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Introduction

In the theory of functions meromorphic in \z I < -f co, Iversen [4] proved

the following: If ιv=f(z) is meromorphic in \z\ < + oo and has an essential

singularity at z = oo, then any inverse function-element of this function with

the centre tco can be continued analytically to any point w 3= Wo, except possibly

this point iv, in any disc having the centre at the point w and containing the

point wo.

This fact plays important roles to study the properties of covering surfaces

generated by the inverse functions of analytic functions. This property was

discussed by many authors. Above all, Stoϊlow [22] and Mori [10] contributed

to extend the above Iversen theorem in more general cases.

In this article, we shall give an extension of the Iversen theorem in the

case when the existence domain of a single-valued analytic function is a Riemann

surface satisfying some condition. Such a Riemann surface belongs to OAn but

not to Oni), where we use the following notations:

OΠB (or OAB) '• the class of Riemann surfaces on which there exists no

non-constant single-valued bounded harmonic (or analytic) function.

OHΌ (or OAΌ) : the class of Riemann surfaces on which there exists no

non-constant single-valued harmonic (or analytic) function whose Dirichlet

integral taken over the Riemann surface is finite.

Our result contains Stoϊlow's theorem and Mori's. Recently Heins [3] also

dealt with such a problem.
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I. Subregions and the set of the class N%

1. Let F be a Riemann surface and let G be a non-compact or compact

domain on F whose relative boundary C with respect to F consists of at most

an enumerable number of analytic curves being compact or non-compact and

clustering nowhere in F. For simplicity, we shall call such a domain G a sub-

region on F.

If there exists no non-constant single-valued bounded analytic function f(p)

in a subregion G on F such that f(p) is continuous o n G U C and that the real

part of f(p) vanishes at every point on C, we shall say that G belongs to the

class SOAK. And if there exists no non-constant single-valued bounded harmonic

function in a subregion G which vanishes continuously at every point on C, then

we may say that G belongs to the class SOHn.

It is evident that, if G belongs to SOUB, then G belongs to SOAn. For, the

real part of a single-valued bounded analytic function is a single-valued bounded

harmonic function. In general the converse of the above statement does not

hold. If the subregion G is simply connected, any analytic function in G is

single-valued. Hence, in this case, G belongs to SOΠB if G belongs to SOAB.

Therefore, for a simply connected subregion G, G ε SOHB is equivalent to

G G SOAB. It will be shown in Corollary of Theorem 6 that this fact does not

hold for a subregion not being simply connected.

2. We consider a subregion G on F and construct a Riemann surface G

by the process of symmetrization of G along C. There is given an indirectly

conformal mapping of G on itself which leaves every point of C fixed. This

surface G is called the double of G along C. If G is a compact subregion on

F, then the double G is a compact Riemann surface.

We can prove the following

THEOREM 1. The double G of a subregion G on F belongs to OAB if and

only if G belongs to SOAπ.

Proof. First we suppose that G belongs to SOAn. Denote by G the image

of G and by p the image of a point p of G under the indirectly conformal

mapping of G onto itself which leaves every point of C fixed. If f(p) is a

single-valued bounded analytic function on G\ the functions
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Fί(P)=f(p)-f(p) and F»(p) = i(/(i>)+/(£>)
1

are also single-valued, bounded and analytic in G. And the real parts of Flip)

and FoSp) are both equal to zero at every point of C. Since G belongs to

SOAB, these functions Fdp) and F2(p) reduce to constants. Hence we can

write

f(p) =f{ψ) -j ki and f(p) = -/("£) + *8,

where & and fe are the constants independent on the point p of G. From this
h Λ- h Λ

fact, we see that f(p) equals the constant ——^—- In other words, G belongs

to OAB.

Next we suppose that G does not belong to SOAB. Then there exists a

non-constant single-valued bounded analytic function flip) — uip) -f- iv(p) in G

which is continuous on G U C and whose real part uip) vanishes at every

point on C. It is easily seen that the function

f2ip) = -u{p) + iv(p) (pGG)

is non-constant, single-valued, bounded and analytic in G and is continuous on

GUC. Since the real part of f2ip) vanishes at every point on C, we can see

by the well known reflection principle that the non-constant single-valued bounded

function

_ J / i ( ί ) , P^GVJC
P " l/i(i>), P<ΞGUC

is analytic on G. Hence G does not belong to OAB.

Thus our theorem is established.

As mentioned already, if G belongs to SOHB, then G belongs to SOAn

Hence we get the following which was proved in the previous paper [8].

COROLLARY. If a subregion G on F belongs to SOHB, the double G belongs

to OAB.

3. Let us denote by NOHB the class of subregions G with the relative

boundary C on Riemann surfaces satisfying the following condition : There exists

no non-constant single-valued bounded harmonic function in G which is con-

tinuous on G U C and whose normal derivative vanishes at every point on C.

Then the following is obtained immediately.
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THEOREM 2. If a subregion G belongs to NOHB> then G belongs to SOAB,

and hence, the double G belongs to OΛB.

Proof. Let fip) = uip) + ivip) be a single-valued bounded analytic func-

tion in G which is continuous on G U C and whose real part uip) equals zero

at every point on C. By the same argument as in the proof of Theorem 1, we

construct a single-valued bounded analytic function fip) on the double G of G

along C. It is immediately seen that the normal derivative of the imaginary

part of fip) must vanish at every point of C. Since vip) is a single-valued

bounded harmonic function in G, it follows from the assumption that vip) re-

duces to a constant. Hence the function fip) must be a constant, which proves

the first part of our theorem. The second part is evident from Theorem 1.

