ON ANALYTIC FUNCTIONS ON SOME
RIEMANN SURFACES
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Introduction

In the theory of functions meromorphic in |z| < + oo, Iversen [4] proved
the following: If w=f(2) is meromorphic in |z| < + o and has an essential
singularity at z= «, then any inverse function-element of this function with
the centre w, can be continued analytically to any point w = w,, except possibly
this point w, in any disc having the centre at the point w and containing the
point .

This fact plays important roles to study the properties of covering surfaces
generated by the inverse functions of analytic functions. This property was
discussed by many authors. Above all, Stoilow [22] and Mori [10] contributed
to extend the above Iversen theorem in more general cases.

In this article, we shall give an extension of the Iversen theorem in the
case when the existence domain of a single-valued analytic function is a Riemann
surface satisfying some condition. Such a Riemann surface belongs to O.; but
not to Oxp, where we use the following notations:

Our (or Oup): the class of Riemann surfaces on which there exists no
non-constant single-valued bounded harmonic (or analytic) function.

Orp (or Oup): the class of Riemann surfaces on which there exists no
non-constant single-valued harmonic (or analytic) function whose Dirichlet
integral taken over the Riemann surface is finite.

Our result contains Stoilow’s theorem and Mori's. Recently Heins [3] also
dealt with such a problem.
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I. Subregions and the set of the class Ng

1. Let F be a Riemann surface and let G be a non-compact or compact
domain on F whose relative boundary C with respect to F consists of at most
an enumerable number of analytic curves being compact or non-compact and
clustering nowhere in F. For simplicity, we shall call such a domain G a sub-
region on F.

If there exists no non-constant single-valued bounded analytic function f(p)
in a subregion G on F such that f(p) is continuous on G U C and that the real
part of f(p) vanishes at every point on C, we shall say that G belongs to the
class SO45. And if there exists no non-constant single-valued bounded harmonic
function in a subregion G which vanishes continuously at every point on C, then
we may say that G belongs to the class SOup.

It is evident that, if G belongs to SOus, then G belongs to SO,r. For, the
real part of a single-valued bounded analytic function is a single-valued bounded
harmonic function. In general the converse of the above statement does not
hold. If the subregion G is simply connected, any analytic function in G is
single-valued. Hence, in this case, G belongs to SOpus if G belongs to SO.us.
Therefore, for a simply connected subregion G, G & SOgz is equivalent to
G € SO4p. It will be shown in Corollary of Theorem 6 that this fact does not
hold for a subregion not being simply connected.

2. We consider a subregion G on F and construct a Riemann surface G
by the process of symmetrization of G along C. There is given an indirectly
conformal mapping of G on itself which leaves every point of C fixed. This
surface G is called the double of G along C. If G is a compact subregion on
F, then the double G is a compact Riemann surface.

We can prove the following

TaeEOREM 1. The double G of a subregion G on F belongs to O.r if and
only if G belongs to SO4r.

Proof. First we suppose that G belongs to SO4r. Denote by G the image
of G and by » the image of a point » of G under the indirectly conformal
mapping of G onto itself which leaves every point of C fixed. If f(p) is a

single-valued bounded analytic function on G, the functions
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F(p)=/(p)~/(3) and Fi(p) = +(/(p)+7(B))

are also single-valued, bounded and analytic in G. And the real parts of Fi(p)
and Fx(p) are both equal to zero at every point of C. Since G belongs to
SO.x, these functions Fi(p) and F:(p) reduce to constants. Hence we can

write
F(P)=f(p)= ki and f(p) = —f(p) + ks,

where %, and k. are the constants independent on the point p of G. From this
fact, we see that f(p) equals the constant 'fk—l—;—kf—- In other words, & belongs
to Ous.

Next we suppose that G does not belong to SO.s. Then there exists a
non-constant single-valued bounded analytic function fi(p) = u(p) +iw(p) in G
which is continuous on GU C and whose real part u(p) vanishes at every

point on C. It is easily seen that the function
o) = —u(p)+iv(p) (pEE)

is non-constant, single-valued, bounded and analytic in G and is continuous on
G U C. Since the real part of f»(p) vanishes at every point on C, we can see
by the well known reflection principle that the non-constant single-valued bounded
function
= [0 e
fp), pEGUC

is analytic on G. Hence G does not belong to O.s.
Thus our theorem is established.
As mentioned already, if G belongs to SOyz, then G belongs to SO.p.

Hence we get the following which was proved in the previous paper [8].

CoroLLARY. If a subregion G on F belongs to SOyx, the double G belongs
to OAB.

3. Let us denote by NOgyx the class of subregions G with the relative
boundary C on Riemann surfaces satisfying the following condition: There exists
no non-constant single-valued bounded harmonic function in G which is con-
tinuous on G U C and whose normal derivative vanishes at every point on C.

Then the following is obtained immediately.
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TueEOREM 2. If a subregion G belongs to NOgxy, then G belongs to SOz,
and hence, the double G belongs to O.,p.

Proof. Let fi(p) =u(p) +iv(p) be a single-valued bounded analytic func-
tion in G which is continuous on GU C and whose real part #(p) equals zero
at every point on C. By the same argument as in the proof of Theorem 1, we
construct a single-valued bounded analytic function f(») on the double G of G
along C. It is immediately seen that the normal derivative of the imaginary
part of f(p) must vanish at every point of C. Since »(p) is a single-valued
bounded harmonic function in G, it follows from the assumption that »(p) re-
duces to a constant. Hence the function f(p) must be a constant, which proves

the first part of our theorem. The second part is evident from Theorem 1.

