CANONICAL CONNECTIONS AND
PONTRJAGIN CLASSES

SHOSHICHI KOBAYASHI*

In the previous paper [7], we have studied the relationship between the
Riemannian connection of an #-dimensional Riemannian space M imbedded into
the (% + %)-dimensional Euclidean space R""* and the canonical connection in
the bundle P, r=O0(n+£k)/{1}xO(k) over the Grassmann manifold My, =
O(n+k)/O(n) x O(k). )

In the first half of the present paper, the relationship between the canonical
connections in bundles P, &, P, = O(n+k)/O(n) x {1}, O(n) over My, and the
invariant Riemannian connection on My, » will be discussed. We obtain the
holonomy groups of these canonical connections.

In the second half of the paper, we shall study the Pontrjagin classes of
manifolds, using exclusively differential forms. To facilitate the calculation, we
introduce two types of characteristic cocycles which are closely related to the
Pontrjagin cocycles. The duality theorem for the Pontrjagin classes, which has
been proved by Wu Wen-Tsun using the cellular subdivision of the Grassmann
manifold M., r [13], [4], [5], is proved here very easily using the theory of
symmetric functions. Our result gives a little bit more precise informations
than that of Wu Wen-Tsun, in the sense that we express the duality theorem
as a relation between the Pontrjagin cocycles (in stead of classes) and the nor-
mal Pontrjagin cocycles. This may not be interesting for topologists, but may
have some value from the differential geometrical point of view. We prove
also that the normal Pontrjagin cocycles of a Riemannian space depend only on
the Riemannian connection, not on the way how to imbed it. Finally we show
that the normal Pontrjagin classes of a manifold M depend only on the differen-
tiable structure of M.

The second half of the paper (§4-§8) can be read independently of the
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first half.

§ 1. Bundles associated with homogeneous spaces

Let G be a Lie group acting on a manifold M on the left as a differen-
tiable fransformation group and let H be the isotropic subgroup of G at x, € M.
Clearly H is a closed subgroup of G, hence a Lie group. Then M is identified
with G/H in a natural fashion. Since H acts on G on the right naturally, G
is a principal fibre bundle over G/H = M with group H and with the natural
projection p : G~ G/H. We shall study the relation between this bundle G
over M and the bundle of frames over M.

Every element g of G induces a transformation ég of T(M), which maps
Ty, (M) onto Tgy(M) isomorphically. We take Ty(M) as a standard zn-dimen-
sional vector space R" (n=dim M). Then dg: R" > Tgyw(M) is a frame at
g% € M, which we shall denote by #,. Let P be the bundle of frames over
M (with group GL(n, R)) with projection ». Then we have the following com-

mutative diagram.

_p(g)=71'(ug) h
G—P
pi 1 U
M— M

where h(g) = ug.

The following proposition is well known.

ProrosiTiON 1. 7 is a one-to-one mapping of G into P, if G acts effectively

on M and if there exists an affine connection on M which is invariant by G.

Under the assumption of Prop. 1, we can consider G as the bundle obtained
from P by reducing the structure group GL(%, R) to H. And an infinitesimal
connection in the bundle G can be considered as an affine connection on M [11].

Consider now a slightly more general case: the case where G is almost
effective, i.e., the subgroup IV consisting of all elements in G which leave M
fixed pointwise is discrete. Note that IV is a normal subgroup of G contained
in H. Now, G/N is a principal fibre bundle over M with group H/N, whose
projection will be denoted by #'. The natural map ¢ of G onto G/ is a bundle
homomorphism with discrete kernel, which may be called a semi-isomorphism.

The semi-isomorphism ¢ induces a one-one correspondence between the set of
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connections in G and the set of connections in G/N [8]. Explicitly, to each
connection form o on G/N, there corresponds the connection form ¢*(w) on
G.

Now suppose that G is almost effective on M and that there exists an
affine connection on M invariant by G. From Prop. 1 and the above argument,
it follows that every connection in the bundle G can be considered as an affine
connection on M.