4. We shall state here some properties of sets of the class iV$ in the

sense of Ahlfors-Beurling [1]. Following them, we denote by N% the class of

closed sets in the complex plane, in whose complementary domains there exists

no non-constant single-valued bounded analytic function. It is easily seen that

the set of the class Λ% can contain no continuum. Hence, when we consider

the set belonging to iVjg, it is sufficient to consider the totally disconnected and

bounded closed set. If two closed sets Eι and E2 satisfy the relation E\ C £2

and if E2 belongs to JV53, then ZsΊ belongs also to N<$. From the definition, it

is obvious that any set of the class N% is non-dense.

It is well known that a non-constant single-valued analytic function w =f(p)

defined on a Riemann surface belonging to OAB takes every value in the w-plane

except possibly the values belonging to the set of N%. Further, in the case of

the totally disconnected bounded closed set E, Kametani [5] and Sario [19], [20]

proved that E belongs to N% if and only if, for any domain D containing E,

any single-valued bounded analytic function in a domain D — E can be continued

analytically throughout D and this function should be regular in D.

Let E be a bounded closed set in the complex z^-plane. Denote by E* the

set of points w G E such that, for any neighbourhood U of the point w e E, the

closure of the intersection EΓλU does not belong to Λ%. We shall call the

subset E* of E the 5-kernel of E.

Obviously the B-kernel E* is closed. In fact, any limiting point of E*

belongs to E, since £* C E and E is closed. In any neighbourhood U of any
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limiting point of E'r\ there exists at least a point too of E*. Since Wo belongs

to E* and since U is a neighbourhood of WQ, the closure of the intersection

UΓ\E does not belong to Λτ$. Thus, by the definition, any limiting point of

£* belongs to E*.

If the closed set E belongs to N<$y then the ^-kernel of E is empty.

5. For the later use, we shall prove the following

THEOREM 3. If the closed set E does not belong to A%, then the B-kernel

£"* of E is not empty and, for any neighbourhood U of each point of E*, the

closure of the intersection U C\ E* does not belong to Λ%.

Proof. First we shall prove the first part of our theorem.

If E contains a continuum, the continuum is contained in E* and so our

assertion is evident. Hence we shall consider the case when E is a totally

disconnected bounded closed set. Contrary to the assertion, suppose that the

J3-kernel E* of E is empty. Then, for any point w of E, there exists a neigh-

bourhood U of this point w such that the closure of U Γ\ E belongs to A%. By

Kametani's lemma [5], we can find a neighbourhood U' of the point w in U

such that the set U' Π E is closed. Since this set U! Π E is a closed subset

of the closure of UΠE which belongs to N%, the set U' Π E belongs to Λ%.

Constructing a neighbourhood U' for each point iv of E by the manner

stated above, we get a system of neighbourhoods {U1} covering the bounded

closed set E. By Heine-BoreΓs theorem, we can find a finite number of neigh-

bourhoods {U'i) among {£/'} such that the union of {£/{} covers the set E.

Let f(w) be an arbitrary single-valued bounded analytic function in the

complementary domain of E. Considering this function f(w) in a domain

U'i- {U'i HE), we see by Kametani-Sario's theorem stated already that f(w)

can be continued analytically throughout U\ and f(w) should be bounded and

analytic in U\. Repeating this for all £//, we obtain the fact that f(tv) can be

continued analytically throughout the whole complex plane and should be regular

in the whole plane. Hence f(w) must be a constant. Thus the set E belongs

to N%. Therefore, the S-kernel £* of the closed set E not belonging to N% is

not empty.

Next we shall give a proof of the second part of our theorem. Suppose

that there exist a point w* of E* and its neighbourhood U* such that the
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closure of U* Π E* belongs to N%. Then the closure of U* Γ\ E can contain

no continuum and is totally disconnected. Hence we can find a neighbourhood

U* of w* by Kametani's lemma such that Uί is contained in U* and that the

set Ut Π E containing the point w* is a bounded closed set.

Let f(w) be any non-constant single-valued bounded analytic function in a

domain U$ - (£7<* Γ\E). Then we can see that there exists a neighbourhood

V of any point belonging to the set £70*Π ( £ - £ * ) such that VC Uo and the

intersection V Π E is a closed set belonging to A% and that V contains no point

of is*. Considering f(ιv) in V and mentioning Kametani-Sario's theorem, we

can see that f(w) can be continued analytically throughout V and we get the

single-valued bounded analytic function f(w) in V. Repeating this for each

point of Uo Π (E- is*), we see that/(w;) should be a single-valued bounded

analytic function in a domain Uo* — (U* Γ\ E*). By our assumption, the set

E* Π £/<* belongs to i\% and, hence, /(to) can be continued analytically through-

out Uo. This shows that there exists a neighbourhood £/<* of z#* such that

the intersection Uo* Π is belongs to N%$. Hence the point w* must not belong

to £*, which is a contradiction. Thus our theorem is established.

Further, we can prove the following

n

THEOREM 4. Let {Ek) (ft = 1, 2, . . . , n) be sets of iVfe. Γftβw the set U J?Ar

belongs also to N<$.

