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ANNIHILATOR, COMPLETENESS AND

CONVERGENCE OF WAVELET SYSTEM

KWOK-PUN HO

Abstract. We show that if {ϕ}Q∈Q ∈
T

Mα(Rn) is a frame and {ψQ}Q∈Q ∈
T

Mα(Rn) is its dual frame (for the definition of Mα(Rn), see Definition 2.1),

where Q is the collection of dyadic cubes, then for any f ∈ S ′(Rn), there exists

a sequence of polynomials, PL,L′,L′′ , such that

(0.1) lim
L,L′,L′′→∞



X

−L′≤i≤L

X

|k|≤δ(i)2L′′

〈f, ψQi,k
〉ϕQi,k

− PL,L′,L′′

ff

= f

in the topology of S ′(Rn), where δ(i) = max(2i, 1). We prove this result by

explicitly constructing the polynomials PL,L′,L′′ . Furthermore, using the above

result, we assert that the linear span of the one-dimensional wavelet system is

dense in a function space if and only if the dual space of this function space

has an trivial intersection with the set of polynomials. This is proved by using

the annihilator of the one-dimensional wavelet system.

§1. Introduction

The purpose of this paper is to prove Theorems 2.1, 3.1, 3.2 and 3.3,

as presented in Section 2 and Section 3 and some of theirs generalizations.

We show convergence results for frame expansion and wavelet expansion of

distributions in Theorems 2.1 and 3.1, respectively. We present one of our

main results, Theorem 2.1, in term of frame expansion and consider the

corresponding result for wavelet as a special case in Theorem 3.1. Although

the result for wavelet is a special case of the result for frame, the convergence

of wavelet expansion of Schwartz distribution provides something new on the

study of one-dimensional wavelets. Using this theorem, we can determine

the annihilator of the wavelet system (see (1.14) for the definition) and

establish a condition that guarantees the completeness of wavelet system on

any function space in Theorems 3.2 and 3.3.
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We begin with some notation and preparations for presenting our main

results. Let Lp(Rn), 1 ≤ p ≤ ∞, denote the Lebesgue spaces on Rn and

P(Rn) be the space of polynomials on Rn. We denote the space of Schwartz

functions by S(Rn). Let S0(R
n) consist of Schwartz functions, g(x), satis-

fying

(1.1)

∫

Rn

xλg(x) dx = 0 for all λ = (λ1, . . . , λn) ∈ Nn.

Let Pd(R) be the set of polynomials of degree at most d, d ∈ N, and

P(R) = P∞(R) =
⋃

d∈N
Pd(R) be the set of polynomials.

The dual spaces of S(Rn) and S0(R
n) are S ′(Rn) (Schwartz Distribu-

tion) and S ′
0(R

n), respectively. For any f ∈ S ′(Rn), f̂ is the Fourier trans-

form of f and we call the support of f̂ the Fourier support of f . Let 〈 · , · 〉

be the pairing between S ′(Rn) and S(Rn). In order to have a pairing that

is compatible with the inner product on L2(Rn), we endow S ′(Rn) with the

antilinear structure; that is, for any f ∈ S ′(Rn), a, b ∈ C, and ψ, φ ∈ S(Rn),

we have 〈f, aφ+ bψ〉 = ā〈f, φ〉+ b̄〈f, ψ〉 where ā is the complex conjugate of

a. For instance, the action of the Schwartz distribution, f(x) = xλ, λ ∈ Nn,

on an arbitrary ψ ∈ S(Rn) is given by 〈xλ, ψ〉 =
∫

R
xλψ(x) dx.

If f ∈ Lp(Rn) and g ∈ Lp
′
(Rn) with 1

p + 1
p′ = 1, 1 ≤ p, p′ ≤ ∞, then

〈 · , · 〉 reduces to

〈f, g〉 =

∫

Rn

f(x)g(x) dx.

We recall the definition of frame from [8], Section 8.1. For a given index

set, Γ, a family of functions, {ϕγ}γ∈Γ ∈ L2(Rn), is a frame on L2(Rn), if

there exist two constants, C2 ≥ C1 > 0, such that, for any f ∈ L2(Rn),

(1.2) C1‖f‖
2
L2 ≤

∑

γ∈Γ

|〈f, ϕγ〉|
2 ≤ C2‖f‖

2
L2 .

It is obvious that a frame is complete in L2(Rn). That is, the linear span of

{ϕγ}γ∈Γ is dense in L2(Rn).

If {ϕγ}γ∈Γ is a frame on L2(Rn), then the associated operator, S :

L2(Rn) → L2(Rn),

S(f) =
∑

γ∈Γ

〈f, ϕγ〉ϕγ , f ∈ L2(Rn),

is invertible on L2(Rn).



ANNIHILATOR, COMPLETENESS AND CONVERGENCE OF WAVELET SYSTEM 61

Define ψγ , by ψγ = S−1(ϕγ). The family of functions, {ψγ}γ∈Γ, is called

the dual frame of {ϕγ}γ∈Γ. Using the dual frame, we obtain the following

frame expansion for f ∈ L2(Rn),

f = S(S−1(f)) =
∑

γ∈Γ

〈f, ϕγ〉S−1(ϕγ) =
∑

γ∈Γ

〈f, ϕγ〉ψγ(1.3)

= S−1(S(f)) =
∑

γ∈Γ

〈f,S−1(ϕγ)〉ϕγ =
∑

γ∈Γ

〈f, ψγ〉ϕγ .(1.4)

Let Q denote the set of dyadic cubes on Rn,

Q = {Qi,k : i ∈ Z, k ∈ Zn} with Qi,k = 2−i([0, 1]n + k).

For each Q = Qi,k, we denote the length of Q, 2−i, by l(Q), the Lebesgue

measure of Q, 2−in, by |Q| and its “left-corner”, 2−ik, by xQ.

The function ϕ(x) is called a wavelet for L2(R) if

ϕi,k(x) = 2i/2ϕ(2ix− k), i ∈ Z, k ∈ Z,

is an orthonormal basis of L2(R). We call 2i and 2−ik the dilation and the

translation of ϕi,k, respectively.

Moreover, {ϕQ}Q is a wavelet-type frame if ϕQ(x) = ϕi,k(x) when Q =

Qi,k, where ϕi,k(x) = 2in/2ϕ(2ix − k). Roughly speaking, a wavelet-type

frame is a wavelet without orthogonality.

In one of our main results, Theorem 2.1, we establish the conver-

gence of frame expansion of Schwartz distribution when the frame satisfies

{ϕQ}Q∈Q, {ψQ}Q∈Q ∈
⋂

α>0 Mα(R
n) (for the definition of Mα(Rn), see

Definition 2.1). The precise result is given in Section 2.

As wavelet provides an important example on the convergence of frame

expansion of distributions and some results from wavelet give us an impor-

tant motivation, in this introduction, we are going to have a short overview

on the convergence of one-dimensional wavelet expansion and some of its

related topics.

There are many references on the convergence of wavelet expansions.

One of the pioneer results was obtained by Meyer in [15]. He proved that

the wavelet expansion of f ∈ Lp(R), 1 < p < ∞, converges in the sense

of Lp(R) if the wavelet is r-regular (see [15] for the definition of r-regular).

Then, we turned to the pointwise convergence of wavelet expansion. Walter

[22] showed that the wavelet expansion of a function f ∈ L1(R) ∩ L2(R)



62 K.-P. HO

converges to f pointwisely at every point of continuity of f and uniformly

on those intervals where f is continuous if the wavelet is r-regular. Later,

Kelly, Kon and Raphael [12], [13] extended the result in [22] by relaxing the

conditions imposed on the wavelet and proved the pointwise convergence of

wavelet expansion of f ∈ Lp(R) with 1 < p < ∞. In [26], Zayed further

generalized the pointwise convergence of wavelet expansion for wavelets that

are not necessarily integrable on R.

We are interested in the convergence of the truncated wavelet expansion

of f ∈ S ′(R). Suppose that ϕ(x) ∈ S(R) is a wavelet for L2(R). We

investigate whether the truncated wavelet expansion,

(1.5)
∑

−L′≤i≤L

∑

|k|≤δ(i)2L′′

〈f, ϕi,k〉ϕi,k, f ∈ S ′(R),

converges to f in S ′(R) as L, L′, L′′ go to infinity (L, L′ and L′′ are taken

independently), where δ(i) = max(2i, 1).

As we are studying the convergence of wavelet expansion in S ′(R), it

is important to declare the topology assigned to S ′(R). Throughout this

article, except Section 5.4, the space of Schwartz distribution, S ′(R), is

endowed with the weak-star topology inherited from S(R) (see [2], Chap-

ter V, Section 1, Definition 1.1). That is, the open base of S ′(R) consists of

{f ∈ S ′(R) : |〈f, ψ1〉| < ε1, . . . , |〈f, ψm〉| < εm}, for some ψ1, . . . , ψm ∈ S(R)

and ε1, . . . , εm > 0. It is easy to see that, with the weak-star topology, S ′(R)

is a locally convex topological vector spaces.

The weak-star topology is the usual topology assigned to S ′(R). For

example, the dual space of S ′(R) is S(R) (see [2], Chapter V, Section 1,

Theorem 1.3) and the Fourier transform is a continuous linear mapping in

S ′(R) if S ′(R) is endowed with the weak-star topology.

Of course, we can endow S ′(R) with a topology different from the weak-

star topology. In Section 5.4, we briefly mention the convergence of the

frame expansion for Schwartz distribution under the “inductive limit topol-

ogy” (for the definition of inductive limit topology, see [2], Chapter IV,

Section 5).

Before we proceed to the discussion on introducing the floating poly-

nomials in our wavelet expansion, we would like to say a few words on the

truncation set,

T (L,L′, L′′) = {(i, k) : i ∈ Z, −L′ ≤ i ≤ L; k ∈ Z, |k| ≤ δ(i)2L′′
}.
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In this article, the truncation set is T (L,L′, L′′) although it seems that

it is more reasonable to consider

T̃ (L,L′, L′′) = {(i, k) : i ∈ Z, −L′ ≤ i ≤ L; k ∈ Z, |2−ik| ≤ 2L′′
}

as the truncation set because 2−ik corresponds to the translation of ϕi,k.

The use of T (L,L′, L′′) is supported by Lemma 7.1 in Section 7. Rough-

ly speaking, in order to have the fastest rate of convergence, the truncation

set should collect those “relatively large” wavelet coefficients, 〈f, ϕi,k〉, f ∈

S(R). By Lemma 7.1, the decay for 〈f, ϕi,k〉 is different according to i ≥

0 and i < 0. We, therefore, introduce δ(i) to balance the disproportion

between i ≥ 0 and i < 0. The formulation of δ(i) and the detail of using

δ(i) in our analysis can be found in Section 7.

In Section 8.1, we will discuss the convergence of frame expansion with

T̃ (L,L′, L′′) as the truncation set. In fact, our results are still valid if we take

T̃ (L,L′, L′′) as the truncation set. The shortcoming of using T̃ (L,L′, L′′) is

that we have a slower rate of convergence (see (7.11) and (8.1)).

Now, we analyze why we need to modify our wavelet expansion of f ∈

S ′(R) by adding a sequence of “floating polynomials”. Let us examine the

expansion, (1.5), and see what problem arises if we solely use (1.5) for

f ∈ S ′(R). Suppose that for any f ∈ S ′(R), we have

(1.6) lim
L,L′,L′′→∞

∑

−L′≤i≤L

∑

|k|≤δ(i)2L′′

〈f, ϕi,k〉ϕi,k = f

in S ′(R).

First, the proof of Theorem 3.4 in Section 2.3 of Hernández and Weiss

[8] shows that if ϕ is a wavelet for L2(R) and satisfies

(1.7) |ϕ(x)| ≤
1

(1 + |x|)1+s
, for some s > [s] ≥ 0,

where [s] is the integral part of s and ϕ(m) ∈ L∞(R) for m = 1, 2, . . . , [s],

then all moments up to order [s] are zero; that is,

(1.8)

∫

R

xλϕ(x) dx = 0 for λ ∈ N and 0 ≤ λ ≤ [s].

As ϕ ∈ S(R), ϕ satisfies (1.8) with s = ∞. If we apply (1.6) to the

Schwartz distribution, f(x) = xλ, 0 ≤ λ < ∞, then the left-hand side of



64 K.-P. HO

(1.6) is equal to zero for any L, L′ and L′′ while the right-hand side is not.

Thus, the truncated wavelet expansion, (1.5), cannot converge to f in S ′(R).

The Littlewood-Paley analysis on Rn (see [16], Chapter 1, Section 3)

gives us an inspiration on introducing the floating polynomials. Specifically,

the Littlewood-Paley analysis involves a function, ψ ∈ S0(R
n), satisfying

supp ψ̂(ξ) ⊂ {ξ ∈ Rn : 1/2 ≤ |ξ| ≤ 2}(1.9)
∞
∑

j=−∞

ψ̂(2jξ) = 1 if ξ 6= 0.(1.10)

For any f ∈ S ′(Rn), we define 4j(f) = f ∗ψj where ψj(x) = 2njψ(2jx) and

f ∗ ψj is the convolution of f and ψj .

The following well-known theorem is the fundamental result on the

convergence of the Littlewood-Paley analysis for f ∈ S ′(Rn).

Proposition 1.1. If f is a Schwartz distribution, there exist an inte-

ger, N , and a sequence, Pq(x), of polynomials of degrees less than or equal

to N such that

f = lim
q→+∞

{ 0
∑

j=−q

4j(f) − Pq

}

+

∞
∑

j=1

4j(f).