We shall apply the above procedure to the case where the orthogonal group
O(n + k) in n + k variables acts on the Grassmann manifold My, = O(n + &)/O(»n)
X O(k) in a natural manner. It is easy to see that O(zn+ &) is almost effective
on My, (only I and — I act trivially on M,,r). Since the isotropic subgroup
O(n) x O(k) is compact, there exists an invariant affine connection on My, [10].
Therefore we can consider every connection in the bundle O(#n + k) over My, %
as an affine connection on AM,,r. We shall define the canonical connection in
the bundle O(#n + k) which corresponds to the invariant Riemannian connection
on Mu,r.

Let o{#+ k), o(n) and o(%k) be the Lie algebras of O(n + &), O(n) and O(k)
respectively. Let mi,,, be the orthogonal complement to the subspace o(#) + o(%)
in o(z + %) with respect to the Killing-Cartan bilinear form on o(#+ k). Then

o(n+ k) =0(n) +0(k) + M,
ad(s) Ty, S My, for all s& O(n) x O(k)

[y, Mo, el S 0(n) +0(k).

Observe that the first two conditions say that M, is reductive in the sense
of Nomizu [10] and the last one tells that it is moreover symmetric in the
sense of E. Cartan [2], [10].

Let 0 be the o(n + &)-valued left invariant linear differential form on O(#n + k)
defined by

0(5)=s""5 s T(On+k)).

Let w, 7 and & be the o(#n)-, 0o(k)- and my,, -components of the form 6 respec-

tively :
O=w+7+<¢

It is easy to see that the form w + % defines a connection in the bundle O(n + &)
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over Mpn,r, which we shall call the canonical connection in the principal fibre
bundle O(n+ k).

From the fact that My, is a symmetric space, it follows easily that the
canonical connection in O(n 4+ k) corresponds to the invariant affine connection
of the 2nd kind [10] on Mp,r, which is nothing but the invariant Riemannian
connection on M,,r. In the next section, we shall give an explicit correspon-
dence between the canonical connection in O(z+ %) and the invariant Rieman-

nian connection on My, .

§ 2. Invariant Riemannian connection on 4,

The Lie algebra o(z + k) is the set of skew-symmetric matrices of degree
n+ k and the spaces o(#), o(k) and m,,, are the sets of matrices of the follow-
ing types respectively :

(5 o) o) (Cf)

where X and Y are skew-symmetric matrices of degree » and k respectively
and Z is a matrix of (n, k)-type.

Let x, be the point of My, which is left fixed by O(»n) x O(k). Then the
tangent space 7%, (My, ) can be identified naturally with mn, , hence a matrix
Z can be considered as an element of Ty,(My,z) and conversely. Let s and s’
be elements of O(n)x{1} and {1} x O(k) respectively. Then the linear trans-
formation of T (M,,z) induced by sxs'& O(n)xO(k) corresponds to the

following matrix transformation of my,:
My, e € 2—> (sxs) ez (sxs)1E My, k.

Let A and B be the matrices of degree » and % respectively which corresponds
to s and s. Then

(A o)(o Z)(A o)*‘( 0 AZB")
o BN-2 oNo B) \-wzB)Y o )
Therefore the linear transformation sx s’ of Ty (M,,r) is expressed, in terms

of matrices, as follows:

Z—>Z=AZB.
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It .
Z=(z), Z=(z), A=(d), B=D,

where 7, j=1, ... ,mand ¢q,7r=1, ..., & then
7 = Sdiby 2.
Consider A and B as linear transformations of the vector spaces V, and Vi
with bases e, ... , e, and /i, ... , fr respectively and identify the tensor pro-
duct V, ® Vi with the space of matrices Z as follows:
e ® fr <« 7,

where Z; is the matrix (z) of (%, n)-type with
zh=1 if j=i and q=7
z,JI. =0 otherwise.

Then the above transformation Z > AZB’ can be identified with the tensor pro-
duct (the Kronecker product) of A and B. We have shown the

Prorosition 2. Let P be the bundle of frames over M, and h the natural

semi-isomorphism of O(n -+ k) into P (see §1). Let v be the natural homo-
morphism of O(n) x O(k) onto O(n) ® O(R); then we have the following com-

mutative diagram :
O(n+ k)X (O(n) x (O(R)) —> O(n+k)
ihxr ? lh
p
P x GL(nk, R) - P
where ¢ is the group multiplication in O(n+ k) and o is the right multiplication

by the structure group GL(nk, R).

Let P*=n(O(n+k)). Then P* is a principal fibre bundle over My, with
the structure group O(zn) ® O(k) and the above proposition can be stated as

follows.