Proof.l) It is sufficient to prove the assertion for the case of n = 2. Since

Eι and £2 belong to iV$, these two sets are totally disconnected and closed.

Hence the set E\ U Eo is also totally disconnected and closed. We consider the

domain D containing this set Eι U E2 entirely. Obviously the sets D - ί f i U β ) ,

D- Ei and D - Ei are domains. Let /(&;) be any single-valued bounded analytic

function in the domain D - (Ei U E2). For any point w of the set fi-(fiΠfi),

we can choose a neighbourhood U of the point w by Kametani's lemma such

that U is contained in D - E> and the set U Γ\ E\ is closed.

Since U Γ\ Ei is the closed subset of Ei belonging to JV$, U Γ\ Ei is the set of

NςQ. Hence f(w) can be continued analytically throughout U and should be

regular and bounded in U. Repeating this, we see that f(w) should be regular

^ The author's original proof using Theorem 3 was more complicated than this direct
one which Professor Ohtsuka suggested to the author.
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in D — £2. Since E i belongs to N<$ from the assumption, f(w) can be continued

analytically throughout D and should be regular in D, which shows that the

set Eι U Eo belongs also to A%.

In the case when the sets Ek (k = 1, . - . , n) are disjoint from each other,

this theorem was proved by Kametani [5].

II. Riemann surfaces of the class OAB

6. First we shall prove a theorem which plays an important role to study

the behaviour of analytic functions defined on some Riemann surfaces.

Let w =f(p) be a non-constant single-valued analytic function in a subregion

G with the relative boundary C on a Riemann surface. We suppose that this

function is continuous on G U C and that, for a certain point w = w* in the w-

plane and for a certain positive number p, the value of this function f{p) at

every point of G lies in an open disc (c?) and further that the values of f(p)

on C fall on the circumference c? of the disc ic?), where (c?) is the disc

I w — w* I < (0 in the case of 10* ^ co or the disc \w\> — in the case of to* = 00.

THEOREM 5. Let f(p) be such a function as stated above and let E be the

set of values in (c?) which f(p) does not take in G. If G belongs to SOAE, then

the intersection of E and any closed set in (c?) belongs to N<$.

Proof Since E is closed with respect to (cP), it is obvious that the inter-

section of E and any closed set in (c?) is closed. Contrary to the assertion,

suppose that there exists a closed set in (c?) such that the intersection E! of

this set and E does not belong to iV^. Denote by δ the domain being a con-

nected component of the intersection of (c?) and the complementary set of Ef

with respect to the whole w-plane and having the boundary cP. Since the image

of G on the w-plane by the function w-f{p) is connected, it is contained in δ.

By Sario's theorem [19], [20], there exists a non-constant single-valued bounded

analytic function ψXw) in δ which is continuous on δUcP and whose real part

equals zero on cP. The composed function ψ(fip)) is non-constant, single-

valued, bounded and analytic in G and its real part vanishes continuously at

every point on C. Hence G does not belong to SOAB Thus we have the

theorem.

7. Let F be a Riemann surface and let w-f(p) be a non-constant single-
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valued analytic function defined on F. The space formed by elements q = Lp,f(pΏ

defines a covering Riemann surface Φ spread over the ^-plane and the point

<7 = |J>, f(p)l of Φ has the projection w-f(p) on the w-plane. The corres-

pondence p**Q gives a topoίogicaί and conformal mapping between F and Φ.

Two surfaces F and Φ are equivalent conformally to each other.

Denote by Φ* any connected piece of Φ lying over the disc (c?). Let Δ be

the domain on F corresponding to ΦA by the correspondence p**q. If there

exists at least one connected piece 0Δ above any disc (cP) and if, for any ΦA

above any disc (eP), there exists a path in Δ starting from any fixed point

po (w* *f(po)) in Δ and tending to the inner point or to the ideal boundary of

Δ such that lim/(j£>) = w* along the path, where the point w = w* is the centre

of the disc (cP)t then we shall say that Φ has the Iversen property.

8. Denote by OΛn the class of Riemann surfaces whose all subregions

belong to SOAB. AS will be stated later in No. 11, the class OAPt is a subclass

of OAB.

First we shall prove the following which shows the existence of Riemann

surfaces belonging to O°AB.

THEOREM 6. // a Riemann surface F belongs to OHB, then F belongs to

Proof. Suppose that there exists a subregion G on F such that G does not

belong to SOAB. There exists a non-constant single-valued bounded analytic

function to =f(p) in G which is continuous on G U C and whose real part equals

zero on C, where C is the relative boundary of G with respect to F. By

elements <7 = [J>, f(p)l (p^G) the covering Riemann surface ΦG is formed over

the u -plane. The projection of ΦG on the w -plane is a bounded domain and is

contained in a sufficiently large finite disc \w\ < R. For a certain positive

number e, we can describe two small discs (&i) and (k2) in the disc \w\ < R + e

as follows:

1) (kι) and (ko) are disjoint from each other,

2) the projection of ΦQ on the w-plane has common points with both discs

(fti) and (A2),

3) both the closures of (ki) and (kz) have no point lying on the imaginary

axis SR[>] = 0, and
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4) (ki) and (fe) have points Wι and w2, respectively, which are exterior

points of the projection of ΦG.