The above result was observed by Peetre in [18], see pp. 51–54 of [18]. For

the proof of the above proposition, the reader is referred to [16] Chapter 1,

Section 3, Proposition 1.5. Moreover, in Chapter 2 of [16], there are some

ideas on the convergence of the wavelet expansion of f(x) = |x|s when

0 < s < 1 or m < s < m+ 1, m ∈ N.

There is another similar result in [5] and [6], where Frazier and Jawerth

showed that if ϕ,ψ ∈ S(Rn) satisfy

supp ψ̂(ξ), supp ϕ̂(ξ) ⊂ {ξ ∈ Rn : 1/2 ≤ |ξ| ≤ 2}(1.11)
∞
∑

j=−∞

ϕ̂(2jξ)ψ̂(2jξ) = 1 if ξ 6= 0,(1.12)

then, for any f ∈ S ′(Rn)/P(Rn) (the space of Schwartz distributions modulo

polynomials with the weak-star topology induced by S0(R
n)),

(1.13)
∑

i∈Z,k∈Zn

〈f, ϕi,k〉ψi,k
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converges to f in S ′(Rn)/P(Rn), where ϕi,k(x) = 2in/2ϕ(2ix − k) and

ψi,k(x) = 2in/2ψ(2ix − k). Frazier and Jawerth used the Littlewood-Paley

analysis and Shannon’s sampling theorem to prove this result (see Lem-

ma 2.1 of [5]). Therefore, the compactness of the Fourier supports of ϕ and

ψ is essential in proving the convergence of (1.13). Notice that we do not

make any assumption on the Fourier support of the wavelet function, ϕ(x),

in this paper. Therefore, Shannon’s sampling theorem and the Littlewood-

Paley analysis can no longer be used as they were by Frazier and Jawerth

[5], [6] and Meyer [16].

As mentioned in [16], we need a renormalization to fix the “infrared

divergence”. The correct renormalization is a sequence of floating polyno-

mials (the polynomials, Pq, in Proposition 1.1). In this paper, we prove

the convergence of wavelet expansion for f ∈ S ′(R) and construct the corre-

sponding floating polynomials. The precise meaning and the construction of

these floating polynomials for wavelet expansion of Schwartz distributions

are given in Theorem 3.1.

The convergence of wavelet expansion of Schwartz distribution provides

some new insight for one-dimensional wavelet system. By using the above

result on the convergence of wavelet expansion, we can determine the anni-

hilator of the wavelet system. That is, for any function space B satisfying

S(R) ↪→ B ↪→ S ′(R), we search for an explicit expression of

(1.14) {f ∈ B∗ : 〈f, ϕi,k〉 = 0, ∀i, k ∈ Z},

where B∗ denotes the dual space of B.

The interest in the completeness of the wavelet system, {ϕi,k}i,k∈Z, on

function spaces is the reason for the study of the annihilator. Recall that if

the wavelet system is complete in a function space, B, then the linear span

of the wavelet system is dense in B. By using the Hahn-Banach Theorem,

the annihilator provides a characterization on whether any function space,

B, has the wavelet system as a complete system.

If we take B = L2(R), it is obvious that the annihilator is equal to the

trivial set. That is, {0}. Nevertheless, if we consider B = S(R), (1.8) shows

that

(1.15) P[s](R) ⊆ {f ∈ S ′(R) : 〈f, ϕi,k〉 = 0, ∀i, k ∈ Z},

if ϕ satisfies (1.7).

In this paper, we show that, by using the convergence of wavelet ex-

pansion for distributions, we have an identity in (1.15). Furthermore, once
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we determine that the annihilator for the wavelet system is equal to the set

of polynomials, we can use the Hahn-Banach theorem to deduce a condi-

tion that guarantees the completeness of the wavelet system, {ϕi,k}i,k∈Z, on

function spaces. We prove that a locally convex function space, B, satisfy-

ing S(R) ↪→ B ↪→ S ′(R), has {ϕi,k}i,k∈Z as a complete system if and only

if

B∗ ∩ P(R) = {0}.

Other than the study of completeness of the wavelet system, the anni-

hilator is also related to the Fix-Strang condition. Before we go into details

of it, let us recall some important notions in wavelet theory.

Let Φ be a scaling function and ϕ be its wavelet. The corresponding

multiresolution analysis, {Vj}j∈Z ⊂ L2(R), is given by

(1.16) Vj =

{

∑

k∈Z

αkΦ(2jx− k) :
∑

k∈Z

|αk|
2 <∞

}

.

From Theorem 1.6 in Section 2.1 of [8], we can compute the tail of the

MRA,
⋂

j∈Z
Vj . We have

⋂

j∈Z
Vj = {0}. That the tail of the MRA equals

to the trivial set is an important property because with this identity, we

can decompose L2(R) as L2(R) =
⊕∞

j=−∞Wj, where Wj is the closure of

the linear span of {ϕ( · − k)}k∈Z. Precisely, the family {ϕ( · − k)}k∈Z is an

orthogonal basis of Wj. Furthermore, Wj is the orthogonal complement of

Vj+1 from Vj . That is Vj+1 = Vj ⊕Wj.

In order to see whether we can use MRA to study function spaces other

than L2(R), for example, S ′(R), we alter the definition of Vj, (1.16), by

(1.17) Tj =

{

f : f(x) =
∑

k∈Z

akΦ(2jx− k); |ak| = O(|k|l) for some l ∈ Z

}

.

The above definition of Tj is provided by Walter in [23].

Unfortunately, the tail of {Tj}j∈Z,
⋂

j∈Z
Tj , is not a trivial set. In fact,

we find that

(1.18) Pp(R) ⊆
⋂

j∈Z

Tj

where p ∈ N ∪ {∞} depends on the order of vanishing moment the wavelet

satisfied. We have the following result which is a part of Theorem 7.4 of

[14].
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Theorem 1.2. Let p ∈ N ∪ {∞}, ϕ and Φ be a wavelet and a scaling

function that generate an orthogonal basis. Suppose that |ϕ(x)| = O((1 +

x2)−p/2−1) and |Φ(x)| = O((1 + x2)−p/2−1). The following statement are

equivalent :

(1) The wavelet ϕ satisfies condition (1.8) with p = s.

(2) For any 0 ≤ l ≤ p, l ∈ N,

(1.19) ql(t) =

∞
∑

k=−∞

klΦ(t− k)

is a polynomial of degree l.

The proof of the above theorem relies heavily on Fourier transform. The

hypothesis, (2), in Theorem 1.2 is called the Fix-Strang condition (see [4]).

With the definition of Tj , the inclusion, (1.18), is another expression of the

Fix-Strang condition.

In this paper, we prove that if Φ, ϕ ∈ S(R), then the tail of {Tj}j∈Z is

equal to the set of polynomials. That is,

(1.20) P(R) =
⋂

j∈Z

Tj.

Moreover, we obtain another representation of the set on the right-hand

side of (1.20) where this representation does not involve the scaling function.

Specifically, when the wavelet, ϕ ∈ S(R), we show that the sets in (1.20) also

equal to the annihilator for the wavelet system. Furthermore, it provides

a new proof of the Fix-Strang condition where Fourier transform is not

involved.

In addition, by using our idea for proving Theorem 2.1, we show another

interesting result about “reproducing formula” for Schwartz distributions.

A reproducing formula for S ′(Rn)/P(Rn) involves two families of functions

{ϕI}I∈I , {ψI}I∈I ⊂ S0(R
n) such that

(1.21) f =
∑

I∈I

〈f, ϕI〉ψI , ∀f ∈ S ′(Rn)/P(Rn).

We call {ϕI}I∈I the analyzing family and {ψI}I∈I the reconstructing family

of (1.21). We prove in Theorem 6.2 that an analyzing family is also a
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reconstructing family, and vice verse, if {ϕI}I∈I and {ψI}I∈I are “well-

localized”. More specifically, if {ϕI}I∈I , {ψI}I∈I ∈
⋂

α>0 Mα(Rn) (for the

definition of Mα(Rn), see Definition 2.1) satisfy (1.21), then, we assert that

(1.22) f =
∑

I∈I

〈f, ψI〉ϕI , ∀f ∈ S ′(Rn)/P(Rn).

We see that the notions of analyzing family and reconstructing family are

the same for Schwartz distributions. The precise meaning of the above result

is given in Section 6.

This paper is organized as follows. The main theorem for frame, The-

orem 2.1, is presented in Section 2. The main results for one-dimensional

wavelets, namely, the convergence, the annihilator and the completeness of

one-dimensional wavelets, are given in Section 3. In Section 4, we introduce

a class of function spaces, define the order for a distribution in S ′(Rn), and

state the convergence theorem for frame expansion of the Schwartz function,

S(Rn), the proof of Theorem 2.1 is also given in this section. We present

some generalizations of Theorems 2.1, 3.1, 3.2 and 3.3 and compute the tail

of a generalized MRA (see Section 5.3 for the definition) in Section 5. We

state and prove Theorem 6.2 in Section 6. We provide the proof for The-

orem 4.1 in Section 7 and consider the convergence of wavelet expansions

with truncation sets different from T (L,L′, L′′) in Section 8.1.

§2. Main results for convergence of frame expansion

In this Section, we state the main result for frame. In order to control

the decay and smoothness of the frame, we introduce the following classes

of functions. The following definition is motivated by the definitions of

smooth molecules in [6] (pp. 56–57, conditions (3.3)–(3.10)) and vaguelets

in [1] (Chapter 8, Section 5, Definition 3).

Definition 2.1. Given a fixed ε > 0, for α > 0, we say that mQ,

Q ∈ Q, is an homogeneous molecule with order α, if it satisfies

(2.1)

∫

Rn

xλmQ(x) dx = 0 if |λ| ≤ [α],

where λ = (λ1, . . . , λn) ∈ Nn and |λ| = |λ1| + · · · + |λn|;

(2.2) |∂γmQ(x)| ≤ C1|Q|−1/2−|γ|/n 1

(1 + l(Q)−1|x− xQ|)α+n+ε
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if γ ∈ Nn and |γ| ≤ [α]; and

|∂γmQ(x) − ∂γmQ(y)|(2.3)

≤ C2|Q|−1/2−α/n|x− y|α−[α] sup
|z−xQ|≤|x−y|

1

(1 + l(Q)−1|x− z|)α+n+ε

if |γ| = [α] < α.

We call {mQ}Q a family of homogeneous molecules. The class of these

families of homogeneous molecules is denoted by Mα(Rn). We define the

norm, ‖ · ‖Mα , to be max(‖ · ‖∗, ‖ · ‖∗∗) where ‖{mQ}Q‖∗ is the infimum of

C1 in (2.2) and ‖{mQ}Q‖∗∗ is the infimum of C2 in (2.3).

The following result is one of our main theorems. It presents the con-

vergence of frame expansion for Schwartz distribution. Using this result, we

determine the annihilator of wavelet system in Section 3.2 and study the

completeness of wavelet system in Section 3.3.

The proof of the following theorem is given in Section 4.2.

Theorem 2.1. Let {ϕQ}Q∈Q ∈
⋂

α>0 Mα(Rn) be a frame on L2(Rn)

and {ψQ}Q∈Q ∈
⋂

α>0 Mα(Rn) be its dual frame. Then, for any f ∈

S ′(Rn), there exist an integer, N , and a sequence of floating polynomials,

PL,L′,L′′(x), of degrees less than or equal to N such that

(2.4) lim
L,L′,L′′→∞

{ L
∑

i=−L′

∑

|k|≤δ(i)2L′′

〈f, ψQi,k
〉ϕQi,k

− PL,L′,L′′

}

= f

in the topology of S ′(Rn) (the weak-star topology inherited from S(Rn)).

More precisely, we have

PL,L′,L′′(x) = P θL,L′,L′′(x)

= −
∑

0≤|λ|≤N

(

〈f, θλ〉 −
L

∑

i=−L′

∑

|k|≤δ(i)2L′′

〈ϕQi,k
, θλ〉〈f, ψQi,k

〉

)

xλ,

where λ ∈ Nn and θλ ∈ S(Rn) satisfies

(2.5)

∫

Rn

xγθλ(x) dx = δγλ =

{

1 if γ = λ

0 if γ 6= λ,
for γ ∈ Nn and 0 ≤ |γ| ≤ N.
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Remark 2.1. Note that if ϕ ∈ S0(R
n) satisfies the Calderón reproduc-

ing formula
∑

i∈Z

|ϕ̂(2iξ)|2 = 1 if ξ 6= 0.

Then, there exists an integer, b, such that the function, ϕ(2bx), is a wavelet-

type frame. In addition, the corresponding dual frame, {ψi,k}i∈Z, k∈Zn ,

belongs to
⋂

αMα(Rn) although {ψi,k}i∈Z, k∈Zn is not necessarily a dila-

tion and translation of a fixed function, see [9]. The results in [9] are for

frames with matrix dilations and the above result is obviously a special case.

Therefore, it makes sense to assume {ϕQ}Q∈Q, {ψQ}Q∈Q ∈
⋂

αMα(R
n) in

Theorem 2.1.

As {ϕQ}Q∈Q is a frame on L2(Rn) and {ψQ}Q∈Q is its dual frame, the

functions ϕQ and ψQ in (2.4) can be interchanged. We provide a more

general result in this direction in Section 6.

Note that the floating polynomials, PL,L′,L′′ ∈ S ′(Rn), depend continu-

ously and linearly on f ∈ S ′(Rn).

