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1. It is a well-known result in the theory of conformal mappings of Jordan

domains that if a domain D in the 2-plane bounded by a closed Jordan curve

C is mapped conformally on the disc | ι ι ; |< l by a function w = f(z), analytic

and univalent in D, then f(z) will be continuous on the closure of D and will

map C on \w\ =1 in a one to one manner (Caratheodory [2]), and that if C

is rectifϊable, then f(z) will map sets E of points of linear measure zero on C

onto sets of linear measure zero on the circumference I w I = 1 and sets E of

positive linear measure onto sets of positive linear measure on \w\ =1 (F. and

M. Riesz [12] and Lusin and Privaloff [8]). If the condition that C is rectifiable

is dropped, however, the above metric property can no longer be asserted for

f(z) on C. In fact, Lavrentieff gives in his paper [5] an example of a domain

D bounded by a non-rectifiable closed Jordan curve C, by the conformal map

w = f(z) of which on the unit disc \ιv\ < 1 a set E of linear measure zero on

C is mapped onto a set of positive linear measure on | w \ = 1 and Lohwater

and Seidel [6] and Lohwater and Piranian [7] show that there exist Jordan

domains Df by the conformal map w = f(z) of which on | w | < l a set E of

positive linear or two-dimensional measure on C is mapped onto a set of linear

measure zero on | w | = 1. R. Nevanlinna [10 p. 107] also states without proof

that an example of a set E can be given which belongs to the boundaries of

two Jordan domains Di and D2 and is mapped onto a set of linear measure

zero by the conformal map of Dι on the unit disc, while it is mapped onto a

set of positive linear measure by the map of D2 on the unit disc. Here we

raise the following problems:

(i) Under what metrical condition for E can the condition that C is recti-

fiable be dropped to assert that it is mapped onto a set of linear measure zero?

(ii) Under what metrical condition for E can the condition that C is recti-
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fiable be dropped to assert that it is mapped onto a set of positive linear mea-

sure?

The main purpose of this paper is to give some answers for these problems.

In the sequel, proving two elementary lemmas, we shall show that the condition

that the 1/2-dimensional Hausdorff measure of E is zero is sufficient for the

problem (i). These two lemmas can also give a partial answer for the so-called

Beurling conjecture on Fuchsian or Fuchsoid groups. We shall prove that, if

E is of 1/2-dimensional Hausdorff measure zero, then the conjecture holds good.

For the problem (ii), we shall show that, for any totally disconnected com-

pact set E of the 2-plane, there can be found a Jordan domain D such that E

belongs to the boundary of D and is mapped onto a set of logarithmic capacity

zero, consequently of linear measure zero, by the conformal map of D on the

unit disc. In this connection, we shall give an example of E of positive a-

capacity (0<α <1) which belongs to a rectifiable Jordan curve C and is mapped

onto a set of logarithmic capacity zero by the conformal map of the Jordan

domain bounded by C on the unit disc. In the case where 0<a< 1/2, such an

example was given already by Ohtsuka in his paper [11] and he raised there

the question whether the similar example can be given in the case where 1/2

Sec < 1 .

2. First we shall be concerned with the problem (i) raised above. Let E be

a totally disconnected compact set in the 2-plane and let C be a closed Jordan

curve which passes every point of E and bounds a domain D. (By Theorem 1

in Moore and Kline [9], such a Jordan curve always exists.)

We consider the class OAB of open Riemann surfaces, any subregion G of

which admits no non-constant single-valued bounded analytic function with real

part vanishing continuously on its relative boundary, that is, G(=SOAB in notation

(Kuroda [4]). Here a subregion G of a Riemann surface R means a subdomain

of R with relative boundary clustering nowhere in R> each point of which is

regular for the Dirichlet problem with respect to G. Noticing that if G is

simply-connected, the condition that G^SOAB implies that G admits no non-

constant bounded harmonic function vanishing continuously on its relative

boundary, we see that

if the complementary domain of E with respect to the extended z plane be-

longs to the class OAB, it is mapped onto a set of linear measure zero on \w\ = 1
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by the conformal map of D on I w \ < 1 for any C, rectifiable or non-rectifiabϊe.

By a criterion of Kuroda [4] for a Riemann surface to belong to the class

OAB, we have the following some metrical condition from the above function

theoretic one.

THEOREM 1. If there exists a sequence of ring domains An,k (n = 1, 2, . . .