4. We shall state here some properties of sets of the class Ny in the
sense of Ahlfors-Beurling [1]. Following them, we denote by Ng the class of
closed sets in the complex plane, in whose complementary domains there exists
no non-constant single-valued bounded analytic function. It is easily seen that
the set of the class Ng can contain no continuum. Hence, when we consider
the set belonging to Ny, it is sufficient to consider the totally disconnected and
bounded closed set. If two closed sets E; and E, satisfy the relation E; C E;
and if E: belongs to Ng, then E; belongs also to Ng. From the definition, it
is obvious that any set of the class Ng is non-dense.

It is well known that a non-constant single-valued analytic function w =f(p)
defined on a Riemann surface belonging to O.p takes every value in the w-plane
except possibly the values belonging to the set of Ng. Further, in the case of
the totally disconnected bounded closed set E, Kametani [5] and Sario [19], [20]
proved that E belongs to Ng if and only if, for any domain D containing E,
any single-valued bounded analytic function in a domain D — E can be continued
analytically throughout D and this function should be regular in D.

Let E be a bounded closed set in the complex w-plane. Denote by E* the
set of points w € E such that, for any neighbourhood U of the point w € E, the
closure of the intersection EN U does not belong to Ng. We shall call the
subset E* of E the B-kernel of E.

Obviously the B-kernel E™ is closed. In fact, any limiting point of E*
belongs to E, since E*CE and E is closed. In any neighbourhood U of any
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limiting point of E*, there exists at least a point wo, of E*. Since w, belongs
to E* and since U is a neighbourhood of w,, the closure of the intersection
UNE does not belong to Ng. Thus, by the definition, any limiting point of
E™* belongs to E™.

If the closed set E belongs to Ng, then the B-kernel of E is empty.

5. For the later use, we shall prove the following

Tueorem 3. If the closed set E does not belong to Ny, then the B-kernel
E* of E is not empty and, for any neighbourhood U of each point of E*, the

closure of the intersection UN E™ does not belong to Nyg.

Proof. First we shall prove the first part of our theorem.

If E contains a continuum, the continuum is contained in E* and so our
assertion is evident. Hence we shall consider the case when FE is a totally
disconnected bounded closed set. Contrary to the assertion, suppose that the
B-kernel E* of E is empty. Then, for any point w of E, there exists a neigh-
bourhood U of this point w such that the closure of UM E belongs to Ng. By
Kametani's lemma [5], we can find a neighbourhood U’ of the point w in U
such that the set U' N E is closed. Since this set U'NE is a closed subset
of the closure of U N E which belongs to Ny, the set U’ N E belongs to Ng.

Constructing a neighbourhood U’ for each point w of E by the manner
stated above, we get a system of neighbourhoods {U’} covering the bounded
closed set E. By Heine-Borel's theorem, we can find a finite number of neigh-
bourhoods {U}} among {U'} such that the union of {Uj} covers the set E.

Let f(w) be an arbitrary single-valued bounded analytic function in the
complementary domain of E. Considering this function f(w) in a domain
Ul—-(UiNE), we see by Kametani-Sario’s theorem stated already that f(w)
can be continued analytically throughout U} and f(w) should be bounded and
analytic in U}. Repeating this for all U}, we obtain the fact that f(w) can be
continued analytically throughout the whole complex plane and should be regular
in the whole plane. Hence f(w) must be a constant. Thus the set E belongs
to Ng. Therefore, the B-kernel E* of the closed set E not belonging to Ny is
not empty.

Next we shall give a proof of the second part of our theorem. Suppose
that there exist a point w™ of E™ and its neighbourhood U* such that the
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closure of U* N E* belongs to Ng. Then the closure of U N E can contain
no continuum and is totally disconnected. Hence we can find a neighbourhood
Uy of w* by Kametani’s lemma such that U is contained in U™ and that the
set Uy N E containing the point w™ is a bounded closed set.

Let f(w) be any non-constant single-valued bounded analytic function in a
domain Us — (U N E). Then we can see that there exists a neighbourhood
V of any point belonging to the set Us N (E—E*) such that V C Uy and the
intersection VN E is a closed set belonging to Ng and that V contains no point
of E*. Considering f(w) in V and mentioning Kametani-Sario’s theorem, we
can see that f(w) can be continued analytically throughout V and we get the
single-valued bounded analytic function f(w) in V. Repeating this for each
point of U N (E~— E*), we see that f(w) should be a single-valued bounded
analytic function in a domain U — (Us N E*). By our assumption, the set
E*N U belongs to Ny and, hence, f(w) can be continued analytically through-
out Us. This shows that there exists a neighbourhood Us of w™ such that
the intersection Us N E belongs to Ng. Hence the point w™ must not belong
to E*, which is a contradiction. Thus our theorem is established.

Further, we can prove the following

TueoreMm 4. Let {Ex} (k=1,2,..., n) be sets of Ng. Then the set U E;
k=1
belongs also to Ng.