In (ki) (7 = 1, 2) we describe a disc (#•) whose centre is the point Wi and which

has no common point with the projection of ΦG. This is possible by virtue of

4). Denote by Di the doubly connected domain obtained from (ki) by deleting

the closure of (k\). Let ωAw) be the harmonic function in Di being equal to

zero on the circumference of (ki) and to 1 on the circumference of (k\).

From the condition 2), it is seen that there exists at least one connected

piece Φi (ί = l, 2) lying over (ki). Denote by G\ the image of Φi under the

mapping p^>q. As is easily seen from the above construction, d ( i = l , 2) is

a subregion in G and the relative boundary d of d with respect to F is disjoint

from C by virtue of 3) and d corresponds to the relative boundary of Φi with

respect to ΦG which lies over the circumference of (ki). Further, & and G2

have no point in common by the condition 1).

The composed function ωi(f(p)) is a non-constant bounded harmonic func-

tion in d which is continuous on d U C, and vanishes at every point of d .

Thus we see that subregions d and G2 do not belong to SOHB. Hence, by the

well known fact that, if there exist two subregions on a Riemann surface which

are disjoint from each other and do not belong to SOHB> the Riemann surface

does not belong to OHB (cf. Nevanlinna [15], Bader-Parreau [2], Mori [11]),

our Riemann surface F can not belong to CW Therefore, we get our theorem.

As a corollary of this theorem, we have

COROLLARY. For subregions not being simply connected, the class SOHB is a

proper subclass of SOAB.

Proof. Already we stated in No. 1 that SOnB is a subclass of SOAB. Hence

it is sufficient to prove that there exists a subregion not being simply connected

and belonging to SOAB and not to SOHB. Let us consider a Riemann surface F

which belongs to OHB and has a positive boundary. The existence of such a

Riemann surface was proved by Tδki [23]. Deleting from F a simply connected

compact domain with an analytic boundary curve, we get a subregion belonging

to SOAB on account of Theorem 6. On the other hand, it is obvious that this

subregion does not belong to SOHB. Thus we get our assertion.

9. Using Theorem 5, we can prove the following interesting theorem.



36 TADASHI KURODA

THEOREM 7. Let F be a Riemann surface belonging to OAB and let w —f(p)

be a non-constant single-valued analytic function on F. If Φ is the covering

Riemann surface formed by elements q-Zp,f(pΏ, then Φ has the Iversen

property.

Proof. We choose an arbitrary disc (c9) with the centre w = w*. There

exists at least one connected piece ΦA of Φ lying over the disc UP), since F

belongs to OAB and so to OAB (see No. 11) and, hence, the projection of Φ on

the w -plane is everywhere dense in the w -plane. Let A be the image of ΦA on

F by the mapping poq.

To establish the theorem, it is sufficient to prove that there exists a path

in A starting from any fixed point p0 (w* ̂ f(po)) in A and tending to a certain

inner point of A or to the ideal boundary of A such that l im/(^) = w* along

the path. The relative boundary γ of A with respect to F consists of at most

an enumerable number of analytic curves clustering nowhere in F. Hence A is

a subregion on F and by our assumption F G OABt A belongs to SOAB.

At every point p of 7, the value f(p) falls on the circumference of (cP).

Denoting by E the set of values in (cP) which f{p) does not take in A and so

Φ& does not cover, we see by Theorem 5 that the intersection of E and any

closed set in (cP) belongs to N<$. Therefore, we can choose and fix a point Po

in A such that w* ^f(po). Let qQ be the image of pa on ΦA by the mapping

p*>q. Since the set belonging to Λ% can not contain a continuum and since

A is the image of ΦA under the mapping />*>#, there is a point qι ( # q0) on ΦA

whose projection W\ on the w -plane lies in the disc (cPl) with the centre w*,

where pi equals -~ Let us denote by pi the image of qi by the mapping

and by k a curve combining p0 with pi in A.

Generally, we can take the connected piece ΦA» (n ^ 1) of 0Δ?1_: (AQ = A)

lying over the disc (cPn) (ρn = ~ψ^j and containing the point qn. If An is the

image on F of ΦAn by the mapping p *» q} An is a subregion belonging to SOAB

by our assumption and is contained in J«-i. Let En be the set of values in

(cPu) which f(p) does not take in Δn. By Theorem 5, the intersection of En

and any closed set in (cPlt) belongs to i\%. Hence we can see that there exists

a point qn+i on ΦΔu whose projection wn+i lies in the disc (cPn+1) with the centre

wΛ Denoting by pn+ι the image in An of qn+i under the mapping p^ q, we

get a curve ln combining pn with pn+i in An.
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The curve I in J constructed as the union of curves {/«} (w = 0, 1, . . . )

tends to an inner point of A or to the ideal boundary of A. It is easy to see

that \m\fip) - iv* along /. Thus our proof is complete.

From Theorems 6 and 7, we can get the following which was proved by

Mori [10].

THEOREM 8. Suppose that a Riemann surface F belongs to On a. The cover-

ing Riemann surface Φ formed by elements q = Lp, f(p)l for a non-constant

single-valued analytic function w -f(p) on F has the Iversen property.