* = 1, 2, . . . , v(n)) such that, for each n, all of An+i,k (* = 1, 2, . . . , v(n + l))

together separate E from all of An,k (£ = 1 , 2 , . . . , v(n)) and

lim sup{ΣlogμΛ -\ogv(N)} = °°,

is mapped onto a set of linear measure zero on \tυ\ = lby the conformal

map of D on \w\<l for any C, rectifiable or non-rectifiable. Here μn denotes

the minimum harmonic modulus of An,k (k = l, 2, . . . , v(n)).

3. In this section, we shall give two elementary lemmas in order to give

a purely metrical condition concerning the problem (i).

Let δ be the unit disc \z\<l and let pj (/= 1, 2, . .. , n) and p be radial

segments aj^r^bj, θ = θj (j = 1, 2, . . . , n) and the union of radial segments

aj^r^bjy θ. = 0 (j = 1, 2, . . . , Λ) respectively, where z = re%\ 0<aι<bι^az<b2

bn^l and 0^^<27r. We denote by ωv{z) and ωPU) the har-

monic measure of U PJ with respect to the domain δ - Up/ and that of p with
3 i

respect to the domain δ - p, respectively. Then we can prove

LEMMA 1. α)P(0) ;>ωp(0),

where the equality holds if and only if Up/ coincides with p or some rotation

of p around the origin.

Proof. Suppose that bn<l. If we define the value of ω? at each point of

U Pj by 1, then ω? is continuous and superharmonic in δ. Obviously, this super-
i

harmonic ωp is a Green potential in δ, so that it can be represented by a suita-

ble positive mass-distribution μ on Up/ as follows:

5p(z) = J log ~ z dμ(C).

We now define the mass-distribution v on δ by
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{dμ(ei0K) if a r g C = 0 a n d aj^\ζ\ι
ι 0 if

and consider the potential

U ' U ) = ( log dv(ζ).

Then this is non-negative in δ and harmonic in δ — p. Further it is continuous

in δ because

on the one hand and each term of the right side is continuous in z on the

other. Next we compare the value of Z7V at a point z, aj^\z\ ^bj. of p with

the value of ω? at the point eιθjz^pj. Since

log 1-cΛι
e**>z-C

for

we have

U\z)>±j logί^g2!

Consequently, U'{z) is not smaller than 1 at every point of p and hence

U\z)>:ωp(z).

Noticing that

C/v(0) = Σ f log

we have thus

As the limiting case as bn -* 1, the same holds in the case where bn = 1.

The assertion concerning the equality can be easily seen from the above

argument. The proof is now complete.

Next lemma is

LEMMA 2. Let G(r, i) ( 0 < r < I) denote the domain obtained by deleting

the closed disc |z\ ^ r and the segment on the real axis r^x^ I, y = 0 (2 =

xΛ-iy) from the extended z-plane. Then the harmonic measure ω(z; r, I) of
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the circumference \z\ = r with respect to the domain G(r, I ) satisfies that

α > ( o o ; r , £ ) =

for every sufficiently small rl I.

Proof. We operate to the domain G(r, / ) transformations

z 1 zs-r/ί

one after another. Then the domain G(r, I) is mapped conformally on the

upper-half plane 3C> 0 in the following manner .*

(1) the circumference U| = r corresponds to the negative real axis of the

C-plane,

(2) the point at infinity z = °c corresponds to the point

= /I + fVr/T \2

Now suppose that r/ I is sufficiently small. Then

V ^

so that the value of the harmonic measure of the negative real axis with re-

spect to the upper-half plane 3 O 0 at the point C = [( l + ιV*7T)/(l- iy/rJJ)Ύ

is approximately equal to

1 Λ . A fr 4 Γr

Hence we can conclude by (1) and (2) that

Our lemma is thus proved.

4. Denoting by m* (0<αr^2) the αr-dimensional Hausdorff measure, we

now prove

THEOREM 2. / /

mi,2(E) = 0,

then it is mapped onto a set of linear measure zero on I w \ = 1 by the conformal
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map of D on \w\<l for any C, rectifiable or non-rectifiable.

Proof For a point ZQ in Z), the linear transformation z' = 1/(2 — 20) maps

D on a domain D' containing the point at infinity. We note that under this

transformation, the property of a compact set K&zo in the 2-plane that mut{K)

= 0 is preserved, so that the transform E1 of E satisfies that

mu2(E') = 0.