Proof’ It is sufficient to prove the assertion for the case of #=2. Since
E\ and E; belong to Ng, these two sets are totally disconnected and closed.
Hence the set E,U E: is also totally disconnected and closed. We consider the
domain D containing this set E; U E: entirely. Obviously the sets D — (E; U Es),
D —E; and D — E» are domains. Let f(w) be any single-valued bounded analytic
function in the domain D - (E, U E,). For any point w of the set E; — (E, N E,),
we can choose a neighbourhood U of the point w by Kametani’'s lemma such
that U is contained in D — E: and the set UN E; is closed.

Since U N E; is the closed subset of E; belonging to Ng, U N E; is the set of
Ng. Hence f(w) can be continued analytically throughout U and should be
regular and bounded in U. Repeating this, we see that f(w) should be regular

1 The author’s original proof using Theorem 3 was more complicated than this direct
one which Professor Ohtsuka suggested to the author.



ON ANALYTIC FUNCTIONS ON SOME RIEMANN SURFACES 33

in D~ E.. Since E» belongs to Ng from the assumption, f(w) can be continued
analytically throughout D and should be regular in D, which shows that the
set £, U E, belongs also to Ng.

In the case when the sets £, (=1, ..., n) are disjoint from each other,

this theorem was proved by Kametani [5].

II. Riemann surfaces of the class O,

6. First we shall prove a theorem which plays an important role to study
the behaviour of analytic functions defined cn some Riemann surfaces.

Let w = f(p) be a non-constant single-valued analytic function in a subregion
G with the relative boundary C on a Riemann surface. We suppose that this
function is continuous on G U C and that, for a certain point w =™ in the w-
plane and for a certain positive number g, the value of this function f(p) at
every point of G lies in an open disc (¢,) and further that the values of f(p)

on C fall on the circumference ¢, of the disc (¢,), where (c¢,) is the disc

lw — w*| < p in the case of w™ % « or the disc |w|> Il) in the case of w* = .

TueoreMm 5. Let f(p) be such a function as stated above and let E be the
set of values in (c,) which f(p) does not take in G. If G belongs to SO.r, then
the intersection of E and any closed set in (c,) belongs to Ng.

Proof. Since E is closed with respect to (¢,), it is obvious that the inter-
section of EF and any closed set in (c¢,} is closed. Contrary to the assertion,
suppose that there exists a closed set in (c,) such that the intersection E' of
this set and E does not belong to Ng. Denote by ¢ the domain being a con-
nected component of the intersection of (¢,) and the complementary set of £’
with respect to the whole w-plane and having the boundary c,. Since the image
of G on the w-plane by the function w = f(p) is connected, it is contained in d.
By Sario’s theorem [19], [20], there exists a non-constant single-valued bounded
analytic function ¢(w) in ¢ which is continuous on ¢ U ¢, and whose real part
equals zero on ¢,. The composed function ¢(f(p)) is non-constant, single-
valued, bounded and analytic in G and its real part vanishes continuously at
every point on C. Hence G does not belong to SO,z. Thus we have the

theorem.

7. Let F be a Riemann surface and let w=s(p») be a non-constant single-
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valued analytic function defined on . The space formed by elements ¢ = [p, f(»)]
defines a covering Riemann surface ® spread over the w-plane and the point
g=0[p, 7/(p)] of ® has the projection w=s(p) on the w-plane. The corres-
pondence p<> ¢ gives a topological and conformal mapping between F and @.
Two surfaces F' and @ are equivalent conformally to each other.

Denote by @, any connected piece of @ lying over the disc (¢,). Let 4 be
the domain on F corresponding to @, by the correspondence p<>q. If there
exists at least one connected piece @; above any disc (¢,) and if, for any 0,
above any disc (c¢,), there exists a path in 4 starting from any fixed point
Do (w* = f(p)) in 4 and tending to the inner point or to the ideal boundary of
4 such that lim f(p) = w* along the path, where the point w = w™ is the centre
of the disc (c¢,), then we shall say that @ has the Iversen property.

8. Denote by O%; the class of Riemann surfaces whose all subregions
belong to SO.s. As will be stated later in No. 11, the class 0% is a subclass
of Oyus.

First we shall prove the following which shows the existence of Riemann
surfaces belonging to O%g.

Tueorem 6. If a Riemann surface F belongs to Ogyg, then F belongs to
O'ss.

Proof. Suppose that there exists a subregion G on F such that G does not
belong to SO,s. There exists a non-constant single-valued bounded analytic
function w =7(») in G which is continuous on G U C and whose real part equals
zero on C, where C is the relative boundary of G with respect to F. By
elements ¢=[p, /()] (p € G) the covering Riemann surface @¢ is formed over
the w-plane. The projection of @¢ on the w-plane is a bounded domain and is
contained in a sufficiently large finite disc |w| < R. For a certain positive
number ¢, we can describe two small discs (%) and (%) in the disc |w| < R+¢
as follows:

1) (k) and (k) are disjoint from each other,

2) the projection of @ on the w-plane has common points with both discs

(k1) and (kp), '

3) both the closures of (%) and (%) have no point lying on the imaginary

axis Rlwl=0, and
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4) (k) and (k) have points w; and w., respectively, which are exterior
points of the projection of @.

In (k) (i=1, 2) we describe a disc (%;) whose centre is the point w; and which
has no common point with the projection of ®z. This is possible by virtue of
4). Denote by D; the doubly connected domain obtained from (k;) by deleting
the closure of (k}). Let wi(w) be the harmonic function in D; being equal to
zero on the circumference of (%;) and to 1 on the circumference of (%j).

