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CHARACTERISTIC CLASSES FOR SPHERICAL

FIBER SPACES

AKIHIRO TSUCHIYA*

§ 0. Introduction and statement of results.

Let SF = SG denote the space lim SG{n), SG{n)= {/: S71"1 -> S""1 degree 1},

and BSF be the classifying space of SF. Our purpose is to determine

H*(BSF: Zp) as a Hopf algebra over Z ? , where p is an odd prime number.

We have announced the main result in [14].

Let QoS° — lim Ω"Sn, where Ω^S is the zero component of the n-th loop

space of Sn. Then Q0S° has the same homotopy type of SF. Dyer-Lashof

[4] determined H*(Q0S°: Zp) as an algebra over ZV9 where p is an odd

prime. H*{Q0S
Q: Zp) is a free commutative algebra generated by xj9 J&H,

where H= [J — (εu j l 9 ε2, j 2 9 9sr9jr)}9 J satisfies the following properties.

(0-1) i) r ^ l .

ii) j ί = 0 mod (p — 1), i = 1,2, , r.

iii) jr~0mod2{p — 1).

iv) (p-l)^j1^j2^ <;r.

v) Si = 0 or 1.

vi) if ε t+i = 0 then jj(p — 1) and ji+ίl{p — 1) are even parity,

if ε<+1 = 1 then yj(p — 1) and ji+1/{p — 1) are odd parity.

The elements Xj are determined as follows. There is a continuous

map/* 0 : LP-+QOS°, where Lp is the mod p lens space of infinite dimension.

Then Xj is by definition Λ0*(̂ 2i(3»-i)) And #j is by definition βp1Qj]βp2QJ2

β'pr-ιQjr-βprχir/Xv-ι)i where J = {εl9jl9 -,ετ9jr)tΞH9 and Q ; are the extended

power operations defined by Dyer-Lashof, and ̂  is Bockstein operation.
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We identify H*(QOS°:ZP) with H*(SF: Zp) as Zp module by **, where

i : QoS° -+SF is the homotopy equivalence, and we denote x =' i*(x) for

X<EH*(Q0S° :ZV).

The space SF becomes an /7-space by composition of maps. The

homotopy equivalence i : QQS° -> SF is not an #-space map, so /* is not an

algebra homomorphism.

Our first object is to determine the algebra structure of H*(SF : ZP).

The result is the following theorem.

THEOREM 1. H*{SF : Zv) is a free commutative algebra generated by xj9

even though i* is not a ring homomorphism.

To show this theorem, we proceed as follows. In § 1, we study the

relationship between the iί-structures on Q0S° and SF. And in §2, intro-

ducing a filtration on i2*(QoS
0 : ZP\ mod this filtration we compute the

multiplications on H*(Q0S° : Zp) and H*(SF : Zp). We obtain the first theo-

rem in §3.

The next object is to determine the Hopf algebra structure of H*(BSF: Zv).

Let Hi be the subset of H consisting of J = (εl9 j \ , , er9jr) such that

jίΨp — 1, and r ^ 2 . Let H2 = {(ε, p - 1, 1, j)t=H}. And let Hϊ = [J<=Hi9

degxj = even}, Hi = {J<zHi9 degXj = odd}, i = 1, 2. Let j : BSO-+BSF

be the natural inclusion, then By Peterson-Toda [12], Im j * = ZP[zϊ9 z2, ],

deg zj = 2;(p - 1), Δz, = Σ3 ̂  ® ^ . 4 .
j=0

THEOREM 2. i) H*{BSF : Zp) = Zp[zl9z29 •](><) Λ(σxuσx29 )®C*. C*

is a free commutative algebra generated by σxj9 J^HίUH-,. σxj9 σxj are primitive

elements, and Δ(zj) = ΣJ zt®Z4-i.

ii) H*(BSF : ZP) ^ Zp[qlf ql9 •] ® (Jφ, J#2, )(x)C

C = ® il((<;(ίc/))*) (g) jΓ;p[M»j))*]. t^^r^ ( )* denotes the dual element,,

and qj is the j-th Wu class.