10. From Theorem 5, we get the following fact.

Let F be a Riemann surface of the class θ\B and let Φ be a covering sur-

face conformally equivalent to F and spread over the zo-plane. Then the inter-

section of any closed set in the disc (c9) on the w-plane and the set of points,

which any connected piece of Φ over (cP) does not cover, is the set of N$.

We can a little improve the above result. Under the same notations as

above, let ΦA be any connected piece of Φ lying over the arbitrary disc (c9) on

the w-plane. Denote by A the image of Φ± on F. We denote by n(w) the

number of points of Φά lying over the point w(EΞ{cP)) and by E the set of

points w in (cP) such that

n(w) < Z? = sup n(w) ( ^ -f- °o ).
we(cp)

F o r a n y i n t e g e r n, l e t En b e t h e s e t of p o i n t s ιv in ( c P ) s a t i s f y i n g t h e i n e q u a l i t y

n(w) *= n. T h e n , t h i s s e t En i s c l o s e d w i t h r e s p e c t t o (c?) a n d En C En\-ι (n ^l)

a n d f u r t h e r

U En = E.

Suppose that there exist an integer n ( < Z P ) and a closed set S in icP)

such that SΠEn does not belong to Λ%. Let us denote by no the smallest of

such indices. Since no < ZP, the set of points tv of (c?) not belonging to En,

is a non-empty open set. Hence the boundary set Bnϋ of S Π E»o with respect

to (c?) is not empty and does not belong to N%. By Theorem 3, the 5-kernel

Bn0 of Bnn is not empty and does not belong to N%. On the other hand, the

closed set Bn{}Γ\E?h-ι is contained in Eno-i and so belongs to i\%. Hence there

exists at least one point w0 of B?l0 not belonging to BnoΓ\Eno-ι. Therefore,

this point wo belongs to the set Bn0 Π (Eno - En«-i) and so n(wQ) -no.
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Since Wo belongs to B%0Γ\ (Eno —Eno-i), we can choose a sufficiently small

disc (c) ( C (c?)) containing the point w0 such that the closure e of the inter-

section of Bn0 and any closed set in (c) does not belong to N% and 0Δ has

exactly nQ discs above (c)> where i>-sheeted disc is counted as v discs. On the

other hand, w0 belongs to Bno and so there exists a point w in (c) satisfying

the inequality n{w)> nϋ. Hence, besides these no discs, Φ± has at least one

connected piece δ over (c). It is obvious from the above that δ does not cover

the set e. In fact, any point of the set e is covered by ΦA at most n$ times and

is already covered by the above mentioned no discs.

Denoting by G' the image of δ on F by the mapping p<*q, we can see

that G ' i s a subregion on F and the relative boundary of Gf with respect to F

corresponds to the boundary of δ lying over the circumference of (c). Since δ

does not cover the set e, it is seen by Theorem 5 that Gf does not belong to

SOAn.

Therefore, if F belongs to OAn, then, for any integer n < Z? and for any

closed set S in (cP), the set SΓλ En belongs to N<$. Since the set of iVsg is non-

dense as stated already, the set of all points in (c?) satisfying n(w) < Z? is of

the first category. In particular, if Z? is finite, then, by Theorem 4, the inter-

section of this set and any closed set in (cv) belongs to N<$. Thus we have

THEOREM 9. Under the assumption of Theorem 7, it holds that, for any

connected piece of Φ lying over an arbitrary disc ic?) on the w-plane, the set

of points w in (cP) satisfying the inequality n(w) <Z? is of the first category.

In particular, if Z? < -f- oo, the intersection of this set and any closed set in

(c^) belongs to N%.

Remark. In the case of Z? < -f <*>, this result coincides with a result of

Kuramochi [6].

11. It is immediately seen that, if a Riemann surface F belongs to (fABt

then F belongs to OAB For, if F does not belong to OAn, there exists a non-

constant single-valued bounded analytic function f(p) on F. Choosing a point

po on F arbitrarily, we consider the set of points p of F satisfying the inequality

9ΐ[/(.£)]> 3ίC/(i>o)]. As is easily seen, this set is not empty and open. Let

G be any connected component of this open set. ,On the relative boundary C

of G with respect to F, UZfipoΠ equals 9ϊ[/(£o)l It is easy to see that G is
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a subregion on F. The function f(p) — 3lLf(poΏ is non-constant, single-valued,

bounded and analytic and is continuous on G U C and the real part of this

function vanishes at every point of C. Hence G does not belong to SOAB

On the other hand, Myrberg [14] gave a very important example of a cover-

ing Riemann surface Φ of infinite genus which belongs to OAB and has not the

Iversen property. Mentioning this and Theorem 7, we can see immediately that

there exists a Riemann surface belonging to OAn and not to O°AB- Therefore,

the class OAB is the proper subclass of OAE

Theorem 6 shows that the class OHB of Riemann surfaces is contained in

the class OAB.

In the following, we shall give an example of Riemann surfaces belonging

to OAB and not to OHD (see No. 18).