From the condition 2), it is seen that there exists at least one connected
piece 9; (i =1, 2) lying over (k). Denote by G; the image of @; under the
mapping p<q. As is easily seen from the above construction, G; (i=1, 2) is
a subregion in G and the relative boundary C; of G; with respect to F is disjoint
from C by virtue of 3) and C; corresponds to the relative boundary of @; with
respect to @ which lies over the circumference of (%;). Further, G, and G
have no point in common by the condition 1).

The composed function w;(f(p)) is a non-constant bounded harmonic func-
tion in G; which is continuous on G;U C; and vanishes at every point of C;.
Thus we see that subregions G, and G. do not belong to SOrs. Hence, by the
well known fact that, if there exist two subregions on a Riemann surface which
are disjoint from each other and do not belong to SOys, the Riemann surface
does not belong to Oxp (cf. Nevanlinna [15], Bader-Parreau [2], Mori [11]),
our Riemann surface ¥ can not belong to Ouz. Therefore, we get our theorem.

As a corollary of this theorem, we have

CorROLLARY. For subregions not being simply connected, the class SOnp is a
proper subclass of SO 4p.

Proof. Already we stated in No. 1 that SOyp is a subclass of SO.s. Hence
it is sufficient to prove that there exists a subregion not being simply connected
and belonging to SO,r and not to SOus. Let us consider a Riemann surface F
which belongs to Ogz and has a positive boundary. The existence of such a
Riemann surface was proved by Tdki [23]. Deleting from F a simply connected
compact domain with an analytic boundary curve, we get a subregion belonging
to SO.s on account of Theorem 6. On the other hand, it is obvious that this

subregion does not belong to SOxs. Thus we get our assertion.

9. Using Theorem 5, we can prove the following interesting theorem.
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TueoreM 7. Let F be a Riemann surface belonging to Oy and let w=s(p)
be a mon-constant single-valued analylic function on F. If @ is the covering
Riemann surface formed by elements q=L0p, f(p)], then ® has the Iversen
broperty.

Proof. We choose an arbitrary disc (c,) with the centre w=w* There
exists at least one connected piece @, of & lying over the disc (c¢,), since F
belongs to O%s and so to O.z (see No. 11) and, hence, the projection of @ on
the w-plane is everywhere dense in the w-plane. Let 4 be the image of @, on
F by the mapping p < q.

To establish the theorem, it is sufficient to prove that there exists a path
in 4 starting from any fixed point po (w™* % f(p,)) in 4 and tending to a certain
inner point of 4 or to the ideal boundary of 4 such that limf(p) =w®* along
the path. The relative boundary 7 of 4 with respect to F consists of at most
an enumerable number of analytic curves clustering nowhere in . Hence 4 is
a subregion on F and by our assumption F& O%, 4 belongs to SO.s.

At every point p of 7, the value f(p) falls on the circumference of (c,).
Denoting by E the set of values in (¢,) which f(p) does not take in 4 and so
0, does not cover, we see by Theorem 5 that the intersection of E and any
closed set in (¢,) belongs to Ng. Therefore, we can choose and fix a point P
in 4 such that w* = f(#). Let g, be the image of p, on @, by the mapping
p<q. Since the set belonging to Vg can not contain a continuum and since
4 is the image of @, under the mapping p < ¢, there is a point ¢; ( % @) on @,
whose projection w; on the w-plane lies in the disc (c,,) with the centre w™*,
where p, equals -% Let us denote by p; the image of ¢ by the mapping
p<q and by I, a curve combining p, with p; in 4.

Generally, we can take the connected piece @i, (n 2 1) of @,,_, (4y = 4)
lying over the disc (c,,) (p,. = EBﬂ.) and containing the point g.. If 4, is the
image on F of @,, by the mapping p <> ¢, 4, is a subregion belonging to SO.x
by our assumption and is contained in 4,-:. Let E, be the set of values in
(¢p,) which f(p) does not take in 4,. By Theorem 5, the intersection of E,
and any closed set in (c¢,,) belongs to Ng. Hence we can see that there exists
a point g»+: on @, whose projection wy+; lies in the disc (c,,,,) with the centre
w*. Denoting by pn+: the image in 4, of q,+; under the mapping p<q, we

get a curve /, combining p, with pn+1 in 4da.
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The curve ! in 4 constructed as the union of curves {l,} (z=0,1,...)
tends to an inner point of 4 or to the ideal boundary of 4. It is easy to see
that lim f(p) = w™ along I. Thus our proof is complete.

From Theorems 6 and 7, we can get the following which was proved by
Mori [10].

TuroreM 8. Suppose that a Riemann surface F belongs to Our. The cover-
ing Riemann surface © formed by elements q=1Lp, f(p)] for a non-constant

single-valued analvtic function w = f(p) on F has the Iversen property.

10. From Theorem 5, we get the following fact.

Let F be a Riemann surface of the class O’ and let ® be a covering sur-
face conformally equivalent to F and spread cver the w-plane. Then the inter-
section of any closed set in the disc (¢,) on the w-plane and the set of points,
which any connected piece of @ over (c¢,) does not cover, is the set of Ny.