This theorem is proved using the Serre spectral sequence associated to-

the principal fibering, SF-+ESF-* BSF. In §4, we introduce the H%

structures θ :WXπP{SF)p -+SF9 and Wx«P{BSF)p -+BSF. Using this θ, we

introduce, in §6, the extended p-th power Qj on H*(SF : Zp) and H*{BSF : Zv).

Related with this Qj9 we formulate the Kudo's transgression theorem in

proposition 6-1.
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To compute the operations Q5 on H*(SF: Zp\ we study the map

θ :WXπp(SF)p -*SF, in §5, and using this we compute Qp^t(x)9 Qp-.z(x) for

x&H*(SF : Zp). Using these we obtain Theorem 2.

Peter May [7] independently succeeded to determine H*(BSF : Zp).

In a forthcoming paper [15], we shall use the results of this paper to

determine the characteristic classes for PL micro-bundles.

§ 1. ZΓ-space structures on Ω%Sn.

1-1. Let SF(n) be the space of base point preserving continuous maps

from Sn to Sn with degree 1, and SG(n) be the space of continuous maps

from S71"1 to S71"1 with degree 1. These spaces are given the compact open

topology. Then SF{n) and SG{n) become topological monids by composi-

tion of maps. We shall define the suspension homomorphism, SF{n)-^SF{n+l),

and SG(n)-+SG{n + 1), as follows.

feSF(n) -»/ Λ id^SFin + 1).

(1-1)

where Λ and * denote reduced join and join respectively and idι^SF(l)9

id0GSG(l) denote identity elements.

We shall introduce another H-space structures on SG{n) and SF{n) by

join and reduced join respectively.

SF(n)xSF(n)^SF(2n)

(1-2)

SG(n)xSG(n) U SG(2n).

We shall discuss various relations between these maps.

LEMMA 1-1. The following diagrams are homotopy commutative.

i) SF(n)xSF(n)—>SF(n + l)xSF(n + 1)

1 A Λ(fΛ) 1 Λ

SF(2n) > SF{2n + 2)

ii) SG(n)xSG{n)—>SG(n + l)XSG(n

1* Hid,) I*
SG(2n) > SG{2n + 2)
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LEMMA 1-2. The following diagrams are homotopy commutative.

i) SF(n)xSF(n)-%SF(n); {f,g)->g*f.

^ ^ i M i d n )

SF(2n)

O

ϋ) SG(n)xSG(n)—>SG(n); (f,g)-+gof.

SG{2n)

Let i : SF{n)-*SG(n + 1) be the natural inclusion, and i : SG(n)-+SF(n)

be the inclusion defined by i(f) = f*id0 with base point (Ox ®lz1)^Sn~1^S° = Sn

9

S° = {zuz2}.

LEMMA 1-3. The following diagrams are homotopy commutative.

i) SF(n)xSF{n) >SG(n + l)xSG(n + 1)

SF(2n) — > SG{2n + 1) — > SG{2n + 2)

ii) SG(n)xSG(n)—>SF(n)xSF(n)

I* 1 Λ

>SF(2n)

LEMMA 1-4. 7%^ following diagrams are homotopy commutative, that is the

reduced join and join products on SF(n) and SG(n) are homotopy commutative.

Λ
i) SF(n)xSF(n) > SF{2n)

[T ^V
SF(n)xSF(n)

ii) SG(n)xSG(n) *—> SG(2n)

ϊT ^^
SG(n)xSG(n)

It is well known that SG(ή) and SF(n) have the same homotopy (n — 1)

type. Therefore SF=\imSF(n) and SG = limSG{n) have the same homotopy

type, and SF = SG has three #-space structures defined by composition of

maps, reduced join and join, and these three //-structures are homotopic

each other. \
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1-2. Next we shall consider iterated loop spaces. We denote the n-th

loop space over Jfby ΩnX, where ΩnX={l : {Γ9dΓ) -+(X, *): continuous maps}.

And we identify Ωn+1X and Ω(ΩnX) by the following rule.

(1-3)
I(t)(tl9 , tn) = Kt, t» , f,), (t, / „ . . . , / n ) e / w + 1 .