In Section 8.2, we show that if θ1
λ, θ

2
λ ∈ S(Rn) fulfill condition (2.5),

then the corresponding floating polynomials, P θ1

L,L′,L′′ and P θ
2

L,L′,L′′ , satisfy

P θ
1

L,L′,L′′ − P θ
2

L,L′,L′′ → 0 in S ′(Rn) as L, L′ and L′′ go to infinity. Therefore,

the convergence in (2.4) is independent of the family, {θλ}. Furthermore, in

that section, we prove that if f ∈ L2(Rn), then the corresponding floating

polynomials, PL,L′,L′′ , converges to zero in S ′(Rn) as L,L′, L′′ → ∞.

Theorem 2.1 is proved by considering the “dual problem”. We first

shift our attention from the convergence of frame expansion of Schwartz

distributions, S ′(Rn), to the convergence of frame expansion of Schwartz

functions, S(Rn). Then, we try to determine the condition imposed on

g ∈ S(Rn) such that

(2.6)

L
∑

i=−L′

∑

|k|≤δ(i)2L′′

〈g, ϕQi,k
〉ψQi,k

→ g in S(Rn)

as L, L′ and L′′ go to infinity. We show in Theorem 4.1 that (2.6) holds if and

only if g ∈ S(Rn) satisfies the vanishing moment condition,
∫

Rn x
λg(x) dx =

0 for all λ ∈ Nn.

It turns out that the above condition is too strong because it requires

infinity many vanishing moments. We need a weaker condition which just
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involves finite many moments. To rectify this situation, we consider the con-

vergence of frame expansion under another function spaces, namely, Cα(R
n)

(we definite Cα(R
n) in Definition 4.1).

Roughly speaking, the frame expansion of g ∈ S(Rn) converges in

Cα(Rn) if g satisfies
∫

Rn x
λg(x) dx = 0 for λ ∈ Nn and 0 ≤ |λ| ≤ [α].

The precise statement of the above result is presented in Theorem 4.1.

If f ∈ S ′(Rn) is of “order” less than or equal to α (the definition of

the order of a Schwartz distribution is given in Section 4), then we can

apply f on the truncated frame expansion of g ∈ S(Rn). In order to fulfill

the vanishing moment condition imposed on g ∈ S(Rn), we need to modify

g and this produces the floating polynomials in Theorem 2.1. The space

of Schwartz distribution, S ′(Rn), is endowed with the weak-star topology

inherited from S(Rn). That is, fi → f in S ′(Rn) if and only if, for any

ψ ∈ S(Rn), 〈fi, ψ〉 → 〈f, ψ〉. Therefore, we can obtain our result by duality.

Notice that, in [7], pp. 122–125, Frazier et al. also use the duality argument

to prove the convergence of the “continuous Calderón reproducing formula”

in S ′(Rn)/P(Rn).

Our argument for proving Theorem 2.1 can be used to generalize the

Littlewood-Paley analysis, the detail is given in [10]. In [10], we can show

that Proposition 1.1 still holds when ψ ∈ S(Rn) only satisfies condition

(1.10). The reader may wonder whether we can use the generalized

Littlewood-Paley analysis to prove the convergence of frame expansion for

Schwartz distribution. Although we do not need (1.9) for the generalized

Littlewood-Paley analysis, the compactness of the Fourier support of the

function, ϕ, required by Shannon’s formula (see the conditions for identity

(3.4)) forbids the use of the generalized Littlewood-Paley analysis in proving

Theorem 2.1.

§3. Main results for one-dimensional wavelets

3.1. Convergence of wavelet system

We are particular interested in the consequences of the results in The-

orem 2.1 on the one-dimensional wavelets. Since one-dimensional wavelet

ϕ ∈ S(R) satisfies a very important property

∫

R

xsϕ(x) dx = 0, s ∈ N,

we have the following result for wavelet.
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Theorem 3.1. Let ϕ ∈ S(R) be a wavelet for L2(R). Then, for any

f ∈ S ′(R), there exist an integer, N , and a sequence of floating polynomials,

PL,L′,L′′(x), of degrees less than or equal to N such that

(3.1) lim
L,L′,L′′→∞

{

∑

−L′≤i≤L

∑

|k|≤δ(i)2L′′

〈f, ϕi,k〉ϕi,k − PL,L′,L′′

}

= f

in the topology of S ′(R) (the weak-star topology inherited from S(R)) where

PL,L′,L′′(x) = P θL,L′,L′′(x)

= −
∑

0≤λ≤N

(

〈f, θλ〉 −
∑

−L′≤i≤L

∑

|k|≤δ(i)2L′′

〈ϕi,k, θλ〉〈f, ϕi,k〉

)

xλ,

λ ∈ N and θλ ∈ S(R) satisfies

(3.2)

∫

R

xγθλ(x) dx = δγλ =

{

1 if γ = λ

0 if γ 6= λ,
for γ ∈ N and 0 ≤ γ ≤ N.

The existence of wavelets belonging to S(R) had been shown by Lemarié

and Meyer (see [8], Section 1.4). The Lemarié-Meyer wavelets can be con-

structed by multiresolution analysis (see [8], Section 2.2, Example D), more-

over, the corresponding scaling function also belongs to S(R).

Although the above result is a special case of Theorem 2.1, it has its

own independent interest. This is the first proof on this expected result.

The above result for the Lemarié-Meyer wavelets cannot be proved by Shan-

non’s sampling theorem and the Littlewood-Paley analysis, even though the

Fourier support of the Lemarié-Meyer wavelets is compact (that is, they are

band-limited wavelets). The obstacle is found in the inconsistency between

the Fourier support of the Lemarié-Meyer wavelets and the “sampling fre-

quency” given by Shannon’s formula. Let ϕ be a Lemarié-Meyer wavelet

on R, after expanding f ∈ S ′(R) by the Littlewood-Paley analysis (Propo-

sition 1.1 with ψ̂ = |ϕ̂|2); that is,

(3.3) f = lim
q→+∞

{ 0
∑

i=−q

f ∗ ϕ̃i ∗ ϕi − Pq

}

+
∞
∑

i=1

f ∗ ϕ̃i ∗ ϕi, ϕ̃(x) = ϕ(−x),

we need a “discretization” on f ∗ ϕ̃i ∗ ϕi. The discretization process is an

extension of Shannon’s formula, namely, Lemma 6.10 of [7]: Suppose that
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g ∈ S ′(R) and h ∈ S(R) with supp ĝ, supp ĥ ⊂ {|ξ| : |ξ| < 2νπ} for some

ν ∈ Z, then

(3.4) g ∗ h(x) =
∑

k∈Z

2−νg(k2−ν)h(x − k2−ν).

In fact, (3.4) is true when supp ĝ, supp ĥ ⊂
⋃m
j=1Kj , where {Kj}

m
j=1 are

closed intervals, and
∑m

j=1 |Kj | ≤ 2ν+1π, where |Kj | is the Lebesgue mea-

sure of Kj (see pp. 63–64 of [7]).

However, the Fourier support of the Lemarié-Meyer wavelets is [−2π−

ε′,−π + ε] ∪ [π − ε, 2π + ε′], for some ε, ε′ > 0 satisfying ε + ε′ < π (in

this connection, see [8], Section 3.3, Theorem 3.1). If we consider the term

corresponding to i = 0 in (3.3); that is, f ∗ ϕ̃ ∗ ϕ, and apply (3.4) to

g = f ∗ ϕ̃ and h = ϕ, then, we have to take ν = 1 (the Lebesgue measure of

[−2π− ε′,−π+ ε]∪ [π− ε, 2π+ ε′] is 2π+2ε+2ε′). The resulting expression,

(f ∗ ϕ̃ ∗ ϕ)(x) =
1

2

∑

k∈Z

(f ∗ ϕ̃)(k/2)ϕ(x − k/2)

=
1

2

∑

k∈Z

〈f( · ), ϕ( · − k/2)〉ϕ(x − k/2),

is not the wavelet expansion for the wavelet, ϕi,k, corresponding to i = 0.

Thus, Shannon’s formula and the Littlewood-Paley analysis are useless in

proving Theorem 3.1 for the Lemarié-Meyer wavelets.

Furthermore, the above argument also prohibits the use of Shannon’s

formula in proving Theorem 3.1 for any wavelet (no matter band-limited or

not), ϕ, satisfying |supp ϕ̂| > 2π (see [8], Section 2.2, Corollary 2.4).

For the MSF wavelet, ϕ, (that is, |supp ϕ̂| = 2π) we find that |ϕ̂| =

χsupp ϕ̂ (see [8], Section 2.2, Corollary 2.4). In this case, the discontinuity

of ϕ̂ forces a slow decay of ϕ as |x| → ∞. For example, consider Shannon’s

wavelet, ϕ̂(ξ) = ei
ξ
2χ[−2π,−π)∪[π,2π)(ξ). Then ϕ(x) = −2 sin 2πx+cos πx

π(2x+1) (see

[8], Section 2.2, Example C). Therefore, ϕ does not belong to S(R) and,

hence, the pairing, 〈f, ϕi,k〉, does not make sense if f ∈ S ′(R).

3.2. Annihilator of wavelet system

The following theorem shows that the annihilator for the wavelet system

is equal to the set of polynomials.

Theorem 3.2. Let ϕ ∈ S(R) be a wavelet for L2(R), then we have

(3.5) P(R) = {f ∈ S ′(R) : 〈f, ϕi,k〉 = 0, ∀i, k ∈ Z}.
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Proof. The inclusion, P(R) ⊆ {f ∈ S ′(R) : 〈f, ϕi,k〉 = 0, ∀i, k ∈ Z}, is

guarantee by (1.8).

We apply Theorem 3.1 to prove the inclusion,

{f ∈ S ′(R) : 〈f, ϕi,k〉 = 0, ∀i, k ∈ Z} ⊆ P(R).

For any f ∈ S ′(R) satisfying 〈f, ϕi,k〉 = 0, ∀i, k ∈ Z, we find that there

exists an integer N > 0 and a family of polynomials, PL,L′,L′′ , such that

f = lim
L,L′,L′′→∞

PL,L′,L′′ in S ′(R).

The degrees of the polynomials, PL,L′,L′′ , are at most N and PN (R) is a

finite dimensional subspace of S ′(R), hence, a closed subspace. Therefore,

there exists a polynomial, P , of degree at most N such that

f = lim
L,L′,L′′→∞

PL,L′,L′′ = P,

which is our desired result.

3.3. Completeness of wavelet system

Suppose that B is a locally convex function space satisfying S(R) ↪→

B ↪→ S ′(R) and S(R) is dense in B, with the Hahn-Banach theorem, The-

orem 3.2 provides a condition that assert the completeness of the wavelet

system, {ϕi,k}i,k∈Z, on B. The precise statement of this condition is given

in the following theorem.

Theorem 3.3. Let ϕ ∈ S(R) be a wavelet for L2(R). Suppose that B

is a locally convex function space such that S(R) ↪→ B ↪→ S ′(R) and S(R)

is dense in B. The wavelet system, {ϕi,k}i,k∈Z, is complete in B if and only

if

(3.6) P(R) ∩B∗ = {0}.

Moreover, when B∗ ∩ P(R) 6= {0}, {ϕi,k}i,k∈Z ∪ {g} is complete in B if

g ∈ S(R) satisfies

∫

xkg(x) dx 6= 0, for all k ∈ N.
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Proof. As S(R) is dense in B, we have the embedding, B∗ ↪→ S ′(R).

In view of (3.5), we find that

{f ∈ B∗ : 〈f, ϕi,k〉 = 0, ∀i, k ∈ Z} = B∗ ∩ P(R).

Thus, if B∗ ∩ P(R) = {0}, then by the Hahn-Banach Theorem for locally

convex space, the wavelet system, {ϕi,k}i,k∈Z, is complete in B. The second

result follows from the observation,

{f ∈ B∗ : 〈f, g〉 = 0 and 〈f, ϕi,k〉 = 0, ∀i, k ∈ Z}

= {f ∈ P(R) : 〈f, g〉 = 0} = {0}.

Note that the above result is optimal in the sense that if we remove any

function from the sets, {ϕi,k}i,k∈Z or {ϕi,k}i,k∈Z ∪ {g}, then they are not

complete in the corresponding function spaces. That is, using the termi-

nology in [19], {ϕi,k}i,k∈Z and {ϕi,k}i,k∈Z ∪{g} are minimal (see Chapter I,

Section 6 of [19]) in the corresponding function spaces.

The function, g, in Theorem 3.3 is easily constructed. Let h ∈ S(R)

satisfy

(3.7)

∫

h(x) dx 6= 0, and

∫

xkh(x) dx = 0, k ≥ 1, k ∈ N.

Then, for any fixed l ∈ R\{0}, we can take g(x) = h(x − l). For instance,

if ϕ is the Meyer wavelet and Φ is the corresponding scaling function, then

we know that Φ satisfies (3.7). Thus, for any fixed l ∈ R\{0}, the system,

{ϕi,k(x)}i,k∈Z ∪ {Φ(x − l)}, is complete in any function space B satisfying

the conditions in Theorem 3.3. In particular, {ϕi,k(x)}i,k∈Z ∪ {Φ(x− l)} is

complete in L1(R). In Section 5.1, we show that we can relax the condition,

l ∈ R\{0}, to, l ∈ R, for the completeness of the wavelet system in L1(R).

Using the idea for proving Theorem 3.3, we can show that if B is a

locally convex function space satisfying S0(R) = {f ∈ S(R) :
∫

xγf(x) dx =

0, γ ∈ N} ↪→ B ↪→ S ′(R)/P(R) and S0(R) is dense in B, then {ϕi,k}i,k∈Z is

a complete system in B.