We can a little improve the above result. Under the same notations as
above, let @, be any connected piece of @ lying over the arbitrary disc (¢,) on
the w-plane. Denote by 4 the image of @, on F. We denote by n(w) the
number of points of @, lying over the point w(€& (¢,)) and by E the set of

points w in (¢,) such that

n(w) < Z, = sup)n(w) (£ 4 o).

wWE(cp

For any integer n, let E, be the set of points w in {(¢,) satisfying the inequality
n(w) £ n. Then, this set E, is closed with respect to (¢,) and Exn C Envy (23 1)

and further

U En =FE.

n<zp

Suppose that there exist an integer # (< Z,) and a closed set S in (¢;)
such that SN E, does not belong to Ng. Let us denote by 7, the smallest of
such indices. Since n, < Z,, the set of points w of (¢,) not belonging to I,
is a non-empty open set. Hence the boundary set B,, of SN E,, with respect
to (¢,) is not empty and does not belong to Ny. By Theorem 3, the B-kernel
B, of B,, is not empty and does not belong to Ng. On the other hand, the
closed set Bn, M Ey,-1 is contained in Ey-; and so belongs to Ng. Hence there
exists at least one point w, of B, not belonging to B, N En-i. Therefore,

this point w. belongs to the set B, N (Ey, — En-1) and so #n(wo) = ny.
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Since wo belongs to Bi, N (Eu, — En,-1), We can choose a sufficiently small
disc (¢) (C(c,)) containing the point w, such that the closure ¢ of the inter-
section of B, and any closed set in (¢) does not belong to Ny and @, has
exactly n, discs above (c¢), where v:sheeted disc is counted as » discs. On the
other hand, w, belongs to B, and so there exists a point w in (¢) satisfying
the inequality n(w) > n,. Hence, besides these #, discs, @ has at least one
connected piece d over (c). Itis obvious from the above that & does not cover
the set e. In fact, any point of the set e is covered by @, at most 7, times and
is already covered by the above mentioned 7, discs.

Denoting by G’ the image of § on F by the mapping p<>¢q, we can see
that G’ is a subregion on F and the relative boundary of G’ with respect to F
corresponds to the boundary of 8 lying over the circumference of (¢). Since ¢
does not cover the set e, it is seen by Theorem 5 that G' does not belong to
SO.45.

Therefore, if F belongs to Oz, then, for any integer n < Z, and for any
closed set S in (¢,), the set SN E, belongs to Ng. Since the set of Ny is non-
dense as stated already, the set of all points in (¢,) satisfying n{w) < Z, is of
the first category. In particular, if Z, is finite, then, by Theorem 4, the inter-

section of this set and any closed set in (¢,) belongs to Ng. Thus we have

THEOREM 9. Under the assumption of Theorem 7, it holds that, for any
connected piece of O lying over an arbitrary disc (c¢,) on the w-plane, the set
of points w in (c,) satisfying the inequality n(w) < Z, is of the first category.
In particular, if Z,< + =, the inlersection of this set and any closed set in

(¢,) belongs to Nyg.

Remark. In the case of Z, < + =, this result coincides with a result of
Kuramochi [6].

11. It is immediately seen that, if a Riemann surface F belongs to O%s,
then F belongs to O,z. For, if F does not belong to O, there exists a non-
constant single-valued bounded analytic function /() on F. Choosing a point
bo on F arbitrarily, we consider the set of points p of F satisfying the inequality
REAPYT> RES(H)].  As is easily seen, this set is not empty and open. Let
G be any connected component of this open set. On the relative boundary C
of G with respect to F, R/ (po)] equals RLf(p)]. It is easy to see that G is
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a subregion on F. The function f(») — R ()] is non-constant, single-valued,
bounded and analytic and is continuous on GU C and the real part of this
function vanishes at every point of C. Hence G does not belong to SO.z.

On the other hand, Myrberg [14] gave a very important example of a cover-
ing Riemann surface @ of infinite genus which belongs to O,z and has not the
Iversen property. Mentioning this and Theorem 7, we can see immediately that
there exists a Riemann surface belonging to O.; and not to O%s. Therefore,
the class O% is the proper subclass of Og.

Theorem 6 shows that the class Onr of Riemann surfaces is contained in
the class 0.

In the following, we shall give an example of Riemann surfaces belonging
to 0% and not to Oup (see No. 18).

12. We suppose that Fis an open Riemann surface. Let {F,} (n=0,1,...)
be an exhaustion of F satisfying the following conditions:

1°) for each 7, the domain F, on F is compact with respect to F and the
boundary I'» of F, consists of a finite number of analytic closed curves,

2°) Fn=FoUTnC Fnsy, (n=0,1,...),

3°) each connected component of F—F, (n=0,1,...) is non-compact

with respect to F and

40) \._}an = F.

The open set Fu—Fa-i (n=1) consists of a finite number of domains R
(k=1,2,..., v=pn)). The boundary of R% consists of analytic closed curves
contained in I-;U . We shall denote by a%_, the part of the boundary of
R% on I'h-; and by 8% that on I',. Let #%(p) be the harmonic function in
R% which vanishes at every point of ak_; and equals log u#% on B% and whose

conjugate function »%(p) has the variation 27 on 8, ie.,
Sﬁk dvfx =2 T,

where the integral is taken in the positive sense with respect to R The
quantity Iog//f, is the so-called harmonic modulus of R If we choose an
additive constant of v%(p) suitably, the regular function #%(p) + ivi(p) maps R
with a finite number of suitable slits onto a slit-rectangle 0<uﬁ<10gyﬁ,

0 < v% < 27 one-to-one conformally. Similarly we define the harmonic modulus
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log s, of the open set F,—~ F,_; as follows. Let u,(p) be the harmonic func-
tion in Fn— F,-; which is equal to zero on Is—; and to logs, on I'y and whose

conjugate function v,(p) has the variation 27, that is,

S dv,=2nm.