Prorosition 2. A pair of mappings h and v gives a semi-isomorphism of
the bundle O(n+ k) onto the bundle P¥, ie., the following diagram is commuta-
tive :

On+k) X (0On) xOL)) — O(n+k)

lhxr i lh

/]
P x (0(n) ® Ok)) —>  p*
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Let v® (resp. ™) be the o(%)-valued (resp. 0(k)-valued) linear differential
form on P* corresponding to the form o (resp. ) on O(n+ k) (see § 1). The
forms »* and %* can be considered as skew-symmetric matrix valued differential
forms on P*. Let I, (resp. Ir) be the unit matrix of degree » (resp. #). Then
0" ® I+ I, ® 7* is an o(nk)-valued linear differential form on P*. From Prop.
2!, we derive the

ProrosiTioN 3. The following diagram is commutative:

T(O(n+k)) oy o(n) +o(k)
ld.h FR I+ I @7 ld‘i‘
™P*) —— 0 QL+ I,® ok);

that is, the form 0" @ I+ I, ® v defines the connection in P* which corres-

ponds to the canonical connection in the bundle O(n+ k).

Remark. The differential 6r of the group homomorphism t of O(n) x O(k)
onto O(n) ® O(k) induces an algebra isomorphism of o(zn) + 0(%) onto o(%) & I
+ I, ® o(k).

The above defined connection in P* is evidently an invariant affine connec-
tion on My, » whose homogeneous holonomy group is a subgroup of O(n) ® O(k).
Let ¢* be the form on P* corresponding to the mx,r-valued form ¢ on O(n + k).
Then the form of soudure on P [7], restricted on P*, is ¢* (under the identi-

fication of R™ with my,,r). Then the Maurer-Cartan equation on O(zn + &) gives
Aty = — Sojnt — nhate.

If we make use of matrix notations, this can be written as follows:
= — (0" ® I+ In ® n*)¢,

which shows that the connection in P* has no torsion. In general, if an affine
connection on a Riemannian manifold has no torsion and its homogeneous
holonomy group is contained in the orthogonal group, then it is the Riemannian

connection. Hence we have shown explicitly the

TuroreM 1. The canonical connection in the principal fibre bundle O(n+ k)
over My, corresponds naturally to the invariant Riemannian connection on
Mn,k-
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§ 3. Product of two connections

Let P, and P, be principal fibre bundles over the same manifold M and with
groups G: and G; respectively. The direct product P, x P. can be considered
in a natural manner as a principal fibre bundle over M x M with group Gi x Go.
The part of P, x P, over the diagonal 4(M x M) = {(x, x) € M x M} is a principal
fibre bundle over M (= 4(Mx M)) with group G;xG:, which we shall denote
by PRoP,. Let w; be the g;-valued linear differential form on P; defining a con-
nection in P for i=1, 2, where g is the Lie algebra of G;. Then u(wi)+
2 (w;) defines a connection in P, x P, where u is the natural projection of
PiX P, onto P;. Its restriction on PioP, defines a connection in Pio P, which
we call the product of the connections w; and ws.

Let ¢ be a curve in M starting from x, and ending at x; and let #; be any
point of P; such that (%) = x,, where n; is the projection of P;onto M. Let
¢(u;) be the point of P; obtained by parallel displacement of #; along ¢ with
respect to the connection defined by w;. Since (u;, #;) is a point of Pio P, over
%o, we can define similarly ¢(%;, u.), i.e., the point of Po P, obtained by parallel
displacement of (u:, #:) along ¢ with respect to the connection defined by the

product of w; and w:. Then we obtain easily
cluy, u2) = (c(a), c(uz)).
Suppose now that ¢ is a closed curve starting from x,. Then there exists
a unique element s; € G; such that
c(oi) = wisi 5
it is by definition an element of the holonomy group with reference point u;
associated with the curve c. It follows evidently that
c(us, us) = (s, 2,) (51, $2).
Hence
Prorosition 4. Let h be the holonomy group with reference point u; of the
connection defined by w; (i=1, 2) and h the holonomy group with reference
point (w1, us) of the product of connections w, and ws. Then
(1) A<EmXhs;
(2) The natural projection ©;: hiX hs — h; maps h onto h; (i=1, 2).

