ON SOME BOUNDARY PROBLEMS IN THE THEORY
OF CONFORMAL MAPPINGS OF JORDAN DOMAINS

KIKUJI MATSUMOTO

1. Itis a well-known result in the theory of conformal mappings of Jordan
domains that if a domain D in the z-plane bounded by a closed Jordan curve
C is mapped conformally on the disc |w|<1 by a function w = f(z), analytic
and univalent in D, then f(z) will be continuous on the closure of D and will
map C on |w|=1 in a one to one manner (Carathéodory [2]), and that if C
is rectifiable, then f(z) will map sets E of points of linear measure zero on C
onto sets of linear measure zero on the circumference |w|=1 and sets E of
positive linear measure onto sets of positive linear measure on |w| =1 (F. and
M. Riesz [12] and Lusin and Privaloff [8]). If the condition that C is rectifiable
is dropped, however, the above metric property can no longer be asserted for
f(z) on C. In fact, Lavrentieff gives in his paper [5] an example of a domain
D bounded by a non-rectifiable closed Jordan curve C, by the conformal map
w= f(2) of which on the unit disc |w|<1 a set E of linear measure zero on
C is mapped onto a set of positive linear measure on |w|=1 and Lohwater
and Seidel [6] and Lohwater and Piranian [7] show that there exist Jordan
domains D, by the conformal map w= f(z) of which on |w|<1 a set E of
positive linear or two-dimensional measure on C is mapped onto a set of linear
measure zero on |w| =1 R. Nevanlinna [10; p. 107] also states without proof
that an example of a set £ can be given which belongs to the boundaries of
two Jordan domains D; and D. and is mapped onto a set of linear measure
zero by the conformal map of D; on the unit disc, while it is mapped onto a
set of positive linear measure by the map of D, on the unit disc. Here we
raise the following problems:

(i) Under what metrical condition for E can the condition that C is recti-
fiable be dropped to assert that it is mapped onto a set of linear measure zero?

(ii) Under what metrical condition for E can the condition that C is recti-
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fiable be dropped to assert that it is mapped onto a set of positive linear mea-

sure?

The main purpose of this paper is to give some answers for these problems.
In the sequel, proving two elementary lemmas, we shall show that the condition
that the 1/2-dimensional Hausdorff measure of E is zero is sufficient for the
problem (i). These two lemmas can also give a partial answer for the so-called
Beurling conjecture on Fuchsian or Fuchsoid groups. We shall prove that, if
E is of 1/2-dimensjonal Hausdorff measure zero, then the conjecture holds good.

For the problem (ii), we shall show that, for any totally disconnected com-
pact set E of the z-plane, there can be found a Jordan domain D such that E
belongs to the boundary of D and is mapped onto a set of logarithmic capacity
zero, consequently of linear measure zero, by the conformal map of D on the
unit disc. In this connection, we shall give an example of E of positive a-
capacity (0<a <1) which belongs to a rectifiable Jordan curve C and is mapped
onto a set of logarithmic capacity zero by the conformal map of the Jordan
domain bounded by C on the unit disc. In the case where 0 <a <1/2, such an
example was given already by Ohtsuka in his paper [11] and he raised there

the question whether the similar example can be given in the case where 1/2
s=a<l.

2. First we shall be concerned with the problem (i) raised above. Let E be
a totally disconnected compact set in the z-plane and let C be a closed Jordan
curve which passes every point of £ and bounds a domain D. (By Theorem 1
in Moore and Kline [9], such a Jordan curve always exists.)

We consider the class O%s of open Riemann surfaces, any subregion G of
which admits no non-constant single-valued bounded analytic function with real
part vanishing continuously on its relative boundary, that is, Ge SO,z in notation
(Kuroda [4]). Here a subregion G of a Riemann surface R means a subdomain
of R with relative boundary clustering nowhere in R, each point of which is
regular for the Dirichlet problem with respect to G. Noticing that if G is
simply-connected, the condition that GeSO,s implies that G admits no non-
constant bounded harmonic function vanishing continuously on its relative
boundary, we see that

if the complementary domain of E with respect to the extended z-plane be-

longs to the class O%z, it is mapped onto a set of linear measure zero on |w| =1
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by the conformal map of D on |w|<1 for any C, rectifiable or non-rectifiable.

By a criterion of Kuroda [4] for a Riemann surface to belong to the class
Oz, we have the following some metrical condition from the above function
theoretic one.