Let 21 denote the diameter of the transform C of C and let r be a positive

small number, for which the assertion of Lemma 2 holds good. Let ε be a

positive number, arbitrarily small. Then by the definition of the 1/2-dimensional

Hausdorff measure, there exists a finite number of compact discs δi (f = l, 2,

. . . , n) in the s'-plane such that

(1) the radius n of any δi is smaller than r,
n

(2) their union U δi covers E\
i = l

(3) ΣVT7<εVT
ί = l

We denote by Df(i) (i = 1, 2, . . . , #) the connected component of the open

set D1 — δi which contains the point at infinity and by D'(oo) that of the open
n

set D' - U δi. Further, we denote by ωi(z') (ι = 1, 2, . . . , #) and ωooU') the

harmonic measure of the part of the boundary of D'{i) contained in the cir-

cumference a of δi with respect to D'(i) and that of the part of the boundary
n

of D'(°o) contained in U Ci with respect to D'( °o), respectively. Then
ω.(2iO^Σ!ωi(«') in D'(~).

t = l

Now we estimate each ω, ( 00 ). Denoting by zi the centre of a, we consider

for any r'if n <r\< i , the part C/ of O lying outside of the disc \z' - z'i\^ r\. Since

the diameter of Cf is 2 ^ , d contains at least one continuum 77 which joins

two circles \z' - zi I = r\ and 12; — z% I = / . Let Δi be the complementary domain

of n with respect to the extended z'-plane and let {Ji,k)k=o,ι,2,... be a normal

exhaustion of Δi such that Δi,o^>δi. Then the harmonic measure Wi,k(zr) of c/

with respect to Δi,k-δi converges as k-+ °° uniformly on each relatively com-

pact subset of Δi-δi to that Wi(z') with respect to Δi-δi and

( ' ) in Z)'(f).

Therefore for any e'>0, arbitrarily small, there exists a k such that
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(ύi(co) - ε' <Wi,k(co )•

The complement %'Ji,k of Ji,k is an open set containing π and hence we can

find in tfdi.k a finite set of segments pj: aj^\zf - zΛ^ctj+u arg (z'-z^^θj

(y = l, 2, . . . , m)y where a\ — r\<aι< <am-i. Map the outside of a

on the unit disc |C |<1 by C = n/iz1 — z'i) and use Lemma 1. Then we see that

Wi,k( °° ) ̂  W?{ °° ) < WP( °° ),

where w9(zf) and w>p(2') are the harmonic measures of a with respect to the
m

domain {\z' - z'i\>n) - Upy and the domain {\zf - z\\>n) - 9 (p rj ^ U ; - z\\^ I,

a r g ( 2 ' - 2 / ) = 0 ) , respectively. Because of the arbi trar iness of e ' > 0 , we have

thus

and have

ω,(oo) <:ω( co r ί > / )

as the limiting case as r/-»n, for in this case p is the segment n^lz'-z'Λ^ t,

arg (z' - z'i) = 0 and hence the domain {12r — 2/1 > n} - p is conformally equivalent

to the domain G(n, I ) in the manner that the points at infinity correspond

each other. By Lemma 2 we see that

so that, by (3),

Hence it follows that, at the point corresponding to z = 20, the harmonic measure

of the image of E on | w I = 1 with respect to the unit disc | w \ < 1 take a value

O(e) for arbitrarily small e, that is, zero. Thus we can conclude that the image

of E on ' to I = 1 is of linear measure zero, and our theorem is established.

It is an open question whether the complementary domain of a compact

set E of 1/2-dimensional Hausdorff measure zero belongs to the class OAB. If

this question is answered in the positive, Theorem 2 follows immediately from

the fact stated above Theorem 1.

5. Let E be a compact set in the 2-plane which contains at least three
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points and has the complementary domain Ω with respect to the extended z

plane. We consider the Fuchsian or Fuchsoid group © which corresponds to

the Decktransformationsgruppe of the universal covering surface of Ω and

denote by N a normal polygon in the unit disc, which is a fundamental domain

of ($5. The point set on the unit circumference of the closure of N is called

the foot of the normal polygon N. Then Beurling's conjecture says that the

linear measure of the foot is zero for any E of the class W in Kametani's sense

[3] ( =the class Λ% in Ahlfors-Beurling's sense [1]).