Remark. h is not necessarily equal to %, X hs.



100 SHOSHICHI KOBAYASHI

Let Py, (resp. Py,r) denote O(n+ k)/{1} x O(%) (resp. O(n+ £)/O(n) x{1})
which is a principal fibre bundle over My, with group O(#n) (resp. O(k)). We
apply the above argument to the case where Pi= P, and P.=P,,,. We
shall show that the principal fibre bundle O(% + &) over M, is isomorphic to
P, 1o Pr,k.  Let v, (resp. »») be the natural projection of O(n+£) onto P,
(resp. P;,z). Then the map » X »: of O(n+ k) into P,,rx Px¥,r defined by

(v1 X w2)(8) = (p1(s), va(s)) seO0(n+k)

will give an isomorphism of O(%n-+ k) onto Py, z°Pj,r. Let n, m, m be the
projections of the bundles O(%n + &), Pu,k, Py, r onto M,, respectively. Then

7T1°I/1(S)=7T2°I}2(S)=7T(S) for all SEO(n+k),

which shows that »: X p» maps O(n+ k) into Pn,r° Py,

Suppose that (»; X g)(s) = (p»; X p2)(s') for some s, '€ O(n+k). From
vi(s) =wi(s") (i=1, 2), it follows that there exist s; € O(n) x {1} and s; € {1} X
O(k) such that s' =ss; and s' =ss;. Since O(n)x{1} and {1}xO(k) intersect
only at the unit, we get that s, =s.= the unit. Hence s = s/, which proves that
p1X vy is @ one-to-ome map. Let u; and u. be arbitrary points of Pu,r and Pi,k
such that m(#) = m(u:). Let s, and s: be elements of O(% + &) such that »i(s;)
=u; for =1, 2. Then

7(s1) =m0 w1(8y) = 7 © va(s2) = 7(s2).
Hence there exist elements s; & O(n) x{1} and s, {1} x O(k) such that s; = s28381.

Put s=ss;' =s.s5. Then

0(s) = mi(sisi?) = vi(s;) =,

v2(8) = p2(s283) = pa($2) = .
This completes the proof of the following

ProrosiTioN 5.  The bundle O(n+ k) over Mnu,r is naturally isomorphic

to the bundle Py, o Pi .

We have shown in the previous paper [7] that the o(%)-component o of the
left invariant linear differential form 6§ =w+ %+ < on O(n+ k) induces an o(n)-
valued differential form on P.,r, which we denote also by » and which defines
a connection (called the canonical connection) in the bundle Pn,r over My, k.

Similarly we can prove that the o(%)-component 7 of ¢ induces an o(%)-valued
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differential form on P;,r, which we shall denote by the same letter y and which
defines a connection in Pi,r (by definition, the canonical connection in P ,i).
Then

ProrositioN 6. Under the natural isomorphism between the bundles O(n -+ k)
over Mu,r and Pp, 1o PX,r, the canonical connection in O(n+ k) corresponds to

the product of the canonical connections in Pn,r and Pi, .

Now we shall study the holonomy group of the canonical connections in
O(n+ k), Pu,r and P,r. Because of Theorem 1, the study of the canonical
connection in O(z+ k) can be reduced to that of the invariant Riemannian con-
nection on Mpy,r. Since My, is an irreducible symmetric space in the sense of
E. Cartan, the restricted holonomy group of the invariant Riemannian connec-
tion on Mau,r coincides with the connected component of the unit of the linear
isotropic subgroup of the group of isometries [2], [10], in this case, SO(n) &
SO(%).

In order to obtain the (non-restricted) holonomy group, we have to inves-
tigate the canonical connection more carefully. By the above argument and
Theorem 1, the restricted holonomy group of the canonical connection in O(#n + &)
is SO(n) x SO(k). Taking the unit of O(n + &) as a reference point, we consider
the set P, of all points in O(%+ %) which can be joined to the unit by horizontal
curves [1], [8] with respect to the canonical connection in O(n + k). The set
Py is a principal fibre bundle over Mu,r whose structure group is the holonomy
group of the canonical connection [1], [8]. Since P, is arcwise connected, it
is a submanifold of SO(%+ k). On the other hand, it is of the same dimension
as SO(n+ k), because the connected component of the structure group of P,
has the same dimension as SO(n+ k) N (O(n)x O(k)). As easily seen, P, can-
not be a proper open submanifold of SO(n+£%). Hence P, coincides with
SO(n+ k). The holonomy group of the canonical connection in O(z+ k) is,
therefore, SO(n+ k) N (O(n) x O(k)). From Prop. 4 we obtain immediately the
holonomy group of the canonical connection in B, (resp. Pi,r). Thus we

have obtained the

TrEOREM 2. The holonomy groups of the canonical connections in O(n+ k),
P, and Py ,r are respectively SO(n+ k) N (O(n) x O(k)), O(n) and O(k).