12. We suppose that Fis an open Riemann surface. Let {Fn} (n = 0, 1, . . .)

be an exhaustion of F satisfying the following conditions:

1°) for each n, the domain Fn on F is compact with respect to F and the

boundary Γn of Fn consists of a finite number of analytic closed curves,

2°) Fn^FnU ΓnCFn + u (fl = 0, 1, . . . ),

3°) each connected component of F-Fn (w = 0, 1, . . .) is non-compact

with respect to F and

4°) UF« = F.
n = 0

The open set Fn — Fn-i (n^l) consists of a finite number of domains Rn

(k = 1, 2, . . . , v = ρ(n)). The boundary of Rn consists of analytic closed curves

contained in Γn-\ U Γn. We shall denote by an-i the part of the boundary of

Rn on Γn-i and by 0n that on Γn. Let Un(p) be the harmonic function in

Rn which vanishes at every point of ak

n-ι and equals logμ« on βn and whose

conjugate function vk

n(p) has the variation 2^ on βn, i.e.,

where the integral is taken in the positive sense with respect to Rn. The

quantity \ogiA is the so-called harmonic modulus of Rn. If we choose an

additive constant of vn(p) suitably, the regular function u%(p) + ivn(p) maps Rn

with a finite number of suitable slits onto a slit-rectangle 0 < tin < log μnt

0 < vn < 2,τ one-to-one conformally. Similarly we define the harmonic modulus
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logύn of the open set Fn~Fn-i as follows. Let un(β) be the harmonic func-

tion in Fn—F?ι-ι which is equal to zero on Γn-ι and to \ogσn on Γn and whose

conjugate function vn(p) has the variation 2π, that is,

ί dvn = 2 π.
Γn

The quantity \ogan is the harmonic modulus of Fn-Fn-i. If we choose an

additive constant of vn(p) suitably, the regular function un(p) + ivn(p) maps

Rn (k - 1, 2, . . . , v) with a finite number of suitable slits onto a slit-rectangle

0 < un < log <7«, bk < vn < au + bk one to one conformally, where ak (k = 1, . . . , v)

and bk (k = l, . . . , z>) are constants satisfying the following relations:

and

Ϊ» > ; ύ?fo — 2 π

log/4 * = i

Consequently, the function un(p) + ivn(p) maps Fn-Fn-i with a finite number

of suitable slits onto a slit-rectangle 0 < un <\ogσn, 0 < vn <2π in a one to

one conformal manner. From this, it follows that

n-l

Further, the function u(p) + iv(p) defined by un(p) + ivn(p) 4- Slogtfy for each

Fn-Fn-i (n^l) maps F-Fo with at most an enumerable number of suitable

slits onto a strip domain 0 < u < R, Q <v <2π with at most an enumerable

number of slits one-to-one conformally, where

This strip domain is the graph of F associated with the exhaustion {Fn} in the

sense of Noshiro [16]. We call R the length of this graph.

Sario [21] and Noshiro [16] proved that F has a null boundary if and only

if there exists a graph of F whose length R is infinite.

13. Let 7v be the niveau curve u(p) = r (0 < r < R) on F. The niveau

curve γr consists of a finite number of closed analytic curves γι

r ( / = ! , . . . ,

πι-m(r)). Putting
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Λ(r) = Max \ridv,

we can formulate Pfluger's theorem [17] as follows.

THEOREM 10. If there exists a graph of F such that the integral

e ]°^ndr

o

diverges, then F belongs to OΛB.

Although the proof is obtained by Pfluger's argument, we shall state the

outline of the proof.

Let f(p) = U(p) -\-iVip) be a single-valued bounded analytic function on F.

If we denote by D(r) the Dirichlet integral of f(p) taken over the region bounded

by γr and containing Fo, we get

Since every γ'r is closed, it follows by Wirtinger's inequality that

TT2j . (Λ(r)f f / dU\2

U d Ό \

Hence, using the Schwarz inequality, we have

Therefore, it holds that

dr ^ dDir)
/T A(r) = D(r) '

whence, by the integration, we obtain

D(0)e 3 θ Λ ( n i= D(r),

where D(0) is the Dirichlet integral of f(p) taken over Fo. On the other hand,

we get
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\TD{r)dr=\{\ U2dv-\ U2dv)^~\ U2dv,

for it holds that

4Λ\dr \Jτ

Thus, putting M= sup !/(£)!, we have
<=F

D{0)[R en^'^r)

Jo

If the integral (2) diverges, we get that D(0) = 0. Thus the function f(p) must

reduce to a constant.

14. Here we shall show that the above theorem implies Mori's result C12D

which is the modification of Pfluger's theorem [18].

We consider an exhaustion {Fn} (w = 0, 1, . . . ) of F and use the same

notations as in No. 12. Putting log μn = Min log μ% and N(n) = Max vij), we

have

THEOREM 11. (Pfluger-Mori). //

lim sup { Σ log A*/- -^logN(n)} = + oo,

then F belongs to OAB.

Proof, First we construct the graph of F associated with the exhaustion

{Fn} (n = 0, 1, . . . ) and calculate the integral

\ e )o^r)dr,
Jo

where K is a positive constant. It is evident that

R r r dr n cij κ (r dr

e *°Δ<πjr = lim ^
Jo

where

Tj = Σ log ύi and r0 = log σ0 = 0.