TueoreM 1. If there exists a sequence of ring domains Anr (n=1,2, ...
E=1,2,...,v(n)) such that, for each n, all of Ans+1,x (k=1,2, ..., p(n+1))
together separate E from all of Anr (E=1,2,..., v(n)) and

N
1irr21v sup(Z_ilogun —log»(N)} = o,

then E is mapped onto a set of linear measure zero on |w| =1 by the conformal
map of D on |w|<1 for any C, rectifiable or non-rectifiable. Here pn denotes

the minimum harmonic modulus of Anr (E=1,2,..., v(n)).

3. In this section, we shall give two elementary lemmas in order to give
a purely metrical condition concerning the problem (i).

Let 6 be the unit disc |z]/<1 and let p; (j=1,2,..., n) and p be radial
segments @; <7r<bj, 0=0; (=1,2,..., n) and the union of radial segments
ai<r<bj,0=0(G=1,2 ..., n)respectively, where z=17¢"°, 0<a<b < a<b,
=+ <a,<bp=<1 and 0<60;<2n. We denote by @,(z) and w,(z) the har-
monic measure of LJJ p; with respect to the domain ¢ — Lij,- and that of p with

respect to the domain ¢ — p, respectively. Then we can prove

LEMMA 1. @p(0) = w,(0),

where the equalsty holds if and only if \Up; coincides with o or some rotation
J

of o around the origin.

Proof. Suppose that b,<1. If we define the value of @, at each point of
Upj by 1, then &, is continuous and superharmonic in . Obviously, this super-
3

harmonic @, is a Green potential in §, so that it can be represented by a suita-

ble positive mass-distribution x on Up; as follows:
]

32 = | 10g | 1752 |au(o).

We now define the mass-distribution » on ¢ by
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{dﬂ(e"%‘c) if arg (=0 and a; < |¢|<b;
if (€0 —o,

dv(¢) =

and consider the potential

(o) = 10g | L5 | (o).

Then this is non-negative in § and harmonic in § — p. Further it is continuous
in & because

U2 =3 jlo 1= C"”zid()

on the one hand and each term of the right side is continuous in z on the
other. Next we compare the value of U” at a point z, @; < |z| < b;. of p with
the value of @, at the point e*zp;. Since

il—se %21 ll—fe”’kz'

<1
Jz—C < S, ¢ |  for (o,

we have
BEDS j log 1—iff'd (€) = ,(eV2) =1.

Consequently, U*(z) is not smaller than 1 at every point of p and hence
U(2) Z w,(2).

Noticing that
RO 1
) =2f log \f |du(&) = 5,(0),
J=1p,
we have thus
@p(0) = w,(0).

As the limiting case as b,—1, the same holds in the case where b,=1.

The assertion concerning the equality can be easily seen from the above
argument. The proof is now complete.

Next lemma is

LemMmA 2. Let G(r, ¢) (0<7< {) denote the domain obtained by deleting
the closed disc |z| <7 and the segment on the real axis r<x=<{,y=0 (2=

%+1iy) from the extended z-plane. Then the harmonic measure w(z; r, {) of
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the circumference |z| = r with respect to the domain G(r, {) satisfies that

(> ; 1’,[)=0(\/§)

for every sufficiently small r/ ¢ .
Proof. We operate to the domain G(7, ¢ ) transformations

T S B 22—7/¢
A= RE AREI G/ )

1+z4)2

zs=vz and ¢ = ( —

one after another. Then the domain G(r, ¢) is mapped conformally on the
upper-half plane 3¢>0 in the following manner :

(1) the circumference |z|=7 corresponds to the negative real axis of the
¢-plane,

(2) the point at infinity z= o« corresponds to the point

T2
- (FER L)

Now suppose that 7/ ¢ is sufficiently small. Then

J— —
(}i’:j_:_%l) ~1+4iy/ T,

so that the value of the harmonic measure of the negative real axis with re-
spect to the upper-half plane 3¢>0 at the point ¢ =[(1+ 7/ £)/(1—ir/ ¢)]

is approximately equal to
1 r 4 |7
—”~Arctan4\/7 ?\/ 7
Hence we can conclude by (1) and (2) that

w(o; 7, [)"'i\/:;-

T

Our lemma is thus proved.

4. Denoting by m. (0<a <2) the a-dimensional Hausdorff measure, we

now prove
Tueorem 2. If
ml/Q(E) = 0!

then it is mapped onto a set of linear measure zero on |w| =1 by the conformal
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map of D on |w|<1 for any C, rectifiable or non-rectifiable.