It is well-known that if E is of logarithmic capacity zero, then the foot is

of linear measure zero. Now we prove

THEOREM 3. If mi/2{E) = 0, then the foot is of linear measure zero.

Proof. Let F denote the foot of the normal polygon N. Then the comple-

ment of F with respect to the unit circumference | w I = 1 consists of an at most

countable number of open arcs {#&}. Denoting by βk the circular arc in \w\ <1

which is orthogonal to I w \ = 1 and has the common end points with ak> we

consider the domain N whose boundary consists just of U βk and F. Then we

observe that JV" is a subdomain of N, because N is convex relative to the hyper-

bolic metric, and that the point set on | w | = 1 of the closure of N coincides

with F. Now we denote by D the domain in the extended z-plane which cor-

responds to the normal polygon N. Then the boundary of D consists of E

and an at most countable number of analytic arcs (n) clustering nowhere in

the complementary domain Ω of E. Now we map D on the unit disc ICI < 1

by a conformal map ζ-Ciz), which is continuable analytically beyond each

side of π, and see that every point of Ur/ corresponds to just two points of

the unit circumference |C| = 1. From the same argument as in the proof of

Theorem 2, we see that the set Eζ of points on | CI = 1, which has no correspond-

ing point on Uπ» is of linear measure zero.

Denote by z = ψ(w) the conformal map of N on the domain D. Then the

map C = C{ψ(w)) maps conformally the Jordan domain N on the unit disc i CI < 1

in the manner that F is mapped onto E;. Since the Jordan curve bounding

N is rectifiable and the linear measure of Eς is zero, we can now conclude by

F. and M. Riesz' theorem that F, that is, the foot of N is of linear measure

zero.

6. As an answer for the problem (ii), we shall prove the following theorem.
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This shows that some conditions on C other than the metrical conditions on E

are needed in order that E is mapped onto a set of positive linear measure.

THEOREM 4. For any totally disconnected compact set E in the z plane, there

exists a Jordan domain D such that the Jordan curve C bounding D passes

every point of E and E is mapped onto a set of logarithmic capacity zero by

the conformal map of D on the unit disc.

Proof. By Theorem 1 in Moore and Kline [9], there exists a Jordan curve

Γ which passes throgh every point of E. We can map conformally the domain

bounded by Γ on the upper-half C-plane, 3C > 0, in such a way that the image

Eζ of E on the real axis of the C-plane is compact. Then Eζ is a totally dis-

connected compact set. Now we shall prove that there is a Jordan curve Cζ

in 3C2^0, which passes through every point of Eζy and the domain bounded by

it is mapped on the unit disc | w \ < 1 in the manner that the image of Eζ on

I w I = 1 is of capacity zero. If this is proved, it is enough for us only to take

as D the domain in the 2-plane bounded by the Jordan curve C which corres-

ponds to Q.

Without any loss of generality, we may suppose that Eζ is contained in

- 1/2 ^ ξ ̂  1/2 (C = ξ + iy). First we cover E by a finite number of open squares

{δii} with center on ̂  = 0 and with sides of length less than 1/4. Calling each

region of the type

a<ξ<a + dt b^-η^c

a vertical strip with width d, we join the domain Dα, — K f <1, 1/2<^<1

and each connected component of \Jδu with a vertical strip sij with width so

narrow that

j

where ω\j is the harmonic function in sij such that

jθ on SiyΠDo

1 on Sij Π {{J δu)

and its normal derivative on the vertical sides of Sij is zero. We denote by

2ei the minimum length of sides of squares δu and by A the simply-connected

domain
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[Do U (Uίiί) U (\Jdu)l Π {7i>εj2}.
3 i

Next we cover Eζ by a finite number of open squares {&/} with center on ^ = 0

and with sides of length less than ei/4, each of which is contained in some δu,

and join A and each connected component of Ufe with a vertical strip s2y with

width so narrow that

where ω2./ is the same one for s zj as ωij for Siy. Denoting by 2 ε2 the minimum

length of sides of squares <52, , we define the domain D2 by

A = ZDi U (Usy) U (Ufe)] Π {τ?>ε2/2}.

Then D2 is simply-connected, because each s2y is also contained in some δu.

Defining inductively, we thus obtain an increasing sequence of domains {Drt}.

We now set

Dζ = \imDn.