§4. Proof of Theorem 2.1

4.1. Preliminary results

For a r-times differentiable function, ϕ, defined on Rn, the γth-order

partial derivative of ϕ, γ ∈ Nn and |γ| ≤ r, is denoted by ∂γϕ or ∂γϕ
∂xγ .
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Definition 4.1. Given a fixed ε > 0, for any α > 0, we denote Cα(Rn)

to be the class of functions, ϕ(x), satisfying

(4.1) ‖ϕ‖α∗ = sup
0≤|γ|≤[α]

sup
x∈Rn

|(1 + |x|)α+n+ε∂γϕ(x)| <∞,

where γ ∈ Nn and [α] is the integer part of α; and

(4.2) ‖ϕ‖α∗∗ = sup
|γ|=[α]
γ∈N

n

sup
x,y∈R

n, x6=y
|z|≤|x−y|

(1 + |x− z|)α+n+ε |∂
γϕ(x) − ∂γϕ(y)|

|x− y|α−[α]
<∞

if α > [α]. Let the norm on Cα(R
n) be ‖ϕ‖Cα = max{‖ϕ‖α∗, ‖ϕ‖α∗∗}. Let

Sα(R
n) consist of functions satisfying

(4.3) ‖ϕ‖α] = sup
0≤|γ|≤[α]

sup
x∈Rn

|(1 + |x|)α+n∂γϕ(x)| <∞,

where γ ∈ Nn; and

(4.4) ‖ϕ‖α]] = sup
|γ|=[α]
γ∈N

n

sup
x,y∈R

n, x6=y
|z|≤|x−y|

(1 + |x− z|)α+n |∂
γϕ(x) − ∂γϕ(y)|

|x− y|α−[α]
<∞

if α > [α]. Let the norm on Sα(R
n) be ‖ϕ‖Sα = max{‖ϕ‖α], ‖ϕ‖α]]}.

Remark 4.1. In Lemma 7.1, we will apply Lemma B.1 of [6]. Therefore,

we need an extra ε-decay for the definition of Cα(R
n) in order to fulfill the

conditions in Lemma B.1 of [6].

It is easy to see that Cα(R
n) and Sα(R

n) are Banach spaces. In addition,

we have S(Rn) =
⋂

α>0 Sα(Rn). The space of Schwartz functions, S(Rn),

is a Fréchet space and its topology is generated by the semi-norms, ‖ · ‖Sα ,

α > 0. Hence, the embedding, S(Rn) ↪→ Sα(Rn), is continuous for any

α > 0.

Let Sα(R
n)∗ denote the dual space of Sα(R

n). For any f ∈ S ′(Rn),

the continuity of f in S(Rn) means that there exist α > 0 and a constant

C > 0, such that |〈f, ψ〉| ≤ C‖ψ‖Sα(Rn), ∀ψ ∈ S(Rn). Therefore, by the

Hahn-Banach Theorem, f can be extended to a distribution in Sα(R
n).

That is,

(4.5) f ∈ Sα(Rn)∗.
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Moreover, we have S ′(Rn) =
⋃

α>0 Sα(R
n)∗.

For any given f ∈ S ′(Rn), we call the infimum of those α such that (4.5)

holds the order of f ∈ S ′(Rn). It is easy to see that if f ∈ S ′(Rn) is of order

ω, then, for any η > ω, there exists C > 0 such that |〈f, ψ〉| ≤ C‖ψ‖Cη(Rn),

∀ψ ∈ Cη(R
n). Hence, f can be extended to be a distribution on Cη(R

n) with

any η > ω.

For any α > 0, let Cα(Rn)∗ denote the dual space of Cα(R
n). Notice

that if f ∈ Cα(Rn)∗ and g ∈ Cα(R
n), then 〈f, g〉 is the pairing between

Cα(Rn)∗ and Cα(R
n) (we use this pairing in Theorem 4.1). Furthermore,

the embedding, Cα(R
n)∗ ↪→ S ′(Rn), is continuous.

Theorem 2.1 relies on the following result, Theorem 4.1. Theorem 4.1

has its own independent interest. It provides the condition for which the

frame expansion of Schwartz function converges in the topology of S(Rn).

In addition, it shows that, for the convergence of frame expansion of g ∈

Cα(Rn), the rate of convergence depends on the difference between the

smoothness of the frame and the smoothness of the function spaces used

to measure the “error” between g and its truncated frame expansion.

Theorem 4.1 is closely related to the convergence of wavelet expansion

for Lipschitz functions and two-microlocal functions (for the definitions and

details of these function spaces, see [8], Section 6.7, and [16], Chapter 3, Def-

inition 3.1 and Theorem 3.6, respectively). While they are neither stronger

nor weaker, they represent different results under different assumptions.

Theorem 4.1. (Convergence theorem for frame expansion of Schwartz

functions) Let {ϕQ}Q∈Q be a frame on L2(Rn) and {ψQ}Q∈Q be its dual

frame. Let α, β > 0 with α > [α], α > β + ε (the ε in Definition 2.1).

(1) Suppose that {ϕQ}Q, {ψQ}Q ∈ Mα(R
n). The truncated frame expan-

sion of g ∈ Cα(Rn),

(4.6)

L
∑

i=−L′

∑

|k|≤δ(i)2L′′

〈g, ϕQi,k
〉ψQi,k

,

converges to g in Cβ(R
n) as L, L′ and L′′ go to infinity if

(4.7)

∫

Rn

xλg(x) dx = 0 for |λ| ≤ [α], λ ∈ Nn.
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Moreover, there is a constant, C > 0, independent of L, L′, L′′ such

that, for any g ∈ Cα(R
n) satisfying (4.7),

∥

∥

∥

∥

g −
L

∑

i=−L′

∑

|k|≤δ(i)2L′′

〈g, ϕQi,k
〉ψQi,k

∥

∥

∥

∥

Cβ

(4.8)

≤ C‖g‖Cα

(

2(−L−1)(α−β) + 2(−L′−1)(α−β−ε) + 2−L
′′(α−β)

)

.

(2) Suppose that {ϕQ}Q, {ψQ}Q ∈
⋂

αMα(Rn). The truncated frame

expansion of g ∈ S(Rn),

(4.9)
L

∑

i=−L′

∑

|k|≤δ(i)2L′′

〈g, ϕQi,k
〉ψQi,k

,

converges to g in S(Rn) as L,L′, L′′ → ∞ if and only if

(4.10)

∫

Rn

xλg(x) dx = 0 for all λ ∈ Nn.

That is, for any g ∈ S0(R
n), the truncated frame expansion, (4.9),

converges to g in S(Rn).

We prove the above Theorem by estimating the inner product of func-

tion in Cα(R
n) and frame in Mα(Rn). The estimate comes from Lemma B.1

of [6]. The proof of Theorem 4.1 is provided in Section 7.

The implication, (4.9) ⇒ (4.10), is easy because, for any fixed λ ∈

Nn, f(x) = xλ is a Schwartz distribution and the dual frame, {ψQ}Q∈Q ∈
⋂

αMα(Rn), satisfies

(4.11)

∫

Rn

xλψQ(x) dx = 0 for all λ ∈ Nn and Q ∈ Q.

The reserve implication is a straightforward consequence of S(Rn) =
⋂

α>0 Cα(R
n) and the first part of Theorem 4.1. Similarly, if [α] = [β],

then (4.6) holds if and only if g satisfies (4.7).

4.2. Proof of Theorem 2.1

With the above preparations, we are now ready to prove Theorem 2.1.

We are going to prove that for any f ∈ S ′(Rn), there exist an integer N ≥ 0
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and a sequence of floating polynomials PL,L′,L′′(x) of degrees less than or

equal to N such that, for any g ∈ S(Rn),

(4.12)

lim
L,L′,L′′→∞

{ L
∑

i=−L′

∑

|k|≤δ(i)2L′′

〈f, ψQi,k
〉〈ϕQi,k

, g〉 − 〈PL,L′,L′′ , g〉

}

= 〈f, g〉.

Since S ′(Rn) is endowed with the weak-star topology inherited from S(Rn),

(4.12) shows that

lim
L,L′,L′′→∞

{ L
∑

i=−L′

∑

|k|≤δ(i)2L′′

〈f, ψQi,k
〉ϕQi,k

− PL,L′,L′′

}

= f

in the topology of S ′(Rn).

Suppose that f is a distribution in S ′(Rn) of order ω. We consider the

family of function spaces, Cα(R
n), with ε = ([ω] + 1 − ω)/2.

For any λ ∈ Nn with 0 ≤ |λ| ≤ [ω], let θλ ∈ S(Rn) satisfy

(4.13)

∫

Rn

xγθλ(x) dx = δγλ =

{

1, γ = λ

0, γ 6= λ,
for γ ∈ Nn and 0 ≤ |γ| ≤ [ω].

For any g ∈ S(Rn), define G by

(4.14) G(x) = g(x) −
∑

0≤|λ|≤[ω]

cλθλ(x)

where cλ =
∫

Rn x
λg(x) dx. It is obvious that G ∈ S(Rn) and

∫

Rn

xλG(x) dx = 0, if λ ∈ Nn and 0 ≤ |λ| ≤ [ω].

Thus, by the first part of Theorem 4.1, we assert that

(4.15) lim
L,L′,L′′→∞

L
∑

i=−L′

∑

|k|≤δ(i)2L′′

〈G,ϕQi,k
〉ψQi,k

= G in Cη(R
n),

for any η > ω satisfying [η] = [ω] and [ω] + 1 > η + ε.

Since f ∈ S ′(Rn) is of order ω and η > ω, this allows us to apply f on

both sides of (4.15). We obtain

(4.16) lim
L,L′,L′′→∞

L
∑

i=−L′

∑

|k|≤δ(i)2L′′

〈ϕQi,k
, G〉〈f, ψQi,k

〉 = 〈f,G〉
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because S ′(Rn) is endowed with the antilinear structure mentioned at the

beginning of Section 1.

By using the definition ofG, (4.14), and the fact that c̄λ =
∫

Rn x
λg(x) dx

= 〈xλ, g〉, we have

lim
L,L′,L′′→∞

L
∑

i=−L′

∑

|k|≤δ(i)2L′′

{

〈ϕQi,k
, g〉〈f, ψQi,k

〉

−
∑

0≤|λ|≤[ω]

〈xλ, g〉〈ϕQi,k
, θλ〉〈f, ψQi,k

〉

}

= 〈f, g〉 −
∑

0≤|λ|≤[ω]

〈xλ, g〉〈f, θλ〉.

If we write

PL,L′,L′′(x) = −
∑

0≤|λ|≤[ω]

(

〈f, θλ〉 −

L
∑

i=−L′

∑

|k|≤δ(i)2L′′

〈ϕQi,k
, θλ〉〈f, ψQi,k

〉

)

xλ,

then we obtain

(4.17)

lim
L,L′,L′′→∞

{ L
∑

i=−L′

∑

|k|≤δ(i)2L′′

〈f, ψQi,k
〉〈ϕQi,k

, g〉 − 〈PL,L′,L′′ , g〉

}

= 〈f, g〉,

which is our desired result, (4.12). Hence, we prove Theorem 2.1 with

N = [ω].

Since θλ satisfies (4.13) and any frame belonging to
⋂

Mα(R
n) satisfies

(4.11), using our formula for PL,L′,L′′(x), the floating polynomials associated

with f(x) = xλ, λ ∈ Nn and 0 ≤ |λ| ≤ [ω], are equal to PL,L′,L′′(x) = −xλ.

In addition, by considering the Schwartz distribution, f(x) = xλ, with λ =

[ω], we find that Theorem 2.1 is not valid if we take N < [ω].

The proof of Theorem 2.1 is sufficient to justify the introduction of the

non-integer order for the family of function spaces, Cα(Rn). If we do not

have Cα(Rn) when α /∈ N, we cannot obtain the optimal result for the degree

of the floating polynomials.

§5. Further results

5.1. Frames belonging to Mα(Rn)

In this section, we investigate the convergence of frame expansion with

the frame, {ϕQ}Q∈Q and its dual frame {ψQ}Q∈Q, only satisfying {ϕQ}Q,
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{ψQ}Q ∈ Mα(Rn). In this case, 〈f, ψQ〉 is not well defined if f ∈

S ′(Rn)\Cα(Rn)∗. Therefore, we can obtain a reasonable result only if we

consider distributions of order less than α.

Theorem 5.1. Given ε > 0 (the ε in Definition 4.1) and α > [α], if

{ϕQ}Q∈Q ∈ Mα(Rn) is a frame on L2(Rn) and {ψQ}Q∈Q ∈ Mα(R
n) is its

dual frame, then for any f ∈ Cβ(R
n)∗ with α > β+ε, there exists a sequence

of floating polynomials,

PL,L′,L′′(x) = −
∑

0≤|λ|≤[α]

(

〈f, θλ〉 −

L
∑

i=−L′

∑

|k|≤δ(i)2L′′

〈ϕQi,k
, θλ〉〈f, ψQi,k

〉

)

xλ,

where λ ∈ Nn and θλ ∈ Cα(R
n) satisfies

(5.1)

∫

Rn

xγθλ(x) dx = δγλ for γ ∈ Nn and 0 ≤ |γ| ≤ [α],

such that

(5.2) lim
L,L′,L′′→∞

{ L
∑

i=−L′

∑

|k|≤δ(i)2L′′

〈f, ψQi,k
〉ϕQi,k

− PL,L′,L′′

}

= f

in Cα(R
n)∗ and, hence, in S ′(Rn). Furthermore, there is a constant C > 0

independent of L, L′, L′′ and f ∈ Cβ(R
n)∗ such that

∥

∥

∥

∥

f −

L
∑

i=−L′

∑

|k|≤δ(i)2L′′

〈f, ψQi,k
〉ϕQi,k

+ PL,L′,L′′

∥

∥

∥

∥

C∗
α

(5.3)

≤ C‖f‖C∗
β

(

2(−L−1)(α−β) + 2(−L′−1)(α−β−ε) + 2−L
′′(α−β)

)

.