I'n

The quantity logas, is the harmonic modulus of F,— F,-:;. If we choose an

additive constant of v.(p) suitably, the regular function #.(p) + iv.(p) maps

RY (E=1,2 ..., ) with a finite number of suitable slits onto a slit-rectangle

0 < un<logon, br<vy<ar+ br one toone conformally, where ar (k=1,..., »)

and b (B=1, ..., ») are constants satisfying the following relations:
ak=27r%g—§f:', \:Z-":ak=27r

and

k-1
b =0, br=>a (1<k=yp).
-

Consequently, the function #.(p) +iv.(p) maps F,— Fn-; with a finite number
of suitable slits onto a slit-rectangle 0 < u#, <logaon, 0<v,<2n in a one to

one conformal manner. From this, it follows that

(n)
(1) L _5 1

logon it log ub

n—1

Further, the function #(p) 4+ iv(p) defined by u.(p) + swn(p) + > loge; for each
=1

Fn—Fnoy (n21) maps F— F, with at most an enumerable number of suitable

slits onto a strip domain 0 < < R, 0 <v <2r with at most an enumerable

number of slits one-to-one conformally, where
R= z;.log aj.
=

This strip domain is the graph of F associated with the exhaustion {F,} in the
sense of Noshiro [16]. We call R the length of this graph.

Sario [21] and Noshiro [16] proved that F has a null boundary if and only
if there exists a graph of F whose length R is infinite.

13. Let 7, be the niveau curve u(p) =7 (0 <7 <R) on F. The niveau
curve 7, consists of a finite number of closed analytic curves 7+ (i=1, ...,
m=m(r)). Putting
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/1(?’) =11;/-E%§LST%:(1”)

we can formulate Pfluger’'s theorem [17] as follows
THeEOREM 10. If there exists a graph of F such that the integral

R S" dr
S e OA(r)dr
0

(2)

outline of the proof.
Let f(p) =

by r, and containing F,, we get
m aU
(r) = S Udv = 2_45 v a

(A(r))?S <%§)d”

Since every 7, is closed, it follows by Wirtinger’s inequality that
2 ~
(putav= A7

!

Hence, using the Schwarz inequality, we have
S, 0w =3y [ v, '(EQV)Z;
iz1¢ = # T
A(r) “ U
< AD ST (T ], (2 ) aw
A(r) oU
= 4n Xr [( ou ) ﬁﬂ) sz)
Therefore, it holds that
an T dD(r)
T A(r) = D(r) "’
whence, by the integration, we obtain
rdr
A7) = D(r)’

D(0)e'
integral of f(p) taken over Fj

where D(0) is the Dirichlet

we get

diverges, then F belongs to Oy
Although the proof is obtained by Pfluger’s argument, we shall state the

U(p) +1iV(p) be a single-valued bounded analytic function on £

If we denote by D(7) the Dirichlet integral of f(p) taken over the region bounded

On the other hand



42 TADASHI KUROPA
S:D(r)dr-: 5 (), vtav-§ Udv) = 3), vay
for it holds that

,%(ST"U‘A’dv) 2 U—~dv 2D(7).

Thus, putting M= sup lf(p)], we have
vEF

r dr

R » _ar.
D(0) So ¢ V0i gy < 2,
If the integral (2) diverges, we get that D(0) =0. Thus the function f(») must
reduce to a constant.

14. Here we shall show that the above theorem implies Mori’s result [12]

which is the modification of Pfluger’s theorem [18].

We consider an exhaustion {F,} (=0, 1, .) of F and use the same
notations as in No. 12. Putting log #, = Min 10g 2% and N(n) = Max »(j),
1=k vin 1=j=n
have

Tueorem 11. (Pfluger-Mori). If

lim sup {Elog i — log N(n)} = + oo,

then F belongs to Ous.

Proof. First we construct the graph of F associated with the exhaustion

{F,}) (n=0,1,...) and calculate the integral
R S" dr
S e °Ady,
0

where « is a positive constant. It is evident that

R S’ dr T K S"rdr
S VAL dy ~11m}_,S VAT dy,
0 n—>wy=1 71
where
J
= ?:%log oi and 7, =logagy=0.
If we put

T .
1,-=S Leenge (j=1,2...),

Ty)=1
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where
" dr
glr) = .So A(?’)

for 0 <7 < 7; and

PO A

s=1

for ;-1 <7r=rt; (7> 1), then it holds that

dr

R K
Sc e e dy = llmEIJ

n>wG=

Since it is easily seen by the construction of the graph of F that A(7) is not

loggs in the interval (zs-1, vs) of . Hence

greater than 2x Tog 25

(r) = 1 log s
= 2n Toga

for 0 <7 = r; and

log uj

o IOg HUs
gr) = 2 ey 27 lOg 05 T+ g1 - 2mloga;

1 4 log s 1 logpj .
= 2»7'32; Iog;z; (15— 75-1) + o loga (1’—-1‘;-1)