Then it is easily seen that Dζ is a Jordan domain with a boundary curve

Cζ^Eζ. So it remains for us to prove that Dζ is mapped conformally on the

unit disc in such a way that the image of Eζ on the unit circumference is of

logarithmic capacity zero. But this can be proved easily. In fact, we consider

the double Dζ of Dζ with respect to Cζ — Eζ. Then Oζ is a Riemann surface

of planar character. The double snj of each snj is a doubly-connected closed

domain in Dζ and for a fixed n, all of snj 0" = l, 2, . . . , j(n)) together sepa-

rates the ideal boundary of ΰζ from the domain ύo, the double of A> If we

denote by ώn the harmonic function on the set \Jsnj, which takes the value 0
3

on the boundary separating U snj from Do and the value 1 on that separating,
3

Usnj from the ideal boundary of Dζ, we have
3

>π
D(ωn)

by our condition Σ C ( % ' ) έ l . Hence

so that we see from Sario's criterion [13] that Dζ e O<?. This shows that the
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complementary domain of the image Ew of Eζt when we map Dζ conformally

on the unit disc | M ; | < 1 , admits no Green function, that is, the logarithmic

capacity of Ew is zero. Our proof is now complete.

7. In this last section, we shall give an example of E of positive α-capacity

(0<α:<l), such that there is a rectifiable Jordan curve C^>E and it is mapped

onto a set of logarithmic capacity zero by the conformal map of the Jordan

domain bounded by C on the unit disc. In the case where 0<α:<l/2, such an

example was given already by Ohtsuka [11].

Let E be a Cantor set on the closed interval 70: I —1/2,1/2] with constant

successive ratios fΛ, 0<£w = 2^ < 1 . Then for any a ( 0 < α < l ) , E is of positive

^-capacity, if we take l sufficiently near 1/2. We shall show that there is a

rectifiable Jordan curve C => E satisfying the condition.

Defining the Cantor set E, we repeat successively to exclude an open

segment from the middle of another segment and there remain 2n segments of

equal length I n after, beginning with the interval 70, we repeat n times. We

donote these segments by ln,k (n = 1, 2, . . . k = 1, 2, . . . , 2n) and the middle

point of In,k by *«.*. Further we denote by δn.k the square with center at xn,k

and with sides of length in~1/2. Each δn,k (w>2) is contained in some δn-ι.k

and, for fixed n, all of δn,k (k = 1,2, . . . , 2n) are mutually disjoint and together

cover U In, k> consequently E. First we join the domain Do, —1< x < 1,1/2 <y < 1
k

(z = x+iy) and each of δ2fk (k = l, 2, 3, 4) with a vertical strip si,*, which is

symmetric with respect to the line x=x2,k, with width so narrow that

where ωXtk is the same one in §6. We define the domain A by

A = [ f t U ( U si.k) U ( U δt,k)l Π {y > l /8}.
ft k

Next we join the domain Dι and each of δ4>k (k = 1, 2, . . . , 24) with a vertical

strip s2,k> which is symmetric with respect to the line x-x^k, with width so

narrow that

and define the domain D2 by

A = [A U (U SM) U(UΛ,*)] n{y> { 3/8}.
k k
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The length of the boundary part of D2 which is not that of A is less than

2\ I /4 + 313/2) = 41 (1 + 6 I 2 ) . We define domains {Dn) inductively, that is,

supposing that Dn has been defined already, we join Dn and each of £2<n+i),fe

(Λ = l , 2, . . . , 22(M+1)) with a vertical strip sn+i.k, which is symmertric with

respect to the line x = x2(n+D,k* with width so narrow that

and define the domain Dn+ι by

Dn+i = tDnU(Usn+l,k) U ( U &(Λ+i>f*>3 Π {^> / tΛ+1/8>.

The length of the boundary part of Dn+i which is not that of Dn is less than
21(1+1) ( t 2n-l/4 + 3 t l» + l / / 2 ) = ( 2 ^ )2(n-l) # 4 ^ ( χ + g ^ 2^ ψ

Then D is a Jordan domain with a boundary curve C^>E. Since E is of linear

measure zero and the length of C - E is less than

where L denotes the length of the boundary curve of A , we see that C is a

rectifiable Jordan curve. Noticing that the condition

D(ωn$k) ^ 1 for every « ^ 1 ,

we see also by the same argument in § 6 that the image of E on \w] = 1 by

the conformal map of D on the unit disc | w | < l is of logarithmic capacity

zero, and thus that D is one of the wanted.
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