Proof. The proof for Theorem 2.1 carries over to this case. We therefore

only need to prove (5.3).

First of all, we have

f −

L
∑

i=−L′

∑

|k|≤δ(i)2L′′

〈f, ψQi,k
〉ϕQi,k

+ PL,L′,L′′ ∈ Cα(Rn)∗

because f ∈ Cβ(R
n)∗ ↪→ Cα(Rn)∗ and PL,L′,L′′ ∈ Cα(Rn)∗.
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Inequality (5.3) is established by considering

∥

∥

∥

∥

f −
L

∑

i=−L′

∑

|k|≤δ(i)2L′′

〈f, ψQi,k
〉ϕQi,k

+ PL,L′,L′′

∥

∥

∥

∥

C∗
α

= sup
‖g‖Cα=1

∣

∣

∣

∣

〈

f −
L

∑

i=−L′

∑

|k|≤δ(i)2L′′

〈f, ψQi,k
〉ϕQi,k

+ PL,L′,L′′ , g

〉
∣

∣

∣

∣

= sup
‖g‖Cα=1

∣

∣

∣

∣

〈f, g〉 −
L

∑

i=−L′

∑

|k|≤δ(i)2L′′

〈f, ψQi,k
〉〈ϕQi,k

, g〉 + 〈PL,L′,L′′ , g〉

∣

∣

∣

∣

.

By the definition of PL,L′,L′′(x), we find that

∥

∥

∥

∥

f −

L
∑

i=−L′

∑

|k|≤δ(i)2L′′

〈f, ψQi,k
〉ϕQi,k

+ PL,L′,L′′

∥

∥

∥

∥

C∗
α

= sup
‖g‖Cα=1

∣

∣

∣

∣

〈f,G〉 −

L
∑

i=−L′

∑

|k|≤δ(i)2L′′

〈ϕQi,k
, G〉〈f, ψQi,k

〉

∣

∣

∣

∣

,

where, for any g ∈ Cα(R
n), G is given by (4.13) and (4.14) with ω replaced

by α.

Therefore,

∥

∥

∥

∥

f −

L
∑

i=−L′

∑

|k|≤δ(i)2L′′

〈f, ψQi,k
〉ϕQi,k

+ PL,L′,L′′

∥

∥

∥

∥

C∗
α

≤ sup
‖g‖Cα=1

‖f‖C∗
β

∥

∥

∥

∥

G−

L
∑

i=−L′

∑

|k|≤δ(i)2L′′

〈G,ϕQi,k
〉ψQi,k

∥

∥

∥

∥

Cβ

.

Since G ∈ Cα(R
n) satisfies the conditions in Theorem 4.1 and there

exists C > 0 such that ‖G‖Cα ≤ C‖g‖Cα , by applying (5.11), we have

∥

∥

∥

∥

f −

L
∑

i=−L′

∑

|k|≤δ(i)2L′′

〈f, ψQi,k
〉ϕQi,k

+ PL,L′,L′′

∥

∥

∥

∥

C∗
α

≤ C‖f‖C∗
β

sup
‖g‖Cα=1

‖g‖Cα

(

2(−L−1)(α−β) + 2(−L′−1)(α−β−ε) + 2−L
′′(α−β)

)

≤ C‖f‖C∗
β

(

2(−L−1)(α−β) + 2(−L′−1)(α−β−ε) + 2−L
′′(α−β)

)

.
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The Daubechies wavelets do not satisfy the conditions in Theorem 2.1;

therefore, we need Theorem 5.1 for the Daubechies wavelets.

The degree of the floating polynomials in Theorem 2.1 is equal to the

integral part of the order of the Schwartz distribution, [ω], while the degree

of the floating polynomials in Theorem 5.1 is defined by the smoothness

of the frame functions, [α]. This may give a wrong impression that Theo-

rem 5.1 is inconsistent with Theorem 2.1. In fact, they are complementary.

Theorem 2.1 is valid for any f ∈ S ′(R) but Theorem 5.1 only applies to

f ∈ Cβ(R)∗ ( S ′(R). On the other hand, the estimate, (5.3), is stronger

than the convergence, (2.4).

5.2. One-dimensional wavelets in Cα(R)

With Theorem 5.1, we can obtain the following analogue of Theo-

rem 3.2.

Theorem 5.2. Let β > [β] ≥ 0 and η > β. Suppose that ϕ is a wavelet

belonging to Sη(R), then we have

(5.4) P[β](R) = {f ∈ Sβ(R)∗ : 〈f, ϕi,k〉 = 0, i, k ∈ Z}.

Proof. Let us consider the family of function spaces {Cα(R)}α>0 with

ε < (η−β)/4. Without loss of generality, we assume that η−ε > [η−ε] = [η].

Then, we have ϕ ∈ Sη(R) ⊂ Cη−ε(R). We are allowed to apply Theorem 5.1

with α = η − ε. Thus, for any f ∈ Sβ(R)∗ ⊂ Cβ(R)∗ satisfying 〈f, ϕi,k〉 = 0,

∀i, k ∈ Z, there exists a polynomial, P , of degree at most [η] such that

f = P . Moreover, since f ∈ Sβ(R)∗, f is a polynomial of degree at most

[β]. The result in (1.8) asserts the reserve inclusion, P[β](R) ⊆ {f ∈ Sβ(R)∗ :

〈f, ϕi,k〉 = 0, i, k ∈ Z}.

By using Theorem 5.2, we extend the results in Theorem 3.3 as follow:

Theorem 5.3. Let β > [β] ≥ 0 and η > β. Let ϕ ∈ Sη(R) be a wavelet

for L2(R) and B be a locally convex function space such that Sβ(R) ↪→

B ↪→ Sβ(R)∗ and Sβ(R) is dense in B. The wavelet system, {ϕi,k}i,k∈Z, is

complete in B if and only if

(5.5) P[β](R) ∩B∗ = {0}.

Moreover, when P[β](R) ∩B∗ 6= {0}, with any g ∈ Sβ(R) satisfying

(5.6)

∫

xkg(x) dx 6= 0, for all 0 ≤ k ≤ [β], k ∈ N,

the system, {ϕi,k}i,k∈Z ∪ {g}, is complete in B.
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It is obvious that L1(R) satisfies Sβ(R) ↪→ L1(R) ↪→ Sβ(R)∗ with any

0 < β < 1 and Sβ(R) is a dense subset of L1(R). Therefore, condition (5.6)

for g becomes

(5.7)

∫

g(x) dx 6= 0.

Let ϕ be a Daubechies wavelet or a Meyer wavelet and Φ be its cor-

responding scaling function, then Φ satisfies (5.7). Thus, {ϕi,k(x)}i,k∈Z ∪

{Φ(x)} is a complete system in L1(R). Moreover, using the results derived

from Theorem 3.3, we find that, for any fixed l ∈ R, the linear span of

{ϕi,k(x)}i,k∈Z ∪ {Φ(x− l)} is dense in L1(R).

5.3. Tail of a generalized MRA

Let α, ε > 0 (the ε in Definition 4.1). Given a scaling function, Φ ∈

Cα(R), α− ε > η > 0, for any j ∈ Z, define the generalized MRA, T ηj , by

(5.8) T ηj = {f : f(x) =
∑

k∈Z

akΦ(2jx− k); |ak| = O(|k|η)}.

The main purpose of this section is to compute the tail of this generalized

MRA, that is,
⋂

j∈Z
T ηj . We find that it equals to the set of polynomials of

degree at most [η]. In addition, we show that there is an intimate relation

between the annihilator and the Fix-Strang condition. We provide a new

proof for the Fix-Strang condition without using Poisson summation formula

(see the proof in Theorem 7.4 of [14]). Moreover, we strength the Fix-Strang

condition by showing that we have an identity in (1.18). First of all, we

define a family of function spaces:

Definition 5.1. For any α > 0, define Gα to be the function space

consisting of those Lebesgue measurable functions f such that

(5.9) |f(x)| ≤ C(1 + |x|α),

for some constant C > 0 independent of x ∈ R.

It is easy to see that for any α, ε > 0, we have Gα ⊂ Cα(R)∗. If we define

the norm of Gα by ‖f‖Gα = supx∈R

|f(x)|
1+|x|α , then Gα is a Banach space.

Similar to Theorem 3.2, we can prove the following theorem.
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Theorem 5.4. Let η > [η] ≥ 0 and ε > 0. Suppose that ϕ ∈ Cα(R)

where α > η + ε is a wavelet for L2(R), then we have

(5.10) P[η](R) = {f ∈ Gη : 〈f, ϕi,k〉 = 0, ∀i, k ∈ Z}.

Proof. By applying identity (5.2), we conclude that for any f ∈ Gη ⊂

Cη(R)∗ satisfying 〈f, ϕi,k〉 = 0, ∀i, k ∈ Z, f is equal to a polynomial of

degree at most [α]. Moreover, we have Pk(R) ⊂ Gη if and only if k ≤ [η].

Therefore, f is a polynomial of degree at most [η]. The other direction of

the inclusion in (5.10) is guaranteed by (1.8) and η > [η].

We have the following estimate for f ∈ T ηj . Without loss of general-

ity, we assume that j = 0. We find that there exists a constant C > 0

independent of x such that

|f(x)| ≤
∑

k∈Z

|ak||Φ(x− k)| ≤ C
∑

k∈Z

|k|η

(1 + |x− k|)α+1+ε
(5.11)

≤ C

∫

R

|y|η

(1 + |x− y|)α+1+ε
dy

= C

∫

R

|x− y|η

(1 + |y|)α+1+ε
dy ≤ C(1 + |x|η).

Therefore, f ∈ T ηj implies that f ∈ Gη. That is, T ηj ⊂ Gη.

By using the sets, T ηj , we can represent the annihilator for wavelet by

the scaling function if the wavelet is generated by a MRA. More specifically,

we have

Theorem 5.5. Let η > [η] ≥ 0 and ε > 0. Suppose that ϕ ∈ Cα(R),

where α > η + ε, is a wavelet generated by a MRA and its corresponding

scaling function Φ belongs to Cα(R). Then,

(5.12) {f ∈ Gη : 〈f, ϕi,k〉 = 0, ∀i, k ∈ Z} =
⋂

j∈Z

T ηj .

Remark 5.1. The result in [8], Chapter 7, Corollary 3.16, states that if

ϕ is a wavelet such that |ϕ̂| is continuous and |ϕ̂(ξ)| = O(|ξ|−1/2−β) at ∞

for some β > 0, then ϕ is a MRA wavelet. Thus, the assumption that the

wavelet is a MRA wavelet in Theorem 5.5 is satisfied if α is large enough.

The proof of the above theorem is based on the following convergence

theorem for wavelet expansion.
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Theorem 5.6. Let α > [α] ≥ 0 and ε > 0. Suppose that the wavelet,

ϕ ∈ Cα(R) is generated by an multiresolution analysis and its scaling func-

tion, Φ, belongs to Cα(R), then, for any f ∈ Cβ(R) with α > β+ε and l ∈ Z,

we have

(5.13) lim
L,L′′→∞

{

∑

l≤i≤L

∑

|k|≤2L′′

〈f, ϕi,k〉ϕi,k +
∑

|k|≤2L′′

〈f,Φl−1,k〉Φl−1,k

}

= f

in S ′(R).

The proof of Theorem 5.6 is similar to the proof of Theorem 2.1, there-

fore, we leave it to the reader.

Proof of Theorem 5.5. For any f ∈
⋂

j∈Z
T ηj and any fixed ϕi,m ∈ Cη(R),

i,m ∈ Z, we write f as f =
∑

k∈Z
akΦi,k, for some ak ∈ R satisfying

|ak| = O(|k|η). Since f ∈
⋂

j∈Z
T ηj ⊆ Gη, it is legitimate to represent

〈f, ϕi,m〉 by 〈f, ϕi,m〉 =
∑

k∈Z
ak〈Φi,k, ϕi,m〉. Hence, the result, 〈f, ϕi,m〉 = 0,

for any i,m ∈ Z, is inherited from 〈Φi,k, ϕi,m〉 = 0, for any i, k,m ∈ Z.

We now prove the reserve inclusion, {f ∈ Gη : 〈f, ϕi,k〉 = 0, ∀i, k ∈ Z} ⊆
⋂

j∈Z
T ηj . For any f ∈ Gη ⊂ Cη(R)∗, we have a constant, C > 0, independent

of k and l such that

|〈f,Φl,k〉| ≤ C

∫

R

|x|η

(1 + |2lx− k|)α+1+ε
dx

= C2−l(η+1)

∫

R

|y + k|η

(1 + |y|)α+1+ε
dy,

and, hence, |〈f,Φl,k〉| ≤ C|k|η.

Thus, for any l ∈ Z, by Theorem 5.6, we can write f as

f = lim
L′′→∞

∑

|k|≤2L′′

〈f,Φl,k〉Φl,k =
∑

k∈Z

〈f,Φl,k〉Φl,k

with |〈f,Φl,k〉| = O(|k|η). The existence of the limit on the above identity

is asserted by estimate (5.11). Hence, f ∈
⋂

j∈Z
T ηj .

Combining (5.10) and (5.12), for any wavelet ϕ satisfying the conditions

in Theorem 5.5, we find that

(5.14) P[η](R) =
⋂

j∈Z

T ηj .

Furthermore, the above identity obviously refines the Fix-Strang condition,

(1.19), in Theorem 1.2. Finally, if ϕ,Φ ∈ S(R), then, by taking union on

both sides of (5.14) with η = k + 1
2 , k ∈ N, we establish (1.20).
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5.4. Convergence under inductive limit topology

This is the only subsection in this article where S ′(Rn) is endowed with

a topology different from the weak-star topology.