1 & 1 logu _. 1 log w4
2/&-§log#g 27 Togoj 7' T 2n Toga;

Il

for tj1 <7 £7;j (> 1). Therefore, we obtain the following estimation of I;:

108 01 ( Kloguy __ 1)

L >
1= Klog
and
K zl _xloBHIL ok g los ks
Ise OB A ) g 0 J=t log aj ( logoj 7 loga; 77t
7= Klog p;
x’3h
5 bog b
. logai =t YKok _ 1)
Klog p;

for 7> 1, where K equals 2'\—; » whence, putting log u =0, we have

ki &'sh
og s ¥ logps
log aj sSo o PREEL

b= yiog
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for each j. By the formula (1), we get

loga; = -l:%Tf;j,
and, hence, by N(»n) =1,
(3) ;=1Ij%j=17{v(]') (e —-e )
O . (eK’glhws -1)
KN(n)
K S logjs—log N(n)
)
1, K g log ws—log N ()
= F (e *=* -1).

In our case when £ =4m, K is equal to 2. By the assumption of the theorem,

the integral (2) diverges and so, by Theorem 10, F belongs to Op.

15. We proved in the previous paper [9] the following theorem of Phragmén-
Lindelof type.

Suppose that f(p) is a single-valued regular function in a non-compact
region G on an open Riemann surface and that the real part of f(p) is equal
to zero on the relative boundary of G. Construct a graph of F with the length
R and denote by M(r) the maximum of the absolute values of the real part of

f(P) on the common part 0, of G and the niveau curve v,. If

2
lim inf T‘%r)d),— = 0,
TR ¢’ e gy

7

where 6(r) = Max Sef« dv and 6. is a component of 0, and 7, ts a suitable number

such that 0, is not empty, then f(p) reduces to a constant.

This and Theorem 7 imply the following which is slightly different from

Kuramochi's result [7].

Treorem 12. Let F be an open Riemann surface satisfying the following

condition: there exists a graph with the length R of F such that the integral

Ry (" dr
(4) Soez 55 4y
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diverges. Then F belongs to O%r and, hence, the covering Riemann surface O
Formed by elements q=1[p, f(p)] for a non-constant single-valued analytic func-
tion w=f(p) on F has the Iversen property.

16. Let F* be a compact Riemann surface of positive genus g We cut
F* along simple closed analytic loop-cuts L; (4=1,..., h; 1=k < g) disjoint
from each other and not dividing F* into two or more parts and denote by Fp
the resulting surface. We take infinitely many same samples as F, and con-
struct a Schottky covering surface of F* by connecting these samples along
opposite shores of L; (¢=1,..., k) in the well known way.
In this construction of F, first we fix a sample F, and denote by Rf (k=1,
., 2h) the samples which we connect to ;. Denoting by F; the resulting
surface, we connect 22(2, —1) samples to F; and we denote by R (k=1,...,
2h(2h —1)) these samples. Thus we get the surface F,. In general we connect
2h(2h~1)""" samples to Fu-;. We denote by RY (k=1,...,2r20r-1)""")
these samples and get the surface Fj.

The sequence {F.} (=0, 1,...) gives an exhaustion of F.

17. Now we consider such an exhaustion {F,} (#=0,1,...) of F and
construct the graph of F associated with this exhaustion. The harmonic modulus
log on+1 Of Fni1— Fn (72 0) is evaluated as follows. Since F,— F, is the union
of all Rf (k=1,...,2h), we can get from (1)

BE T

logas ~ i logyf ’
where log #f is the harmonic modulus of RY. By the construction of F, it is
easy to see that Fnri—Fn (20) is the union of all R%., (k=1,...,
2n(2h —1)"). It is immediate from the construction of F that among RY:,
(B=1,...,2h(2h—1)"), there exist (2h —1)" samples which are connected to
Fn» along shores corresponding to the same shore of the same L;. And so we
have

log tns1= Min  log pk. = Min log . = log m
1=k=2h(2h-1)" 1=k=2h

for each » and

N CR N
— = 2hr=-1D"> v =(2h-1) loga,

log an =1 log /i)
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Hence the length R= Elog agn of this graph is equal to log UIEW'

By Sario- Noshlros result [21], [16], the Schottky covering surface F in
question has a null boundary if 2=1. And, by Myrberg-Tsuji’s theorem [13],
[25], F has a positive boundary and does not belong to Omp if 7 2 2.

On the other hand, Sario [19] and Tsuji [25] have shown that F belongs
always to the class Op.

Since this does not always imply that the Schottky covering surface F
in question belongs to O%, we can not immediately see that the covering
Riemann surface ¢ formed by elements q =[p, f($)] for any non-constant single-
valued analytic function w =f(p) on F has the Iversen property. But we can
give a sufficient condition for it.

TueoreM 13. If k equals 1 or if the minimum log p1 of the moduli log uk
of R¥ (i=1,...,2h) is not smaller than log (2k — 1), then F belongs to Ols
and so O has the Iversen property.

Proof. In the case when %2 =1, F has a null boundary. Hence, as is well
known, F belongs to Ogs. Thus, in this case, Theorem 8 implies our assertion.