Proof. For a point z, in D, the linear transformation 2’ =1/(z — 2,) maps
D on a domain D' containing the point at infinity. We note that under this
transformation, the property of a compact set K<z, in the z-plane that m,,(K)
=0 is preserved, so that the transform E' of E satisfies that

my(E') =0,

Let 2/ denote the diameter of the transform C' of C and let » be a positive
small number, for which the assertion of Lemma 2 holds good. Let ¢ be a
positive number, arbitrarily small. Then by the definition of the 1/2-dimensional
Hausdorff measure, there exists a finite number of compact discs 6; (i=1, 2,
., n) in the z'-plane such that
(1) the radius 7; of any 0; is smaller than 7,

(2) their union U §; covers E',

o1

(3) V7 <eV?.

We denote by D'(4) (=1, 2, ..., n) the connected component of the open
set D’ — &; which contains the point at infinity and by D'(«) that of the open
set D'—i\:‘J1 di. Further, we denote by wi(z') (i=1,2,..., n) and w«(2') the
harmonicﬂmeasure of the part of the boundary of D'({) contained in the cir-
cumference ¢; of d; with respect to D'(s) and that of the part of the boundary

of D'() contained in U ¢; with respect to D'( ), respectively. Then

walz!) < gwi<z'> in D'().

Now we estimate each w;( ). Denoting by z; the centre of ci, we consider
for any 7:, 7: <7< ¢, the part C} of C' lying outside of the disc |2’ — z}| < 7;. Since
the diameter of C' is 2 £, C; contains at least one continuum 7; which joins
two circles |2’ —zi| =7 and |2’ —zi|= ¢. Let 4; be the complementary domain
of 7; with respect to the extended z'-plane and let {4i k}k=0,12.. be a normal
exhaustion of 4; such that 4;024;. Then the harmonic measure w; (2') of c;
with respect to 4;,z — d; converges as k- < uniformly on each relatively com-

pact subset of 4;— 0; to that w;(z') with respect to 4; — d; and
wi(2') Swi(2')  in D'(3).

Therefore for any ¢ >0, arbitrarily small, there exists a k& such that
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wi( o) — ¢ <wjp(),
The complement ©4; r of 4ir is an open set containing r; and hence we can
find in €4;, a finite set of segments p;: a;<|2'—zi| S aj,1, arg (2 —z)) =0;
(j=1,2,..., m), where a1=r:.<a2< -+« <am={. Map the outside of c¢;

on the unit disc [¢]| <1 by ¢ =7;/(z' —zi) and use Lemma 1. Then we see that
wik( ) Lw,(o) <w,(),

where w,(2') and #,(z') are the harmonic measures of ¢; with respect to the

domain {| 2’ — z}|>7:} — Up;j and the domain {|2’ — zi| > 7} —p (p:7i Z|2' — 2| ¢,
j-1

arg(z' — z;) =0), respectively. Because of the arbitrariness of ¢ >0, we have

thus

wi(©) S W(),
and have
wi(w)w(wo; 7, £)
as the limiting case as ri—7;, for in this case p is the segment 7; <|2' -zl ¢,
arg (2’ — z!) =0 and hence the domain {|z' — z;| > 7} — p is conformally equivalent

to the domain G(7;, ¢ ) in the manner that the points at infinity correspond

each other. By Lemma 2 we see that

wi( o) =O(\/:7;f—)

so that, by (3),
(@) < i__ilw,-(ow - ogg\/m) = 0(e).

Hence it follows that, at the point corresponding to z = 2o, the harmonic measure
of the image of E on |w| =1 with respect to the unit disc |w|<1 take a value
O(e) for arbitrarily small e, that is, zero. Thus we can conclude that the image
of E on 'w|=1is of linear measure zero, and our theorem is established.

It is an open question whether the complementary domain of a compact
set E of 1/2-dimensional Hausdorff measure zero belongs to the class O%s. If
this question is answered in the positive, Theorem 2 follows immediately from
the fact stated above Theorem 1.

5. Let E be a compact set in the z-plane which contains at least three
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points and has the complementary domain £ with respect to the extended z-
plane. We consider the Fuchsian or Fuchsoid group & which corresponds to
the Decktransformationsgruppe of the universal covering surface of 2 and
denote by N a normal polygon in the unit disc, which is a fundamental domain
of & The point set on the unit circumference of the closure of IV is called
the foot of the normal polygon N. Then Beurling’s conjecture says that the
linear measure of the foot is zero for any E of the class W in Kametani’s sense
[3] ( =the class Ny in Ahlfors-Beurling’s sense [1]).