For any fixed ε > 0 (the ε in Definition 4.1), we have S ′(Rn) =
⋃

α>0 Cα(R
n)∗ where the distribution spaces, Cα(R

n)∗, with the norm,

‖ · ‖C∗
α

= sup‖ψ‖Cα=1 |〈 · , ψ〉|, are Banach spaces; therefore, we can en-

dow S ′(Rn) with the inductive limit topology induced by the inductive

system {Cα(R
n)∗}α>0 (for the definition of inductive limit topology, see

[2], Chapter IV, Section 5). The inductive limit topology is the finest

locally convex topology on S ′(Rn) such that all the inclusion mappings,

Iα : Cα(R
n)∗ → S ′(Rn), α > 0, be continuous (in this connection, see [20],

p. 515). Thus, by Theorem 5.1, we have

Theorem 5.7. Let {ϕQ}Q∈Q ∈
⋂

α>0 Mα(Rn) be a frame on L2(Rn)

and {ψQ}Q∈Q ∈
⋂

α>0 Mα(Rn) be its dual frame. If f ∈ S ′(Rn) is of order

ω, then there exists a sequence of polynomials, PL,L′,L′′, of degrees less than

or equal to [ω] such that

(5.15) lim
L,L′,L′′→∞

{ L
∑

i=−L′

∑

|k|≤δ(i)2L′′

〈f, ψQi,k
〉ϕQi,k

− PL,L′,L′′

}

= f

in S ′(Rn) under the inductive limit topology. If {ϕQ}Q∈Q, {ψQ}Q∈Q ∈

Mα(Rn), then, for any f ∈ Cβ(R
n)∗ with α > β + ε, the limit, (5.2),

converges in S ′(Rn) under the inductive limit topology.

§6. Reproducing formula in S ′(Rn)/P(Rn)

With respect to our definition of frame, the functions, ϕ and ψ, used

to define the ϕ-ψ transform in [6] are not necessarily a frame and its cor-

responding dual frame, respectively. On the other hand, the convergence

of the ϕ-ψ transform is included in the following generalization of The-

orem 2.1. The following theorem states that a reproducing formula for

functions in Lp(Rn), (6.1), automatically produces a reproducing formula

for distributions in S ′(Rn)/P(Rn), (6.2), when the analyzing family and the

reconstructing family, {ϕQ}Q∈Q and {ψQ}Q∈Q, satisfy a mild assumption,

{ϕQ}Q∈Q, {ψQ}Q∈Q ∈
⋂

αMα(R
n).
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Theorem 6.1. Let 1 < p < ∞. Suppose that {ϕQ}Q∈Q, {ψQ}Q∈Q ∈
⋂

αMα(Rn) satisfy, for any f ∈ Lp(Rn),

(6.1) f =
∑

Q∈Q

〈f, ϕQ〉ψQ

in Lp(Rn). Then, for any f ∈ S ′(Rn)/P(Rn),

(6.2) f =
∑

Q∈Q

〈f, ψQ〉ϕQ =
∑

Q∈Q

〈f, ϕQ〉ψQ

in S ′(Rn)/P(Rn).

For α > β + ε (the ε in Definition 2.1) and [α] = [β], suppose that

{ϕQ}Q∈Q and {ψQ}Q∈Q belong to Mα(R
n) and satisfy (6.1). Then, for

any f ∈ Cβ(R
n)∗/P[α](R

n), where P[α](R
n) denotes the space of polynomials

of degrees at most [α], we have

f =
∑

Q∈Q

〈f, ψQ〉ϕQ =
∑

Q∈Q

〈f, ϕQ〉ψQ

in S ′(Rn)/P[α](R
n).

We omit the proof for Theorem 6.1. In fact, the proof for the first

identity in (6.2) is the same as the proofs for Theorem 2.1 and Theorem 4.1.

We prove Theorem 2.1 by duality, therefore, in the first identity of (6.2),

we have to interchange the roles of ϕ and ψ. On the other hand, by (6.1),

for any fixed g ∈ Lp
′
(Rn), where p′ is the conjugate of p, we have

〈g, f〉 =
∑

Q∈Q

〈g, ψQ〉〈ϕQ, f〉, ∀f ∈ Lp(Rn)

(recall that we endow the pairing, 〈 · , · 〉, with the antilinear structure).

Thus, we assert that

(6.3) g =
∑

Q∈Q

〈g, ψQ〉ϕQ, ∀g ∈ Lp
′
(Rn),

and, hence, the second identity in (6.2) holds by using (6.3).

Notice that, for all f ∈ S ′(Rn)/P(Rn), the pairings, 〈f, ψQ〉 and 〈f, ϕQ〉,

are well defined if and only if {ψQ}Q∈Q and {ϕQ}Q∈Q are subsets of S0(R
n).
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Therefore, the assumption, {ϕQ}Q∈Q, {ψQ}Q∈Q ∈
⋂

αMα(Rn), is indis-

pensable if the analyzing family and the reconstructing family are “well-

localized” with respect to the set of dyadic cubes, Q. The author has no idea

on whether we can relax the condition to {ϕQ}Q∈Q, {ψQ}Q∈Q ⊂ S0(R
n).

Observe that the roles of the analyzing family and the reconstructing

family in (6.2) can be interchanged. In fact, this is a remarkable feature of

reproducing formula in S ′(Rn)/P(Rn). The following theorem shows that

the notions of analyzing family and reconstructing family are indistinguish-

able for reproducing formula in S ′(Rn)/P(Rn).

Theorem 6.2. Let {ϕQ}Q∈Q, {ψQ}Q∈Q ∈
⋂

αMα(R
n) satisfy,

(6.4) f =
∑

Q∈Q

〈f, ψQ〉ϕQ, ∀f ∈ S ′(Rn)/P(Rn),

in S ′(Rn)/P(Rn). Then, we have

(6.5) f =
∑

Q∈Q

〈f, ϕQ〉ψQ, ∀f ∈ S ′(Rn)/P(Rn),

in S ′(Rn)/P(Rn).

Proof. Applying (6.4) to any g ∈ S0(R
n) ⊂ S ′(Rn)/P(Rn), we obtain

(6.6) g =
∑

Q∈Q

〈g, ψQ〉ϕQ, ∀g ∈ S0(R
n),

in S ′(Rn)/P(Rn). Using the idea for proving Theorem 4.1, we find that
∑

Q∈Q〈g, ψQ〉ϕQ converges in the topology of S0(R
n). By (6.6), the limit of

∑

Q∈Q〈g, ψQ〉ϕQ in S0(R
n) must be equal to g, hence, we have a stronger

result,

(6.7) g =
∑

Q∈Q

〈g, ψQ〉ϕQ, ∀g ∈ S0(R
n),

in S0(R
n). For any g ∈ S0(R

n), it is legitimate to apply f ∈ S ′(Rn)/P(Rn)

on both sides of (6.7) because S ′(Rn)/P(Rn) is the dual space of S0(R
n).

We assert that

(6.8) 〈f, g〉 =
∑

Q∈Q

〈f, ϕQ〉〈ψQ, g〉, ∀g ∈ S0(R
n).
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Thus,
∑

Q∈Q〈f, ϕQ〉ψQ is well defined and belongs to the dual of S0(R
n).

By (6.8), we prove that

f =
∑

Q∈Q

〈f, ϕQ〉ψQ, ∀f ∈ S ′(Rn)/P(Rn),

in S ′(Rn)/P(Rn).

§7. Proof of Theorem 4.1

7.1. Technical results

We need some technical results for the proof of Theorem 4.1. The

following lemma provides an important estimate on |〈g, ϕQ〉| where {ϕQ}Q ∈

Mα(R
n) and g ∈ Cα(Rn).

Lemma 7.1. Let α > [α] ≥ 0 and {ϕQ}Q ∈ Mα(Rn). If g ∈ Cα(Rn)

satisfies the vanishing moments,

(7.1)

∫

Rn

xλg(x) dx = 0 for λ ∈ Nn and 0 ≤ |λ| ≤ [α],

then there exists a constant C > 0, independent of Q = Qi,k ∈ Q, such that

(7.2) |〈g, ϕQi,k
〉| ≤ C‖g‖Cα(min(2i, 2−i))1/2+α

(

1 +
|2−ik|

max(1, 2−i)

)−α−n−ε

.

Proof. If 2−i ≥ 1, by applying Lemma B.1 of [6] with R = S = α+n+ε,

L = [α], θ = α − [α], x = 2−ik and x1 = 0 (R, S, L, θ, x and x1 are the

notations in Lemma B.1 of [6]), we have a constant C > 0 independent of

i, k and g such that

|〈g, ϕQi,k
〉| ≤ C‖g‖Cα2i(n/2+α)(1 + |k|)−α−n−ε.

As {ϕQ}Q ∈ Mα(R
n), satisfies the vanishing moment condition, (2.1).

Therefore, interchanging the role of ϕQi,k
and g, if 2−i < 1, we then have

|〈g, ϕQi,k
〉| ≤ C‖g‖Cα2−i(n/2+α)

(

1 + |2−ik|
)−α−n−ε

,

which is our desired result.

Remark 7.1. We impose the assumption, α > [α], in Lemma 7.1 and

Theorem 4.1 in order to fulfill the condition, α − [α] = θ > 0, given by

Lemma B.1 of [6].
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Observe that the relatively large frame coefficients, |〈g, ϕQi,k
〉|, for any

fixed i = i0 ≥ 0 and i = i1 < 0, are located on the sets, {(i0, k) : |k| ≤

2i+L′′
} and {(i1, k) : |k| ≤ 2L′′

}, respectively. Therefore, the truncation set,

T (L,L′, L′′), is more well-adapted to our setting than T̃ (L,L′, L′′) and the

above estimate suggests the use of δ(i).

We need one more result before we present the proof of Theorem 4.1.

The following lemma, Lemma 7.2, is a discrete version of Lemma B.2 in [6].

Lemma 7.2. If i ∈ Zn, 1 ≥ 2−i, ε > 0 and α > β > 0, then we have

the following results.

(1) We have a constant C > 0 such that, for any i > 0 and x ∈ Rn,
∑

k∈Zn

(

1 + |2−ik|
)−α−n−ε(

1 + 2i|x− 2−ik|
)−α−n−ε

≤ C(1 + |x|)−α−n−ε.

(2) We have a constant C > 0 such that, for any i > 0, x ∈ Rn and

M > 2,
∑

k∈Z
n

|2−ik|≥M

(

1 + |2−ik|
)−α−n−ε(

1 + 2i|x− 2−ik|
)−α−n−ε

≤ CMβ−α(1 + |x|)−β−n−ε.

Proof. Since 1 ≥ 2−i, there exists a constant C > 0 such that, for any

y ∈ 2−i([0, 1]n + k),

C−1(1 + |y|)−α−n−ε ≤ (1 + |2−ik|)−α−n−ε ≤ C(1 + |y|)−α−n−ε.

Similarly, for any y ∈ 2−i([0, 1]n + k) and x ∈ Rn, we find that

C−1
(

1+2i|x−y|
)−α−n−ε

≤
(

1+2i|x−2−ik|
)−α−n−ε

≤ C
(

1+2i|x−y|
)−α−n−ε

.

Therefore, by Lemma B.2 of [6], we have
∑

k∈Zn

(

1 + |2−ik|
)−α−n−ε(

1 + 2i|x− 2−ik|
)−α−n−ε

≤ C
∑

k∈Zn

2i
∫

2−i([0,1]n+k)
(1 + |y|)−α−n−ε

(

1 + 2i|x− y|
)−α−n−ε

dy

≤ C2i
∫

Rn

(1 + |y|)−α−n−ε
(

1 + 2i|x− y|
)−α−n−ε

dy

≤ C(1 + |x|)−α−n−ε.
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The second part is similar to the first part except that we take inte-

gration over the domain, |y| > M − 1, instead of Rn. Since α > β, we

obtain
∑

k∈Z
n

|2−ik|≥M

(

1 + |2−ik|
)−α−n−ε(

1 + 2i|x− 2−ik|
)−α−n−ε

≤ C
∑

k∈Zn

|2−ik|≥M

2i
∫

2−i([0,1]n+k)
(1 + |y|)−α−n−ε

(

1 + 2i|x− y|
)−α−n−ε

dy

≤ C2iMβ−α

∫

|y|≥M−1
(1 + |y|)−β−n−ε

(

1 + 2i|x− y|
)−β−n−ε

dy

≤ CMβ−α(1 + |x|)−β−n−ε.

7.2. The proof

We are ready to prove Theorem 4.1. The proof is based on the ideas in

Lemma 9.14 of [6], Theorem 3.2 and Theorem 3.3 in Chapter 3 of [16], The-

orem 3 in the Appendix of [7] and, especially, Proposition 1.7 of [11]. How-

ever, we cannot directly apply the above results to conclude our theorem.

For instance, as mentioned in [6] (see p. 107 of [6]), the proof of Lemma 9.14

in [6] cannot be generalized to estimate the derivatives of the “molecules

decomposition” and, hence, cannot be used to estimate the derivatives of

the truncated frame expansion, (4.6).

We prove Theorem 4.1 by a standard technique of splitting the frame

expansion into two components (see Lemma 9.14 of [6]). The first compo-

nent contains those terms, 〈g, ϕQi,k
〉, Qi,k = 2−i([0, 1]n + k), when |Qi,k| is

small and the second component is for those terms, when |Qi,k| is large (the

terms, I ′ and II ′, in (7.3), respectively). Under our situation, we need a

modification adapted to our truncation on the frame expansion. For each

component, we insert an extra series including those 〈g, ϕQi,k
〉 with Qi,k

“having a long distance” from the origin in order to compensate for the

truncation on k (the terms, I ′′ and II ′′, in (7.3)).