If we put

e r dr, (j — 1, 2, . . . ) ,
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where

for 0 < r = n and

+ 3

for ry-i <r±kx] (j > 1), then it holds that

Since it is easily seen by the construction of the graph of F that Λ(r) is not

greater than 2π-^-^~ in the interval (rs-i, τs) of r. Hence

27Γ

for 0 < r ^ ri and

2τr T θ ^ 7 Γ ; - ] + 2π logo; T

for ry-i < r ^τy (̂  > 1). Therefore, we obtain the following estimation of /,•:

and

,J~1 „ log μ.j r log μ.j rlogμ.j
γ s-\ l°βσj lOg ϋj / lt)*5 σ j log σ̂

)

K^logμβ
_ j θ g (7^ s =i / Klogμj __ -1 \

"" TΠogμj

for y > 1, where K equals Jf , whence, putting log μ0 = 0, we have

μj

j j-ι
K X log [is K Y, I

{e 3 = 0 — e δ = 0
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for each /. By the formula (1), we get

**«*%#••

and, hence, by N(n) ^ 1,
3t j - 1

n n -| K Σ log μs K. Σ log μs

(3) Xilj ^ ZJ^-TTTV^ " - β " )

•1 K Σ Iogμ s -logΛ r («)

i ^ U - 1 -1).

In our case when tc — 4rπ, K is equal to 2. By the assumption of the theorem,

the integral (2) diverges and so, by Theorem 10, F belongs to OAB.

15. We proved in the previous paper [9] the following theorem of Phragmen-

Lindelof type.

Suppose that f(p) is a single-valued regular function in a non-compact

region G on an open Riemann surface and that the real part of f(p) is equal

to zero on the relative boundary of G. Construct a graph of F with the length

R and denote by M(r) the maximum of the absolute values of the real part of

f(p) on the common part θr of G and the niveau curve γr. If

where θ(r) = Max \aidv and θι

r is a component of θr and n is a suitable number

such that βr0 is not empty, then f(p) reduces to a constant.

This and Theorem 7 imply the following which is slightly different from

Kuramochi's result [71.

THEOREM 12. Let F be an open Riemann surface satisfying the following

condition: there exists a graph with the length R of F such that the integral

CR 2π

(4) \ e
Jo

oA(r)dr
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diverges. Then F belongs to O\π and, hence, the covering Riemann surface Φ

formed by elements q -Lp> fip)l for a non-constant single-valued analytic func-

tion ιv—f{p) on F has the Iversen property.

16. Let F* be a compact Riemann surface of positive genus g. We cut

F* along simple closed analytic loop-cuts Li (i = 1, . . . , h 1 ^ h ^ g) disjoint

from each other and not dividing F* into two or more parts and denote by Fo

the resulting surface. We take infinitely many same samples as Fo and con-

struct a Schottky covering surface of F* by connecting these samples along

opposite shores of Li U — 1, . . . , ft) in the well known way.

In this construction of F, first we fix a sample Fo and denote by RΪ (k = lf

. . . , 2h) the samples which we connect to Fo. Denoting by Fi the resulting

surface, we connect 2h(2h-l) samples to Fi and we denote by R* {k = 1, . . . ,

2ft(2ft - 1)) these samples. Thus we get the surface F2. In general we connect

2h(2h-l)n~1 samples to Fn-i. We denote by Rk

n U = 1, . . . , 2ft(2ft -1)"" 1)

these samples and get the surface Fn.

The sequence {Fn) (« = 0, 1, . . .) gives an exhaustion of F

17. Now we consider such an exhaustion {Fn) (n = 0, 1, . . . ) of F and

construct the graph of F associated with this exhaustion. The harmonic modulus

\ogσn+i of Fn+i - Fn (n ^ 0) is evaluated as follows. Since Fi - F o is the union

of all Rι (* = 1, . . . , 2ft), we can get from (1)

logtfi fc = i log μ[ '

where logμf is the harmonic modulus of R\. By the construction of F, it is

easy to see that Fn+ι — Fn (n^O) is the union of all Rn+i (k — lf . . . ,

2h(2h-l)n). It is immediate from the construction of F that among Rk

n+i

(k - 1, . . . , 2ft(2ft - l)n), there exist (2ft - l ) n samples which are connected to

Fn along shores corresponding to the same shore of the same Li. And so we

have

log μn+i = _ JMin Jog μn+i =• JMm log μ{ = log Aίi

for each n and

- = (2h-l)nΣlΎ

1

 k = (2ft-1)
i *=i log/if
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00 00

Hence the length R = Σ log an of this graph is equal to log <n Σ
n = l n = 0

By Sario-Noshiro's result [21], [16], the Schottky covering surface F in

question has a null boundary if h = 1. And, by Myrberg-Tsuji's theorem [13],

[25], F has a positive boundary and does not belong to OHD if h £> 2.

On the other hand, Sario [19] and Tsuji [25] have shown that F belongs

always to the class OAΌ-

Since this does not always imply that the Schottky covering surface F

in question belongs to OAB, we can not immediately see that the covering

Riemann surface Φ formed by elements q = Lp, f(pΏ for any non-constant single-

valued analytic function w =/(/>) on F has the Iversen property. But we can

give a sufficient condition for it.

THEOREM 13. If h equals 1 or if the minimum log μι of the moduli log μι

of R\ (/= 1, . . . , 2h) is not smaller than log(2ft- 1), then F belongs to OAB

and so Φ has the Iversen property.

Proof In the case when h = 1, F has a null boundary. Hence, as is well

known, F belongs to OHB. Thus, in this case, Theorem 8 implies our assertion.