Next we consider the case of 2 2. If we consider the graph of F as-
sociated with the exhaustion {F»} (#=0,1,...) which was constructed in
No. 16, then it is easy to see that »(j) equals 2h(2k—1)""* and log 4 equals
log 1. Therefore, we get, using the inequality (3) for the case of & =2n,

-1
R 4. (T dr © 1 zloeua
[ emnmaras Loe™ (eom-1)
0

2=1 1’(;
= Z,Th_l_I)_J =5 e(] l)log;q(elogy,l_l)
L

on ¢ I)E(Zh 1)1—1’

where u=1. Since u; = 2h—1 by the assumption, the integral (4) must be
divergent. From Theorem 12, we have our assertion.

As is easily seen from the argument of the above proof, we can get a cri-
terion for F to belong to O%s which is similar to Theorem 11. We shall state

it without proof.

THEOREM 14. Under the same notations as in Theorem 11, if
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lim sup(leog,uj —logN(n)} = + o,
i

n->x

- then F belongs to O%p.
This is closely related with Kuramochi’s theorem [6].

18. Here we shall give an example of a Schottky covering surface satisfy-
ing the condition of Theorem 13. We consider the ring domain R : 1 <]|z| <12
on the complex z-plane. Identifying its boundary point ¢ with the boundary
point 12¢® and introducing local parameters in the usual manner, we get a
closed Riemann surface T of genus 1. T is nothing but a torus. By this identifi-
cation, the boundary curves |z| =1 and |z| =12 of R correspond to two shores
of a loop-cut L, of 7 which is an analytic closed curve in 7 and does not
devide T. If we cut T along L, and denote by 7' the resulting surface, there
exists a one-to-one conformal mapping z = z2(p) (p € T') between 7' and R and,
by this mapping, two shores of L; correspond to the circles |z| =1 and |z]|=12.

Consider two small circular closed discs d; and d» in the ring domain
3 <]zl <4 such that d; and d. are disjoint from each other. Denoting by D,
and D, the images of d; and d» on T’ under the mapping z =z(p) and deleting
D; and D, from the torus 7, we get an open Riemann surface 7, of genus 1
whose boundary consists of two analytic closed curves 7; and 1., where 7;
(#=1, 2) is the boundary of D; (i=1,2). Cutting T, along L, we denote by
T4 the resulting surface which is the domain obtained by deleting D; and D»
from 7'. This domain T¢ is mapped one-to-one conformally on the domain
obtained by deleting d; and d: from R under the mapping z = z(p).

We construct a double of T, along 7, U . and denote it by F*. It is easy
to see that F* is a closed Riemann surface of genus 3. We consider the above
loop-cut L; on F* and denote by L, the image of L; under the indirectly con-
formal mapping of F* on itself which leaves every point of 71U 7. fixed. Then
L, is also a loop-cut of F* and is disjoint from L, and does not devide F™.
Cutting F* along L; and L,, we have a Riemann surface F, which is of genus
1 and has a boundary consisting of four analytic closed curves. These curves
are shores of loop-cuts L; and L,. It is obvious that F, is a double of 7% along
71U .. By the manner stated in No. 16, we construct a Schottky covering
surface F of F* from F,. This surface F is of infinite genus.

Now we shall evaluate the quantity log «: corresponding to the above Fi.
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Let #'(») be the harmonic function in T§ which equals zero on one shore L!
of Ly and to log # on the other shore LI’ of L; and on 7, U 1, and whose conjugate
function ¢'(p) satisfies the condition SM dv =2r. If we construct the harmonic
function #"(p) in T4 which equals to zero on Li and to logx” on Li\U U7,

and whose conjugate function v"(p) satisfies dv =2m, then it is evident that

Ly
log s & Min (log ¢/, log ¢").

Since T¢ is mapped conformally on the domain R—(di\Ud.) by z=z(p)
and since Li corresponds to a circle |z| =1 or |z|= 12, it is immediately seen

that Min (log ¢/, log /') = log 3. Hence we have
log 11 = log 3.

In our example F of a Schottky covering surface, the genus of F* is 3 and
the number % in Theorem 13 is 2 and, further, logu = log3. Therefore, the
surface F of infinite genus belongs to O%; and not to Oup.

By the similar consideration, we can obtain the existence of a Schottky
covering surface F of planar character belonging to O%z and having a positive
boundary. Mapping such a surface F on the planar domain, we get the domain

whose boundary is of positive logarithmic capacity and belongs to NNg.
19. Summarizing the statements in Nos. 11 and 18, we have the following
TueoreM 15. For Riemann surfaces of infinite genus, it holds that
Our F Op % Ous, Omp D Ohs  and  Opp & Os.
For Riemann surfaces of finite genus, the following holds:
O S 0%z C Oup.

Proof. For Riemann surfaces of infinite genus, it is seen from the above
that

Ous C 0%y & Oups, Oup P Ols.

Suppose that Opz=0%. Since Ouz is a subclass of Ogp by Virtanen’s
result [26], O% must be a subclass of Omp, which is a contradiction. Hence

Oup is a proper subclass of O%p.

Further, Oy is not a subclass of O.z by Toki’'s example [24]. Hence Omp
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is not a subclass of O%.

For Riemann surfaces of finite genus, our inclusion-relations are evident.

Remark 1. In the case of Riemann surfaces of finite genus, it is still open

whether O%p is a proper subclass of O,» or not.

Remark 2. From the above theorem, we see that, without restriction for

genus of Riemann surfaces, Mori’s result, Theorem 8, can not imply Theorem 7.
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