It is well-known that if E is of logarithmic capacity zero, then the foot is

of linear measure zero. Now we prove
TuEOREM 3. If mup(E) =0, then the foot is of linear measure zero.

Proof. Let F denote the foot of the normal polygon N. Then the comple-
ment of F with respect to the unit circumference |w| =1 consists of an at most
countable number of open arcs {ar}. Denoting by B the circular arc in |w]|<1
which is orthogonal to |w]=1 and has the common end points with a:, we
consider the domain &/ whose boundary consists just of Lg Br and F. Then we
observe that V is a subdomain of 1V, because IV is convex relative to the hyper-
bolic metric, and that the point set on |w|=1 of the closure of N coincides
with . Now we denote by D the domain in the extended z-plane which cor-
responds to the normal polygon N. Then the boundary of D consists of E
and an at most countable number of analytic arcs {r;} clustering nowhere in
the complementary domain £ of E. Now we map D on the unit disc |{|<1
by a conformal map ¢=¢(z), which is continuable analytically beyond each
side of 7;, and see that every point of Uy; corresponds to just two points of
the unit circumference |¢| =1. From the same argument as in the proof of
Theorem 2, we see that the set E; of points on |[{| =1, which has no correspond-
ing point on U7, is of linear measure zero.

Denote by z=¢(w) the conformal map of &N on the domain D. Then the
map ¢ = ¢(¢(w)) maps conformally the Jordan domain N on the unit disc |¢| <1
in the manner that F is mapped onto E;. Since the Jordan curve bounding
N is rectifiable and the linear measure of E; is zero, we can now cenclude by
F. and M. Riesz’ theorem that F, that is, the foot of N is of linear measure

zZero.

6. As an answer for the problem (ii), we shall prove the following theorem.
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This shows that some conditions on C other than the metrical conditions on E

are needed in order that E is mapped onto a set of positive linear measure.

TreEorREM 4. For any totally disconnected compact set E in the z-plane, there
exists a Jordan domain D such that the Jordan curve C bounding D passes
every point of E and E is mapped onto a set of logarithmic capacity zero by

the conformal map of D on the unit disc.

Proof. By Theorem 1 in Moore and Kline [9], there exists a Jordan curve
I" which passes throgh every point of E. We can map conformally the domain
bounded by I on the upper-half ¢-plane, §¢>0, in such a way that the image
E; of E on the real axis of the ¢-plane is compact. Then E; is a totally dis-
connected compact set. Now we shall prove that there is a Jordan curve C;
in 3¢ =0, which passes through every point of E;, and the domain bounded by
it is mapped on the unit disc |w|<1 in the manner that the image of E; on
|w] =1 is of capacity zero. If this is provéd, it is enough for us only to take
as D the domain in the z-plane bounded by the Jordan curve C which corres-
ponds to C;.

Without any loss of generality, we may suppose that E; is contained in
—-1/258=<1/2(£{ =¢&+14y). First we cover E by a finite number of open squares
{01} with center on » =0 and with sides of length less than 1/4. Calling each
region of the type

a<éi<a+d bsn=c

a vertical strip with width d, we join the domain D,, —1<£<1, 1/2<y<1
and each connected component of Udyu with a vertical strip s;; with width so

narrow that
J
where wi; is the harmonic function in s;; such that

0 on s;ND,
1 on s;N(Udy)

wxj={

and its normal derivative on the vertical sides of s;; is zero. We denote by
2¢ the minimum length of sides of squares 61 and by D; the simply-connected

domain



138 KIKUJI MATSUMOTO
[DoU (Usli) U ( UB;;)] N{p>e/2).
J i

Next we cover E; by a finite number of open squares {d:;} with center on =0
and with sides of length less than ¢/4, each of which is contained in some 0y,
and join D; and each connected component of Ud:; with a vertical strip s;; with

width so narrow that

>1D(wr5) £1,

where w,; is the same one for s:;; as wi; for s;;. Denoting by 2 the minimum
length of sides of squares 8, we define the domain D, by

Dy =[D1U (Usyj) U (U:)10 {n>ex/2}.

Then D. is simply-connected, because each s; is also contained in some ¢);.
Defining inductively, we thus obtain an increasing sequence of domains {D,}.