From the above theorem it follows that the holonomy group of the invariant
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Riemannian connection on My, is the image of SO(n+ &) N (O(n) x O(k)) under
the natural isomorphism of O(n) x O(k) onto O(n) ® O(k) and is decomposed
into two connected components: one contains the unit and the other contains

the following element:

1 0 1 0

0 1 ®lo 1
-1 -1
((2, %) — type) ((k,k) —type) ’
whose determinant is obviously ( —1)""*. As it is well known, Ma,r is orien-

table if and only if #+ % is even.

§ 4. Curvature forms of canonical connections

From the Maurer-Cartan equation of 8 = w+ %+ ¢, we obtain
do= ~ v, 0]~ 516 ¢
1 1
dn= — 7[71, 77] - ?[C, ¢ls,

where [¢, ¢, and [¢, ¢J. are respectively the o(#%)- and 0(%)-components of [¢, ¢].
Therefore the curvature forms £, and 2, of the canonical connections in Pu,r

and P, are given by
&= - 205 ¢

&= - 515

Now we shall calculate the curvature form of the invariant Riemannian connec-
tion on My, defined by
r=0*®@ L+, ®7".
We observe that, for any matrices A, B of degree » and any matrix C of degree
k,
[A® Iy, B® I1=L[A, B1® I
[A®L I,®C]l=A®C-A®C=0.

Hence
[T’ T] = [w*: w+] ® Ik+ In ® [77*) 77*]

L More precisely, Q1 (resp. Q2) is the form on Pp,r (resp. P,k induced from the
form —[5, {Ju (resp. — 2[¢, {Je) on O(nth).
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and

dr+ 507, 1l =do” ® It I ® dp* + 50", 0 1® It 5 T O L1, 7°]
' = O+ I ® 2,

where 2f is the form on p* corresponding to 2.

§ 5. Characteristic classes
Let P be an arbitrary principal fibre bundle over a manifold M with Lie

group G and with projection z. Let g be the Lie algebra of G. A polynomial

function f defined on 9 is inwariant by G if
flad(s)-g) =/(g) for all g€ g and sE G.

Suppose there is given a connection in P and let £ be its curvature form.
Then @ is a g-valued 2-form on P. The composite f(2) is a real valued dif-
ferential form of degree 27 if f is a homogeneous polynomial of degree ». From

the property

(w3, #:5:) =5'Q(w, uw)s  for all uy, u: € Tu(P),
51, 52 € Ts(G),
we conclude that, if f is invariant by G, then there exists a unique differential
form f(2)* on M such that
= (F(2)%) =/(9).
It is known [3], [4] that f/(2)* is a closed form and the cohomology class to

which it belongs is independent of the choice of connections. The cohomology

class of f(2)*¥ is a characteristic class of the bundle P.

Remark 1. The form f(2) is always the coboundary of a certain form on

P; however f(£2)* is not, in general, cohomologous to zero in M.
Remark 2. If M is a Riemannian (resp. Hermitian) manifold and P is the

bundle of orthogonal frames (resp. unitary frams) over M, then the Pontrjagin

classes (resp. Chern classes) are characteristic classes of P in the above defined
sense.
§ 6. Symmetric functions

First we recall some known results in the theory of symmetric functions.

We shall consider three types of symmetric functions of #» quantities @i, . . . , an.
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The symmetric functions p1, . . . , Pn of the first type are associated with

the equation whose roots are the reciprocals of the quantities a;;
S =TIl —aix) =1—px+px"— ...+ (= 1)"pux"

n
The function p, is the sum of the (r> products of 7 different quantities a;. Define
=0 for > n.