We shall define loop product V ; on £?nZ, l < y ^ n by the following

rule.

( 1 - 4 ) V i ( / i , / 2 ) ( ί i , - , * » ) =

We write V for Vi. Denote S X = XΛS1, and we define the natural inclu-

sion ΩnX-+Ωn+1SX by / -> / Md1

Let ^ S w be the subspace of ΩnSn consisting of elements of degree q,

for q any integer. And we shall identify Ω"Sn and SF(n) canonically. We

shall define the map in : Ωn

0S
n-+SF(n) by l-+l\/idn. It is well known that

in is a homotopy equivalence, and it is easy to show that the following

diagram is commutative.

(1-5) ΩϊSn >SF(n)

Hence, we have a homotopy equivalence

(1-6) i

We shall define the map 7w : Ωn

0S
n X Ωn

0S
n -> ΩlnS2n by the following

diagram.

inXin

(1-7) Ωn

0S
nXΩn

0S
n >SF(n)xSF(n)

n ( V ( - | r f J ) | Λ

where ( - idn)^ΩrL1S
n is the map defined by (~ idn) : (In,dΓ)-%(In,dIn)—^>

(STO,*), where σ{tl9 , tn) ?= (1 — flf /2> * K), and ̂ Λ is the natural identifi-

cation map. Then the following diagram is homotopy commutative.
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Ωn

0S
n XΩn

ϋS
n

(1-8)

So that passing to the limit we obtain the map.

(1-9) "Λ : QoS°xQoS° — • Q0SK

Our first proposition is the following structure theorem of *Λ».

PROPOSITION 1.5. The following diagram is homotopy commutative.

Ωn

0S
nXΩn

QSn > Ω2

0

nS*»

(1-10) Ωn

0S
n X Ωn

0S
n X Ωn

0S
n X Ωn

0S
n ΩlnS2n X ΩlnS2n

[idxTxid ^idX{/\idn)

ΛXV

Ωn

QSnXΩn

0S
nXΩn

QSnXΩn

0S
n >ΩlnS2nXΩn

0S
n .

Passing to the limit we obtain the following corollary.

COROLLARY 1-6. The following diagram is homotopy commutative.

QoS°xQoS° > QoS»

ΔXΔ

(1-11) QoS° X QoS° xQoS°X QoS°

I idxTxid
ψ Λ

Q0S
Q x QoS° X QoS° X OoS°

We shall consider the relation between the loop product and the reduced

join product. Roughly speaking, it is distributive law.

PROPOSITION 1-7. The following diagrams are homotopy commutative.

idxiV)
i) ΩnK X (ΩmLxΩmL) >ΩnKxΩmL

l
(1-12) (ΩnKxΩnK)X(ΩmLxΩmL) Ωn+m(KΛL) .

\ idxTxid JV
ΩnKxΩmLxΩnKxΩmL >Ωn+m(KAL)XΩn+m(KAL).

ΛΛΛXΛ
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(V)XW
ii) (ΩnKxΩnK)XΩmL > ΩnKxΩmL

j ί d x Δ | Λ

ΩnKxΩnKxΩmLxΩmL Ωn+m(KAL)

I idxTxid

ΛXΛ
ΩnKx ΩmLx ΩnKx ΩmL > Ωn+m{KA L) x Ωn+m(KA L)

2-3. Let ΩnX denote the iterated n-th Moore loop space. We can

interprete an element l^ΩnX as follows. / : (Ul9 dUt) -> {X, *), where UL is a

certain closed subset of Rn depending on /. It is well known that the

natural inclusion ΩnX-+ ΩnX is a homotopy equivalence, and up to homo-

topy this map preserves the //-space structure defined by the loop product.

We shall define the reduce join product Λ : ΩmXxΩnY -+ Ωm+n(XAY)

by the following rule, for l^ΩmX, ί2^ΩnY.

(1-13) (ΛΛ/2) : (UhxUl2,

Then the natural inclusion ΩnX->ΩnX is compatible with the reduced join

product. We shall define the suspension map ΩnX-+Ωn+1(SX) as follows,

l-±lAidx. Then this is compatible with the natural inclusion ΩnX-+ΩnX.