We now set

D; = lim Dy,

n-»®

Then it is easily seen that D; is a Jordan domain with a boundary curve
C;DE;. So it remains for us to prove that D; is mapped conformally on the
unit disc in such a way that the image of E; on the unit circumference is of
logarithmic capacity zero. But this can be proved easily. In fact, we consider
the double D; of D; with respect to C;— E;. Then D; is a Riemann surface
of planar character. The double §,; of each s.; is a doubly-connected closed
domain in D; and for a fixed %, all of §,; (j=1,2, ..., j(n)) together sepa-
rates the ideal boundary of D; from the domain Dy, the double of D,. If we
denote by &, the harmonic function on the set Lg S i, which takes the value 0
on the boundary separating 9 $nj from D, and the value 1 on that separating,

U3y from the ideal boundary of ﬁ;, we have
J

2
>
D(wn) ="
by our condition >} D(wa;) 1. Hence
S 27 _
2 Doy =T

so that we see from Sario’s criterion [13] that D;= Os. This shows that the
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complementary domain of the image E, of E;, when we map D, conformally
on the unit disc |w|<1, admits no Green function, that is, the logarithmic

capacity of Ey is zero. Qur proof is now complete.

7. In this last section, we shall give an example of E of positive a-capacity
(0<a <1), such that there is a rectifiable Jordan curve C D E and it is mapped
onto a set of logarithmic capacity zero by the conformal map of the Jordan
domain bounded by C on the unit disc. In the case where 0 <a <1/2, such an
example was given already by Ohtsuka [11].

Let E be a Cantor set on the closed interval I,: [ —1/2, 1/2] with constant
successive ratios &z, 0<¢,=2¢ <1. Then for any a (0<a <1), E is of positive
a-capacity, if we take ¢ sufficiently near 1/2. We shall show that there is a
rectifiable Jordan curve C D E satisfying the condition.

Defining the Cantor set E, we repeat successively to exclude an open
segment from the middle of another segment and there remain 2" segments of
equal length ¢ " after, beginning with the interval I,, we repeat » times. We
donote these segments by I, (n=1,2,...; k=1,2,...,2" and the middle
point of In,r by %mr Further we denote by 64, the square with center at %, 1
and with sides of length ¢”7!/2. Each 0% (#=2) is contained in some &x-1,%
and, for fixed #, all of &, (B=1,2, ..., 2") are mutually disjoint and together
cover kkj Ik, consequently E. First we join the domain D,, —1<x<1,1/2<y<1
(z=x+1y) and each of 8, (k=1, 2, 3, 4) with a vertical strip si,z, which is

symmetric with respect to the line x= %, with width so narrow that

EkD(ah,k) §1,

where wy,r is the same one in §6. We define the domain D, by

D, =[DyU (ij s,) U (\I{ Sep)1N{y> ¢ /8}.

Next we join the domain D, and each of d.,x (E=1,2,...,2") with a vertical
strip s, %, which is symmetric with respect to the line x = x4, with width so

narrow that
Ek D(ws, 1) <1,
and define the domain D, by

D,=[D,U (\g Sz,k) U (954,’3)]0 (y> f3/8)~



140 KIKUJI MATSUMOTO

The length of the boundary part of D, which is not that of D; is less than
2'(£/4+3¢%2)=4¢(1+6¢2. We define domains {D,} inductively, that is,
supposing that D, has been defined already, we join D, and each of 8xn+1),k
(B=1,2,...,2""") with a vertical strip Ss+1,z, which is symmertric with

respect to the line x = %(n+1), 2, with width so narrow that

Ek_’-D(wm,k) <1,

and define the domain Du+; by

Duy=[DsU (Lk) Sne,2) U (Lk) denen, ) 1N {y> £¥41/8}).

The length of the boundary part of Ds+; which is not that of D, is less than
22(n+1)( Zzn-1/4+3[2n+1/2) - (2£ )2(n—1).4£ (1+63 2)' We now set

D = lim Dn.

n->®

Then D is a Jordan domain with a boundary curve CDE. Since E is of linear
measure zero and the length of C — E is less than

L+4r(A+6D{1+@¢)P+@2¢P+ -+ (2¢<1),

where L denotes the length of the boundary curve of D;, we see that C is a

rectifiable Jordan curve. Noticing that the condition

EkD(am.k) <1 for every n=>1,

we see also by the same argument in § 6 that the image of E on |w'=1 by
the conformal map of D on the unit disc |w|<1 is of logarithmic capacity

zero, and thus that D is one of the wanted.
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