The symmetric functions qi, . . . , qn, . . . of the second type can be obtained

by formal expansion of 1/f(x);

1//(x)=1/TTI(1-ax) =TI+ ax+dx*+ ...)
=14+qx+ g+ ... +qu¥"+ ... .

Then ¢, is the sum of the homogeneous products of degree r of the quantities

ai, ..., Qyu.
The symmetric functions ti, . .. , tn, . . . of the third type are defined by
tr= 24l
The following formulae are fundamental [9].
(D Pr—Dr-1i+Pr-sqa— ... +(=1)Vgq =0
ho1
tZ tl 2
(1I1) rlepy = ts t: t 3
tr tre1...... t
th —1
t2 tl -2
(III) r!.qr: t3 tz tl _‘3
tr fre1ee.o... 11

Let B= (b}:) be a matrix of degree n over the field of real numbers and
let C be a non-singular matrix of degree n over the field of complex numbers
such that (a}) = A = C™'BC is a triangular matrix:

ai=0 if i>j.
Put

1 n
ar=ai, « « « , Gn=0an.

We shall express the symmetric functions p,, #, of the » quantities a;, . . .
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an in terms of elements b]’: of the matrix B. Put
BB = L0, i e OB B

where 6(¢, . .., & 5 i, . . ., jr) is the generalized Kronecker 6. From A=
C™'BC, it follows that p/(A) = p/(B). This fact can be proved as follows. A
linear transformation B of the n-dimensional vector space V (over the field of
complex numbers) induces a linear transformation B, of AV, where A"V is
the space of homogeneous elements of degree » of the exterior algebra AV
over V. Then p,(B) is nothing but the trace of B,. This proves our assertion.

Now we shall prove that p;(A) =p,. Since A is triangular, we have
DA = L Sty mieB e 5 ey G
It is easy to see that, if 1</, ..., ir=j, then
0f, « v e s tr 3 Jueees Jr)=0 unless 21=jy, ..., tr=Jjr

Hence we have that »/(A) = p,. Finally we have obtained
(IV) Dr= SN0, i Gy s GOB - B

Next we shall calculate the symmetric functions ¢, of the quantitites a,, . . . ,
an. Since A"=AA ... A=C"'B'C, we have
trace(A”) = trace(B").

It is clear that #, =trace(A”). On the other hand,
trace(B ) 6% . . . b
Hence
(V) tr=S1bRb% . . . B
Notice that, if B is skew-symmetric and 7 is odd, then both p, and ¢, vanish.
The definition of ¢,(B) is clear from (III) and (V).

§ 7. Characteristic classes of Py, and P},

Let X be an arbitrary element of the Lie algebra o(n#). We define PHX)
as in the preceding section. Then p, is a polynomial invariant by O(n). Re-

placing X by the curvature form £; of the canonical connection in Py, we obtain

UG = S8 e i e ey I@A - A
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Let p, be the form on M,,, such that
71'1*(}57*) :P;‘(Ql)
Similarly we obtain
t;(‘gl) 22‘9?1'2/\‘9{21'3/\ LRI /\-Qi];]
and define the form 7, on My, such that
7"#(;{;—) = t;(gl)
We define also the form g, on My, such that
F;(ar) = (17"(-91)-

The differential forms ?,, #» and §r on My, are all closed and their coho-
mology classes are independent of choice of connections in Py, .

Let Y be an arbitrary element of the Lie algebra o(%k). We define »,*(Y)
in the same way (just replacing » by k). Replacing Y by the curvature form

2, of the canonical connection in P}, », we obtain
K (2s) = **25(11, By T e TR A e AT
Let P be the form on My, such that

n?(ﬁ;k) —':1)7/**(!22).
We define similarly the forms 7, and G, on Mpy, .
Firstly we shall prove that
tr+55=0.
For this purpose, it suffices to show that
5 (F) + ¥ (FF) =0,
where r is the natural projection of O(%n+ k) onto My,r. The left invariant

O(n + k)-valued differential form 6 on O(n+ k) is a skew-symmetric matrix

differential form (6%);,;-1,...,n+x. We have

diy = — 23407 A0F — SIEE05A0 @, B=1, ..., 0

aby = — DNNEELOUAOY — DN 0IA0, A m=n4+1, ..., n+k.
Hence

7 (E,) = (=D 2OUA0 AORAT) A -+ - - ACBTIALL)

7 (T7F) = (=1 200202 AOSAODIA - - o AORADSE
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where the summations are taken over the indices aj, . .., a, which run from
1 to » and the indices A5, . .., 4 which run from #+1 to -+ k. It is now

evident that »*(#,) = — z*(¥%). We have proved the following duality theorem.
THEOREM 3. 7,47} =0.