We are going to prove that

L
∑

i=−L′

∑

|k|≤δ(i)2L′′

〈g, ϕQi,k
〉ψQi,k

,

L, L′, L′′ ∈ N is a Cauchy sequence and converges to g in Cβ(R
n). Let L,

L′, L′′, N , N ′ and N ′′ be positive integers. Without loss of generality, we



ANNIHILATOR, COMPLETENESS AND CONVERGENCE OF WAVELET SYSTEM 93

assume that ‖g‖Cα = 1, N > L, N ′ > L′ and N ′′ > L′′. For γ ∈ Nn with

0 ≤ |γ| ≤ [β], we write

∣

∣

∣

∣

∂γ
( N

∑

i=−N ′

∑

|k|≤δ(i)2N′′

〈g, ϕQi,k
〉ψQi,k

(x)(7.3)

−
L

∑

i=−L′

∑

|k|≤δ(i)2L′′

〈g, ϕQi,k
〉ψQi,k

(x)

)
∣

∣

∣

∣

≤

∞
∑

i=L+1

∑

k∈Zn

|〈g, ϕQi,k
〉||∂γψQi,k

(x)|

+

−L′−1
∑

i=−∞

∑

k∈Zn

|〈g, ϕQi,k
〉||∂γψQi,k

(x)|

+

L
∑

i=0

∑

|k|>2i+L′′

|〈g, ϕQi,k
〉||∂γψQi,k

(x)|

+

−1
∑

i=−L′

∑

|k|>2L′′

|〈g, ϕQi,k
〉||∂γψQi,k

(x)|

= I ′ + II ′ + I ′′ + II ′′,

according to the definition of δ(i).

For I ′, by Lemma 7.1, we have a constant C > 0 such that

I ′ ≤ C

∞
∑

i=L+1

∑

k∈Zn

(

1 + |2−ik|
)−α−n−ε

2−iα−in/22in/2+|γ|i

×
(

1 + 2i|x− 2−ik|
)−α−n−ε

≤ C

∞
∑

i=L+1

2−i(α−|γ|)
∑

k∈Zn

(

1 + |2−ik|
)−α−n−ε

×
(

1 + 2i|x− 2−ik|
)−α−n−ε

.

Furthermore, we find that

I ′ ≤ C2(−L−1)(α−|γ|)(1 + |x|)−β−n−ε ≤ C2(−L−1)(α−β)(1 + |x|)−β−n−ε

by the first part of Lemma 7.2 and α > β ≥ |γ|.
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For II ′, we have

II ′ ≤ C
−L′−1
∑

i=−∞

∑

k∈Zn

(1 + |k|)−α−n−ε2i(α+n/2)2in/2+|γ|i

×
(

1 + 2i|x− 2−ik|
)−α−n−ε

≤ C

−L′−1
∑

i=−∞

2i(n+|γ|+α)

(

1

1 + 2i|x|

)β+n+ε

≤ C

−L′−1
∑

i=−∞

2i(n+|γ|+α)

(

2−i

2−i + |x|

)β+n+ε

;

and the second inequality holds because

(7.4)
∑

k∈Zn

(1 + |k|)−α−n−ε
(

1 + 2i|x− 2−ik|
)−α−n−ε

≤ C
(

1 + 2i|x|
)−α−n−ε

for some constant C > 0 independent of i and x (for the proof of (7.4), see

[1], p. 67), and α > β + ε > β.

By using the fact that i < 0 and α > β + ε, we obtain

II ′ ≤ C

(−L′−1
∑

i=−∞

2i(n+|γ|+α−β−n−ε)

)(

1

1 + |x|

)β+n+ε

≤ C2(−L′−1)(α−β−ε)

(

1

1 + |x|

)β+n+ε

.

The estimates for I ′′ and II ′′ are similar to the estimates for I ′ and II ′

except that, for I ′′, we use the second part of Lemma 7.2 with M = 2L
′′

instead of the first part. We have

I ′′ + II ′′ ≤ C2−L
′′(α−β)(1 + |x|)−β−n−ε.

Notice that the term, δ(i), plays a crucial role in the estimate for II ′′ when

γ = 0. This will be further justified by the convergence of the truncated

frame expansions by using truncation sets different from T (L,L′, L′′), see

Section 8.1.

By combining the estimates for I ′, II ′, I ′′ and II ′′, we establish the
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inequality (recall (4.1) for the definition of ‖ · ‖β∗),

∥

∥

∥

∥

N
∑

i=−N ′

∑

|k|≤δ(i)2N′′

〈g, ϕQi,k
〉ψQi,k

−

L
∑

i=−L′

∑

|k|≤δ(i)2L′′

〈g, ϕQi,k
〉ψQi,k

∥

∥

∥

∥

β∗

(7.5)

≤ C
(

2(−L−1)(α−β) + 2(−L′−1)(α−β−ε) + 2−L
′′(α−β)

)

.

For any fixed N > L > 0, N ′ > L′ > 0 and N ′′ > L′′ > 0, let

(7.6)

Ψ(x) =

N
∑

i=−N ′

∑

|k|≤δ(i)2N′′

〈g, ϕQi,k
〉ψQi,k

(x) −

L
∑

i=−L′

∑

|k|≤δ(i)2L′′

〈g, ϕQi,k
〉ψQi,k

(x)

and

(7.7) ω(L,L′, L′′) = 2(−L−1)(α−β) + 2(−L′−1)(α−β−ε) + 2−L
′′(α−β).

For the estimate of (recall (4.2) for the definition of ‖ · ‖β∗∗)

∥

∥

∥

∥

N
∑

i=−N ′

∑

|k|≤δ(i)2N′′

〈g, ϕQi,k
〉ψQi,k

−

L
∑

i=−L′

∑

|k|≤δ(i)2L′′

〈g, ϕQi,k
〉ψQi,k

∥

∥

∥

∥

β∗∗

,

we assume that |x− y| ≤ 1. Otherwise, we have 1 < |x− y|, and, hence, for

γ ∈ Nn and |γ| = [β], we obtain

|∂γΨ(x) − ∂γΨ(y)| ≤ |∂γΨ(x)| + |∂γΨ(y)|

≤ Cω(L,L′, L′′)
(

(1 + |x|)−β−n−ε + (1 + |y|)−β−n−ε
)

≤ Cω(L,L′, L′′)|x− y|β−[β] sup
|z|≤|x−y|

(1 + |x− z|)−β−n−ε

by the estimates of I ′, II ′, I ′′ and II ′′.

Let l ∈ N satisfy 2−l ≤ |x − y| < 2−l+1. For γ ∈ Nn and |γ| = [β], we

have

|∂γΨ(x) − ∂γΨ(y)|(7.8)

≤
∞
∑

i=max(L+1,l)

∑

k∈Zn

|〈g, ϕQi,k
〉|(|∂γψQi,k

(x)| + |∂γψQi,k
(y)|)

+

max(L+1,l)−1
∑

i=L+1

∑

k∈Zn

|〈g, ϕQi,k
〉||∂γψQi,k

(x) − ∂γψQi,k
(y)|
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+

−L′−1
∑

i=−∞

∑

k∈Zn

|〈g, ϕQi,k
〉||∂γψQi,k

(x) − ∂γψQi,k
(y)|

+
L

∑

i=min(l,L)+1

∑

|k|>2L′′+i

|〈g, ϕQi,k
〉|(|∂γψQi,k

(x)| + |∂γψQi,k
(y)|)

+

min(l,L)
∑

i=0

∑

|k|>2L′′+i

|〈g, ϕQi,k
〉||∂γψQi,k

(x) − ∂γψQi,k
(y)|

+

−1
∑

i=−L′

∑

|k|>2L′′

|〈g, ϕQi,k
〉||∂γψQi,k

(x) − ∂γψQi,k
(y)|

= III ′ + IV ′ + V ′ + III ′′ + IV ′′ + V ′′.

The summation, III ′, takes over those terms, |〈g, ϕQi,k
〉|, such that the

length of Qi,k, l(Qi,k) = 2−i, satisfies l(Qi,k) ≤ min(|x − y|, 2−L−1). The

summation for IV ′ includes the terms, |〈g, ϕQi,k
〉|, with |x− y| ≤ l(Qi,k) ≤

2−L−1. If L+1 ≥ l, then IV ′ vanishes. Thus, we assume l > i on estimating

IV ′. The term, V ′, collects the remaining. That is, those |〈g, ϕQi,k
〉| with

Qi,k satisfy 2L
′+1 ≤ l(Qi,k).

The terms, III ′′, IV ′′ and V ′′, are similar to the terms, III ′, IV ′ and

V ′, respectively, except that they take over the summation for k on the

region, |k| > δ(i)2L
′′
. Moreover, we do not have III ′′ if L ≤ l and, hence,

i > l when we deal with III ′′.

We first consider III ′. Under the range for i on III ′, 2−i ≤ 2−l ≤

|x− y| ≤ 1, we find that

III ′ =
∞

∑

i=max(L+1,l)

∑

k∈Zn

|〈g, ϕQi,k
〉|(|∂γψQi,k

(x)| + |∂γψQi,k
(y)|)

≤ C

∞
∑

i=max(L+1,l)

∑

k∈Zn

(

1 + |2−ik|
)−α−n−ε

2−i(α+n/2)

× 2in/2+[β]i
[

(

1 + 2i|x− 2−ik|
)−α−n−ε

+
(

1 + 2i|y − 2−ik|
)−α−n−ε

]

≤ C

( ∞
∑

i=max(L+1,l)

2−i(α−[β])

)

sup
|z|≤|x−y|

1

(1 + |x− z|)α+n+ε
.



ANNIHILATOR, COMPLETENESS AND CONVERGENCE OF WAVELET SYSTEM 97

Since α > β, |γ| = [β] and

∞
∑

i=max(L+1,l)

2−i(α−[β]) ≤

( ∞
∑

i=L+1

2−2i(α−β)

)1/2( ∞
∑

i=l

2−2i(β−[β])

)1/2

≤ C2(−L−1)(α−β)2−l(β−[β])

≤ C2(−L−1)(α−β)|x− y|β−[β],

we assert that

III ′ ≤ C2(−L−1)(α−β)|x− y|β−[β] sup
|z|≤|x−y|

1

(1 + |x− z|)β+n+ε
.

For IV ′ and V ′, we use the following condition satisfied by ψQi,k
that

|∂γψQi,k
(x) − ∂γψQi,k

(y)|

≤ 2i(n/2+β)|x− y|β−[β] sup
|z−2−ik|≤|x−y|

1

(1 + 2i|x− z|)β+n+ε

≤ C2i(n/2+β)|x− y|β−[β]

(

1

1 + 2i|x− 2−ik|

)β+n+ε

for |z − 2−ik| ≤ |x − y| ≤ 2−l+1 ≤ 2−i. Recall that IV ′ vanishes unless

max(L + 1, l) = l. Thus, when we estimate IV ′, we have L + 1 ≤ i ≤

max(L+ 1, l) − 1 = l − 1 and, hence, 2−l+1 ≤ 2−i.

For IV ′, by a similar estimate as I ′, we have

IV ′ ≤ C

( ∞
∑

i=L+1

2−i(α−β)

)

|x− y|β−[β]

(

1

1 + |x|

)α+n+ε

≤ C2(−L−1)(α−β)|x− y|β−[β] sup
|z|≤|x−y|

1

(1 + |x− z|)β+n+ε

as α > β.

For V ′, using the idea for estimating II ′, we obtain

V ′ ≤ C

(−L′−1
∑

i=−∞

2i(β+α−β−ε)

)

|x− y|β−[β]

(

1

1 + |x|

)β+n+ε

≤ C2(−L′−1)(α−ε)|x− y|β−[β] sup
|z|≤|x−y|

1

(1 + |x− z|)β+n+ε
,



98 K.-P. HO

because α > β + ε.

We do not have III ′′ when L = min(l, L). Hence, we find that

III ′′ + IV ′′ + V ′′ ≤ C2−L
′′(α−β)|x− y|β−[β] sup

|z|≤|x−y|

1

(1 + |x− z|)β+n+ε
.

Therefore, we assert that

∥

∥

∥

∥

N
∑

i=−N ′

∑

|k|≤δ(i)2N′′

〈g, ϕQi,k
〉ψQi,k

−

L
∑

i=−L′

∑

|k|≤δ(i)2L′′

〈g, ϕQi,k
〉ψQi,k

∥

∥

∥

∥

β∗∗

(7.9)

≤ C
(

2(−L−1)(α−β) + 2(−L′−1)(α−ε) + 2−L
′′(α−β)

)

.

Since ‖·‖Cβ
= max(‖·‖β∗, ‖·‖β∗∗), by (7.5) and (7.9), in general (without

the assumptions ‖g‖Cα = 1, N > L, N ′ > L′ and N ′′ > L′′), we establish

the estimate,

∥

∥

∥

∥

N
∑

i=−N ′

∑

|k|≤δ(i)2N′′

〈g, ϕQi,k
〉ψQi,k

−
L

∑

i=−L′

∑

|k|≤δ(i)2L′′

〈g, ϕQi,k
〉ψQi,k

∥

∥

∥

∥

Cβ

(7.10)

≤ C‖g‖Cα

(

2(−min(L,N)−1)(α−β) + 2(−min(L′,N ′)−1)(α−β−ε)

+ 2−min(L′′,N ′′)(α−β)
)

.