We consider the result of Dyer-Lashof [4] about the iterated loop

spaces. Let Σ<z denote the permutation group of ^-elements, and JnJ±q

denote the w-th join of Σ<z with itself. We consider JnY\q as a subset of

Jn+1Έq by the following rule, . Γ Σ ^ U K Ί Θ θ U ) = ( 0 θ ^ i θ '®tnσn)

e / n + 1 Σ α . Dyer-Lashof proved that ΩnX is an iΓ^-space in their sense, so

that there exists a continuous map.

(1-14) en

q"
x : JnJ^q X (ΩnX)q -> ΩnX

with the following properties.

i) Σ!<z equivariant i.e. for each < ; G S ? ,

(1-15) ΘΓV^ ® ® tnσn ; / ! , - • - , lq)

ii) normalized i.e. for each

Π O Θ ®0®l-σ;ll9 ,/β) = U V • V/.<β).

We shall consider the relation between 0?"1 and reduced join, we obtain

the following proposition.
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PROPOSITION 1-8. The following diagram is homotopy commutative.

θxid _ Λ _
(/"ΣgX Σ«(ΩnK)q)xΩmL > ΩnKxΩmL — > Ωn+m(KAL)

(1-16) (ΓIlqXΣ,(( q

jzdxΰ/XΔ, |ix(Λ)
Γ ^ ( Φ n K ) q ( Ω m L ) q ) Γ Σ Ω n K Ω

Proof. At first we shall remark that the following diagram is commuta-

tive by the definition of inclusion / " Σ 9 - > / " + m Σ s and naturality of θ\ with

respect to the iterated loop map.

7"Σ5X Σ,(Ωn(Ωm(KAL)γ — -l-> y + Σ.X z,(5Λ*~{KΛL))''

Ωn(Ωm(KAL)) >Ωn+m(K\L))

Fix an element l<ΞΩmL, and define the map h :K-+Ωm(KhL) by the fol-

lowing way,

Consider 5n(/#) : ΩnK-ϊΩn(Ωm(KAL)), Then it is easy to see that 5*(/#)(/i) =

ΛΛ*> l<ΞΩnK. Naturality of ^J"1 under n-th iterated loop map shows that

the following diagram is commutative.

idx(Ωn)(h)q

(ΩnK)q

q

_ϊθ Ω»{h) __ _
ΩnK >Ωn(Ωm(KAL))

The commutative diagram and the above remarks show the following

ΘT'iω lu s/β)Λ/

= θn

g-
ί(ω,Ωn(h)(l1);

This shows the proposition.
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Let πq denote the cyclic group of order q. Q(X) = \ΊmΩn(SnX), Q(X) =

\im^Ωn(SnX). QjSΰ = Hmβ?SΛ, ^ S ° = JimΩnjSn. We shall define h : Jnicql*q-+

Ωn

qS
n by the following rule.

0
h : /Λsrς/irfl -> ΓπqXπq(idn)

q -> ΓitqXnq(ΩΐS*)q -> ^ , S n .

And passing limit, we obtain /z : / % / π g -> QgS°, and define h0 : J
nπjπq -> 5 jS Λ

.Λ _ V(-qidn)-
by the following, /z0 : J

nπqlπq -* i2gS
w >Ω0S

n, and as a limit, we obtain

PROPOSITION 1-9. 7%^ following diagram is commutative.

hxid _ A
->Ωn

qS
nXΩmK > Ωn+m(Sn AK).

| ΪX(W.Λ) ΐ "
JnπqXnq(ΩmK)q >Jn+mπqXπq(Ωn+m(SnAK))Q

Proof of this proposition is the same as the proof of Proposition 1-8.

We shall consider the case K = Sm and passing to the limit, we obtain

the following corollary.

COROLLARY 1-10. The following diagram is homotopy commutative.

hxid _ A
φq) X QoS° • QqS° x QoS°

(1-18)

! ' •

dxAq

It is easy to prove the following proposition.

