and Lemma 6.1 we see that C(/; X) and its derivative
is F!(t) = H,(t) — H,+1(t) — A(¢)F,(r). Since the right-hand side of the identity

% NF0) = £) ~ Hoal) — A0 . Fi(0)
j=0 ‘

Jj=0

converges tof #( » A(¢)F(¢t) uniformly in t asn — oo, we can conclude that' €
CHI; X) and F'(t) = f(t) — A(t)F(¢).

STEP 2. Consider now the general case. Lete L'(/;X) N B2 wo1((@, b); X)ioc,
and leta <t <b. Takea andg so thate < a <t < <b ande(ﬁ o) <1, and
put

(8.10)  F(r)= / U(t, s) f(s)ds + / U(t, s)f(s)ds = Fi(t) + Fa(t).

Since f € Bog’l((a, 6); X), by the results in Step 1 we see thgi(r) € D(A(r)),

A()Fx(-) is continuous, F, is differentiable, andrj(r) = f(t) — A()Fz(t). Since
U(t, ) is differentiable and{o/0t}U(r, o) = —A()U(z, ), it follows that Fi(r) =

U(t, a)F(a) is differentiable, F1(t) € D(A(r)) and A ¢ )Fi(r) is continuous. ThusF ¢( )
is differentiable andr’(r) = —A()F1(t) + f(t) — A(t)Fo(t) = f(t) — A@)F(¢). This

completes the proof of Theorem 1.1.

Remarc.  The conditionf € B2 ,((a. b); X) follows from f € C(I; X) and

@1)  pif)= s 76 +m) - f)] e (0., %)

a<s<sth<b

for somed. In fact, leto(z, s) be a C°-function such thatf o(z, s)ds = 0 andp(z, s) =
0 when|s — (2t —a — b)/(b — a)| > 1. Then we have

ar
Lo(I;X) T

g
Zo(6 )G -y — Foan

7_

Lqu)T

/ / PRl f)dh < 2Co€/ p(h; f)i—h < o0.
[h|<LT.b—a o

IA
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Thus we havef € BY ,((a, b); X) by Thoerem 1 in [4].

From this fact and Theorem 1.1 we see thatr () is differentiablef if €
LY((a, b); X) and the condition (8.11) is satisfied locally. This result has been directly
proved by Tojima [9] (The case where ¢t () is independent of has been discussed by
Crandal-Pazy [1]).
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