Now we shall find the corresponding relationship between », and 7/. From
the formula (III) in § 6 and Theorem 3, it follows that

—E -1
—-TF —FF =2
7’"&}“‘ .............
—-1F -1k -
Hence
c7r=(—1)’Z’r‘<.

Now, from (I) in §6, we obtain the
THEOREM 3.  Pr+ Pro1Pi + Br-2bs + . . . + 57 =0.

Remark. As we have seen in the preceding section, the forms 2r, p;, -

and #;7 vanish identically if » is odd.

§ 8. Characteristic classes of a manifold

Let M be an »-dimensional Riemannian manifold imbedded isometrically in
the (n#+ k)-dimensional Euclidean space. Let P be the bundle of (tangent)
orthogonal frames over M and let P* be the bundle of normal orthogonal frames
over M. Then P and P* are principal fibre bundles over M with group O(#)
and O(k) respectively. Let %; be the natural bundle map of P into Pu,r,. We
have shown in the previous paper [7] that the connection in P induced by
from the canonical connection in Py, is nothing but the Riemannian connection
on M. Let h, be the natural bundle map of P* into Pk,.. Then % and the
canonical connection in Py, induce a connection in P*, which we shall call the
normal connection. It seems that the normal connection has been considered
implicitly in classical differential geometry.

Both &, and %. induce the same mapping % of the base space M into the
base space Mpy,r. Put

2r(M) = 1*(Pr), ar(M) = 1" (gr), tr(M) = n*(%,),
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PED =n"3P), i (M) =h"G7),  tFM) =T
The differential forms p,(M) and p5(M) on M are called the 2 r-th Pontriagin
cocycle® and the 27-th normal Pontrjagin cocycle of the imbedded Riemannian
manifold M. The cohomology classes of p,(M) and p(M) are called the 2 7-th
Pontrjagin class and the 2 r-th normal Pontrjagin class of M respectively. From

Theorems 3 and 3/, we obtain the
TueoreMm 4. (M) + (M) =0,

Dr (M) + proy(M)pF(M) + . . . +pF (M) =0.

Since the forms #.(M) are completely determined by the curvature form of
the Riemannian connection on M, so are the forms #;(M). Since the forms
(M) and gf(M) are polynomials of t*(M) (see (II) and (IID) in §6), they

depend only on the curvature form of the Riemannian connection on M. Hence

TuroreM 5. The differential forms pr (M), q¢5 (M) and t; (M) are all in-

variants of the Riemannian connection on M.

We shall explain the meaning of the above theorem. Suppose j: M —» R™*
and j': M- R™¥ and j/: M- R*** be isometrical imbeddings of an n-dimen-
sional Riemannian space M. If k' <k, then we may consider ;' as an isometrical
imbedding of M into R™* In general, there may not exist any motion ¢ of
R™"* such that j' = ¢+ j. The above theorem states that the forms p} (M), g (M),
t¥(M) do not depend on j but depend only on the Riemannian connection on M.

As we have remarked in § 5, the cohomology classes of p,(M), q-(M), t,(M)
are differentiable invariants of P, hence they are differentiable invariants of M.
From Theorem 4, it follows that the cohomology class of ¢ (M) is also a dif-
ferentiable invariant of M. Since the forms p,; (M), gf (M) are polynomials of
t5(M) (see (II) and (III) in § 6), their cohomology classes are also differentiable

invariants of M.

TueoreM 6. The cohomology classes of p-(M), ¢;(M), t-(M), p7(M), g7 (M)
and tE(M) depend only on the differentiable structure of the manifold M.

Remark. We understand by “differentiable structure” “C®-differentiable

2) Qur definition of Pontrjagin cocycles (and normal Pontrjagin cocycles) is different

from that of [4, 5] by constant factors. In the followihg theorem 4, these constant factors
are cancelled out.
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structure”. However the above theorem is true for the C*differentiable struc-

ture.
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