Hence,
∑L

i=−L′

∑

|k|≤δ(i)2L′′ 〈g, ϕQi,k
〉ψQi,k

(x) is a Cauchy sequence in

Cβ(R
n). As Cβ(R

n) ⊂ L2(Rn), we represent g by the frame expansion, g =
∑

i∈Z,k∈Zn〈g, ϕQi,k
〉ψQi,k

, and the above identity holds in L2(Rn). The limit

in Cβ(R
n) equals to the limit in L2(Rn). Therefore, limL,L′,L′′→∞

∑L
i=−L′

∑

|k|≤δ(i)2L′′ 〈g, ϕQi,k
〉ψQi,k

= g in Cβ(R
n).

Let N , N ′ and N ′′ go to infinity in (7.10), we have

∥

∥

∥

∥

g −

L
∑

i=−L′

∑

|k|≤δ(i)2L′′

〈g, ϕQi,k
〉ψQi,k

∥

∥

∥

∥

Cβ

(7.11)

≤ C‖g‖Cα

(

2(−L−1)(α−β) + 2(−L′−1)(α−β−ε) + 2−L
′′(α−β)

)

.

We prove the first part of Theorem 4.1.

The second part of Theorem 4.1 is a straightforward consequence of the

fact,
⋂

α>0 Cα(R
n) = S(Rn), and the first part of this theorem.
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§8. Appendix

8.1. Truncation sets

We consider the convergence of the following frame expansions for f ∈

S ′(Rn),
∑

−L′≤i≤L

∑

|k|≤2i+L′′

〈f, ψQi,k
〉ϕQi,k

and
∑

−L′≤i≤L

∑

|k|≤2L′′

〈f, ψQi,k
〉ϕQi,k

.

That is, the truncation sets are

T̃ (L,L′, L′′) = {(i, k) : i ∈ Z, −L′ ≤ i ≤ L; k ∈ Zn, |2−ik| ≤ 2L′′
},

and

T̂ (L,L′, L′′) = {(i, k) : i ∈ Z, −L′ ≤ i ≤ L; k ∈ Zn, |k| ≤ 2L′′
},

respectively.

No matter we take T (L,L′, L′′), T̃ (L,L′, L′′) or T̂ (L,L′, L′′) as the trun-

cation set, we obtain the same estimates for I ′, II ′, III ′, IV ′ and V ′. The

differences are found in I ′′, II ′′, III ′′, IV ′′ and V ′′. For simplicity, we just

discuss the estimate of II ′′ with T̃ (L,L′, L′′) as the truncation set and the

estimate of I ′′ with T̂ (L,L′, L′′) as the truncation set.

If we use T̃ (L,L′, L′′) as the truncation set, then, for any fixed α̃ satis-

fying α > α̃+ ε > β + ε, we find that for any γ ∈ Nn and 0 ≤ |γ| ≤ [β],

II ′′ =

−1
∑

i=−L′

∑

|k|>2i+L′′

|〈g, ϕQi,k
〉||∂γψQi,k

(x)|

≤ C
−1
∑

i=−L′

∑

|k|>2i+L′′

(

1

1 + |k|

)α̃+n+ε

2i(α+n/2)2in/2+|γ|i

×

(

1

1 + 2i|x− 2−ik|

)α+n+ε

.

By using the fact that |k| > 2i+L
′′

and α > α̃ > β, we have,

II ′′ ≤ C
−1
∑

i=−L′

∑

|k|>2i+L′′

(

1

1 + 2i+L′′

)α̃−β( 1

1 + |k|

)β+n+ε

2i(n+α+|γ|)

×

(

1

1 + 2i|x− 2−ik|

)β+n+ε

.
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As i < 0, we obtain

II ′′ ≤ C

−1
∑

i=−L′

2i(n+|γ|+α)2(i+L′′)(β−α̃)

(

1

1 + 2i|x|

)β+n+ε

≤ C

−1
∑

i=−L′

2i(n+|γ|+α)2(i+L′′)(β−α̃)

(

2−i

2−i + |x|

)β+n+ε

≤ C

−1
∑

i=−L′

2i(n+|γ|+α−β−n−ε)2(i+L′′)(β−α̃)

(

1

1 + |x|

)β+n+ε

,

and finally, we assert that

II ′′ ≤ C
−1
∑

i=−L′

2i(|γ|+α−α̃−ε)2L
′′(β−α̃)

(

1

1 + |x|

)β+n+ε

≤ C2−L
′′(α̃−β)

(

1

1 + |x|

)β+n+ε

because 0 ≤ |γ| ≤ [β] and α > α̃+ ε.

Thus, for any α > α̃+ ε > β + ε, instead of (7.11), we have a constant

C > 0 independent of L, L′ and L′′ such that, for any g ∈ Cα(Rn) satisfying

(4.7),

∥

∥

∥

∥

g −
L

∑

i=−L′

∑

|k|≤2i+L′′

〈g, ϕQi,k
〉ψQi,k

∥

∥

∥

∥

Cβ

(8.1)

≤ C‖g‖Cα

(

2(−L−1)(α−β) + 2(−L′−1)(α−β−ε) + 2−L
′′(α̃−β)

)

.

Now, we turn to the convergence of frame expansion with T̂ (L,L′, L′′)

as the truncation set. For any fixed α̃ satisfying α > α̃ > β and any

0 ≤ |γ| ≤ [β], we estimate I ′′ by

I ′′ ≤ C

L
∑

i=0

∑

|k|>2L′′

(

1 + |2−ik|
)−α−n−ε

2−iα−in/22in/2+|γ|i

×
(

1 + 2i|x− 2−ik|
)−α−n−ε

≤ C

L
∑

i=0

2−i(α−|γ|)2i(α−α̃)2−L
′′(α−α̃)

∑

k∈Zn

(

1 + |2−ik|
)−α̃−n−ε

×
(

1 + 2i|x− 2−ik|
)−α−n−ε

,
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since |k| > 2L
′′
> 1.

By the second part of Lemma 7.2, we find that

I ′′ ≤ C

( L
∑

i=0

2−i(α̃−|γ|)

)

2−L
′′(α−α̃)(1 + |x|)−β−n−ε

≤ C2−L
′′(α−α̃)(1 + |x|)−β−n−ε

because α > α̃ > β.

So, if we consider T̂ (L,L′, L′′) as the truncation set, then, for any α >

α̃ > β, we obtain a constant C > 0 independent of L, L′ and L′′ such that,

for any g ∈ Cα(R
n) satisfying (4.7),

∥

∥

∥

∥

g −

L
∑

i=−L′

∑

|k|≤2L′′

〈g, ϕQi,k
〉ψQi,k

∥

∥

∥

∥

Cβ

(8.2)

≤ C‖g‖Cα

(

2(−L−1)(α−β) + 2(−L′−1)(α−β−ε) + 2−L
′′(α−α̃)

)

.

Comparing (8.1) and (8.2) to (7.11), the truncated frame expansions

using T̃ (L,L′, L′′) and T̂ (L,L′, L′′) as the truncation sets converge slower

than the frame expansion truncated by T (L,L′, L′′). This is expected since,

for any fixed L,L′, L′′ > 0, T̃ (L,L′, L′′) and T̂ (L,L′, L′′) are proper subsets

of T (L,L′, L′′).

In addition, the upper bound of α− α̃ in (8.2) is α− β, but the upper

bound of α̃−β in (8.1) equals to α− ε−β. This reflects that the truncated

frame expansion, (8.2), converges more rapidly than (8.1).

With some easy modifications on Theorem 2.1 and Theorem 4.1, we

have the following extension of Theorem 2.1.

Theorem 8.1. Let {ϕQ}Q∈Q ∈
⋂

α>0 Mα(Rn) be a frame on L2(Rn)

and {ψQ}Q∈Q ∈
⋂

α>0 Mα(Rn) be its dual frame, then, for any f ∈ S ′(Rn)

of order ω, there exist two sequences of polynomials, P̃L,L′,L′′ and P̂L,L′,L′′ ,

of degrees less than or equal to [ω] such that

(8.3) lim
L,L′,L′′→∞

{

∑

−L′≤i≤L

∑

|k|≤2i+L′′

〈f, ψQi,k
〉ϕQi,k

− P̃L,L′,L′′

}

= f,

and

(8.4) lim
L,L′,L′′→∞

{

∑

−L′≤i≤L

∑

|k|≤2L′′

〈f, ψQi,k
〉ϕQi,k

− P̂L,L′,L′′

}

= f
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in S ′(Rn).

The corresponding generalizations for the other theorems are left to the

reader.

8.2. Floating polynomials

In this section, we first show that the convergence in (2.4) is independent

of the family of functions, {θλ}λ ⊂ S(Rn), that satisfies (2.5).

Proposition 8.2. Suppose that {θ1
λ} and {θ2

λ} are two families of

Schwartz functions satisfying (2.5) and f ∈ S ′(Rn) is of order ω. Let

P θ
j

L,L′,L′′(x) = −
∑

0≤|λ|≤[ω]

(

〈f, θjλ〉 −
∑

−L′≤i≤L

∑

|k|≤δ(i)2L′′

〈ϕQi,k
, θjλ〉〈f, ψQi,k

〉

)

xλ,

j = 1, 2,

be the floating polynomials corresponding to {θjλ}, j = 1, 2, respectively.

Then, on any compact set of Rn,

lim
L,L′,L′′→∞

(

P θ
1

L,L′,L′′ − P θ
2

L,L′,L′′

)

= 0

uniformly and, hence, P θ1

L,L′,L′′ − P θ
2

L,L′,L′′ converges to zero in S ′(Rn) as L,

L′ and L′′ go to infinity.

Proof. We only need to show that the coefficient of xλ for P θ
1

L,L′,L′′(x)

converges to the coefficient of xλ for P θ
2

L,L′,L′′(x). That is, for any f ∈ S ′(Rn)

of order ω,

lim
L,L′,L′′→∞

(

〈f, θ1
λ〉 −

∑

−L′≤i≤L

∑

|k|≤δ(i)2L′′

〈ϕQi,k
, θ1
λ〉〈f, ψQi,k

〉

)

= lim
L,L′,L′′→∞

(

〈f, θ2
λ〉 −

∑

−L′≤i≤L

∑

|k|≤δ(i)2L′′

〈ϕQi,k
, θ2
λ〉〈f, ψQi,k

〉

)

.

According to (2.5) with N = [ω], for any λ ∈ Nn and 0 ≤ |λ| ≤ [ω], the

function, Θλ(x) = θ1
λ(x) − θ2

λ(x), belongs to S(Rn) and satisfies

(8.5)

∫

Rn

xγΘλ(x) dx = 0 for γ ∈ Nn and 0 ≤ |γ| ≤ [ω].
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Consider the family, Cα(R
n), with ε = ([ω] + 1−ω)/2. By Theorem 4.1, we

find that

(8.6) lim
L,L′,L′′→∞

∑

−L′≤i≤L

∑

|k|≤δ(i)2L′′

〈Θλ, ϕQi,k
〉ψQi,k

= Θλ

in Cη(R
n), for any η > ω satisfying [η] = [ω] and [ω] + 1 > η + ε. Applying

f on both sides of (8.6), we obtain

lim
L,L′,L′′→∞

(

∑

−L′≤i≤L

∑

|k|≤δ(i)2L′′

〈ϕQi,k
, θ1
λ〉〈f, ψQi,k

〉

−
∑

−L′≤i≤L

∑

|k|≤δ(i)2L′′

〈ϕQi,k
, θ2
λ〉〈f, ψQi,k

〉

)

= lim
L,L′,L′′→∞

∑

−L′≤i≤L

∑

|k|≤δ(i)2L′′

〈ϕQi,k
,Θλ〉〈f, ψQi,k

〉

= 〈f,Θλ〉 = 〈f, θ1
λ〉 − 〈f, θ2

λ〉,

which is our desired result.

The following proposition shows that Theorem 2.1 is consistent with

the well-known convergence of frame expansion for functions in L2(Rn).

Proposition 8.3. If f ∈ L2(Rn), then the corresponding sequence of

floating polynomials,

PL,L′,L′′(x) = −
∑

0≤λ≤N

(

〈f, θλ〉 −
∑

−L′≤i≤L

∑

|k|≤δ(i)2L′′

〈ϕQi,k
, θλ〉〈f, ψQi,k

〉

)

xλ,

converges to zero in S ′(Rn) as L, L′ and L′′ go to infinity.

Proof. It is sufficient to show that

(8.7) lim
L,L′,L′′→∞

(

〈f, θλ〉 −
∑

−L′≤i≤L

∑

|k|≤δ(i)2L′′

〈ϕQi,k
, θλ〉〈f, ψQi,k

〉

)

= 0.

By the Cauchy-Schwartz inequality, we find that
∣

∣

∣

∣

〈f, θλ〉 −
∑

−L′≤i≤L

∑

|k|≤δ(i)2L′′

〈ϕQi,k
, θλ〉〈f, ψQi,k

〉

∣

∣

∣

∣

≤

∥

∥

∥

∥

f −
∑

−L′≤i≤L

∑

|k|≤δ(i)2L′′

〈f, ψQi,k
〉ϕQi,k

∥

∥

∥

∥

L2(Rn)

‖θλ‖L2(Rn).
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Since {ϕQi,k
}i∈Z,k∈Zn is an frame on L2(Rn) and {ψQi,k

}i∈Z,k∈Zn is its

dual frame, we have

∥

∥

∥

∥

f −
∑

−L′≤i≤L

∑

|k|≤δ(i)2L′′

〈f, ψQi,k
〉ϕQi,k

∥

∥

∥

∥

L2(Rn)

→ 0

as L, L′ and L′′ go to infinity, and, hence, we obtain our desired result.
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