Next we consider the case of h ^ 2. If we consider the graph of F as-

sociated with the exhaustion {Fn) (n = 0, 1, . . .) which was constructed in

No. 16, then it is easy to see that v(j) equals 2h(2h-lY~1 and log#/ equals

logμi. Therefore, we get, using the inequality (3) .for the case of κ = 2πt

j-i

J
R 2* C d r β 1 2 logμβ

0 3=1 V\J)

where μo = 1. Since μι^a2h-l by the assumption, the integral (4) must be

divergent. From Theorem 12, we have our assertion.

As is easily seen from the argument of the above proof, we can get a cri-

terion for F to belong to O°AB which is similar to Theorem 11. We shall state

it without proof.

THEOREM 14. Under the same notations as in Theorem 11, if
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n

lim sup{Σ logμj - logN(n)} - + 00,

then F belongs to (?AB.

This is closely related with Kuramochi's theorem [6].

18. Here we shall give an example of a Schottky covering surface satisfy-

ing the condition of Theorem 13. We consider the ring domain R : 1 < \z 1 < 12

on the complex z-plane. Identifying its boundary point eiQ with the boundary

point 12 eϊQ and introducing local parameters in the usual manner, we get a

closed Riemann surface T of genus 1. T is nothing but a torus. By this identifi-

cation, the boundary curves \z I = 1 and \z I = 12 of R correspond to two shores

of a loop-cut Li of T which is an analytic closed curve in T and does not

devide T. If we cut T along L\ and denote by T' the resulting surface, there

exists a one-to-one conformal mapping z =•• zip) (p e T') between T' and R and,

by this mapping, two shores of Li correspond to the circles \z\ = 1 and |z |=12.

Consider two small circular closed discs d\ and d2 in the ring domain

3 < Ul < 4 such that di and d2 are disjoint from each other. Denoting by Di

and D2 the images of d\ and d2 on T' under the mapping z = z(p) and deleting

Di and D2 from the torus Γ, we get an open Riemann surface To of genus 1

whose boundary consists of two analytic closed curves n and γ2, where 77

(i = l,2) is the boundary of Di (ι = l, 2). Cutting To along Lt, we denote by

To the resulting surface which is the domain obtained by deleting Di and D2

from Tf. This domain To is mapped one-to-one conformally on the domain

obtained by deleting di and d2 from R under the mapping z = zip).

We construct a double of To along n U γ2 and denote it by F*. It is easy

to see that F* is a closed Riemann surface of genus 3. We consider the above

loop-cut Li on F* and denote by L2 the image of Li under the indirectly con-

formal mapping of F* on itself which leaves every point of n U r2 fixed. Then

L2 is also a loop-cut of F* and is disjoint from L\ and does not devide F*.

Cutting F* along Li and L2, we have a Riemann surface Fo which is of genus

1 and has a boundary consisting of four analytic closed curves. These curves

are shores of loop-cuts Li and L2. It is obvious that Fo is a double of To along

n U r2. By the manner stated in No. 16, we construct a Schottky covering

surface F of F* from Fo. This surface F is of infinite genus.

Now we shall evaluate the quantity logμi corresponding to the above Fo.
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Let u'(p) be the harmonic function in TO which equals zero on one shore Lί

of Li and to log μ! on the other shore L" of lΛ and on n U γ2 and whose conjugate

function v'(p) satisfies the condition I ,dv--2π. If we construct the harmonic
J Lx

function u"(p) in To which equals to zero on L" and to logμ" on LίUn^n

and whose conjugate function vn{p) satisfies L,,<iι/ = 27r, then it is evident that

logμi ^ Min (log//, log//').

Since To is mapped conformally on the domain R— (d\\J d2) by z = zip)

and since L[ corresponds to a circle | z I = 1 or | z I = 12, it is immediately seen

that Min (log //, log//') ^ log 3. Hence we have

log μι ^ log 3.

In our example F of a Schottky covering surface, the genus of F* is 3 and

the number h in Theorem 13 is 2 and, further, log μι ^ log 3. Therefore, the

surface F of infinite genus belongs to O°An and not to OHΌ

By the similar consideration, we can obtain the existence of a Schottky

covering surface F of planar character belonging to O\B and having a positive

boundary. Mapping such a surface F on the planar domain, we get the domain

whose boundary is of positive logarithmic capacity and belongs to N<$.

19. Summarizing the statements in Nos. 11 and 18, we have the following

THEOREM 15. For Riemann surfaces of infinite genus, it holds that

OHB ^ O°AB m OAB, OHD J) O°AB and OHn <t OV

For Riemann surfaces of finite genus, the following holds:

OG m OAB C OAB.

Proof. For Riemann surfaces of infinite genus, it is seen from the above

that

OHB C OAB ^ OAB, OHD Φ OAB.

Suppose that OHB = OAB. Since OHB is a subclass of OHD by Virtanen's

result [26], OAB must be a subclass of OHnf which is a contradiction. Hence

OHB is a proper subclass of OAB.

Further, OHΌ is not a subclass of OAB by Tδki's example [24]. Hence OHD
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is not a subclass of O°An.

For Riemann surfaces of finite genus, our inclusion-relations are evident.

Remark 1. In the case of Riemann surfaces of finite genus, it is still open

whether OAB is a proper subclass of OAn or not.

Remark 2. From the above theorem, we see that, without restriction for

genus of Riemann surfaces, Mori's result, Theorem 8, can not imply Theorem 7.
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