PROPOSITION 1-11. We have the following commutative diagram.

hoxid _ A
Ωn

QSnxΩmK >Ωn+m(SnAK)

(1-19) (JnπJπqxΩmK)q+1 Ωn+m(Sn AK)x(Ωn+m(Sn AK))q

(hAid)x(*2)
q \

(Jnπq!πqXΩmK)x(JnπqlπqxΩmK)q > Ωn+m(Sn AK)x(ΩmK)q

§2. Filtration on H*{Q0S
0;ZP).

2-1. In this chapter, p denotes an odd prime number unless otherwise

stated. Let C denote H*(Q0S°; Zv) as a Hopf algebra over Zp. It is well
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known that Hi(J"icPlit: Zp) - Zp9 i - 0,1,2, . We shall serect generators

iCpliCp : Zp) with the following properties.

(2-1) i) 0o = 1 ϋ) A(ej) = Σ3 ̂  ® ^-* ϋi)

where βp is Bockstein operation.

Dyer-Lashof [4] defined on H*(X: Zp\ the extended p-th power ope-

rations Qψ — Qj9 j = 1, n, with the following properties, where X is a

Hn

p space in their sense.

, Zp) —± Hpk+j(X, Zp\

2) Qj is a homomorphism for / ^ w — 1,
(2-2)

3) Qo is t n e Pontrjagin p-th power,

4) Q2j-i = /32>θ2i, 2j<n~- 1, βp is Bockstein operation,

5) %&Hr(X,Zp), Q2j{%) = 0 unless the change in dimension, 2j+j>r—r

is an even multiple of p — 1,

6) Cartan formula:

X,F:#>space, x<=Hr(X,ZP), y<zHs(Y,Zp), 2j<n then

O2i(α: <g> y) = (-l)-^-lV2 ^J Q2. ( α ; ) (g) Q (y).

For / = (εί9jl9 , ε r , i r ) , e< = 0 or 1 and Λ ^ O , we denote Qj = ft1©^

We shall now formulate the Adem relations for Q<s. At first we shall

comment on the homology of symmetric group.

Let X be a connected finite CW-complex and xux2, &H*(X,ZP) be

a basis of Z^-module consisting of homogenous elements. Then et (x) x%
π

i ^ 0 , i ^ l , and ^ 0 ® ^ ® ®Xj9> is a basis of H*(J°°i:pX7tPX
p,Zp), where

not all the ^Ί, ,jp are equal and (jl9 -,73,) runs through all representa-

tive classes obtained by cyclic permutations of the indices. As the chapter

V I I I of Steenrod [13], we can obtain the following lemma.

LEMMA 2-1. X is as above. Let d : J~icPfePxX-+ J"πpxπpX
p be the twisted

diagonal map. Then the image of d* : HJif*icPl*P X X,ZP) -+ ̂ ( / " x ^ F , ZP)

coincides with the sub-module generated by ej®nx
p

j9 i
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LEMMA 2-2.

Let μ : Γ^vXnp{ΓitvkvY -> /"(wpjwp) ApJβΓj, -> / ~ ( Σ P 2 ) / Σ P 2 ^ ^ natural

inclusion. Then the following relations holds on

(2-3) a) jM*(βt ®ff (0y)p) = 0 wnto (t,y) is of the form (2s(p — 1) — ε, 2/(p —1));

s ^ O , ί ^ O , e = 0 or 1, or ((2s + l)(p—l) —ε,

/ ^ l , e = O o r l .

b) t > s(p + I)

c)

/(ft—*)CP—

[t/p] /(ft—s)(3>—1)~1

Now the Adem relations are formulated as follows.

PROPOSITION 2-3. Let X be an H^-space. Then we have the following

relations.

1) x e #*(Jζ ZJ,), deg x =

a) / >s(p + l)

(2-4) Q(2f-2ί2>)(2>-l)Q2«(

b) ί^5( j ) + l), 5 > 0 , m = ( ί 9 -

ί/Pl

Σ (-
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2) X<BH*(X9ZV) degx = odd >0,

c)

d)

[t/p-1/2] k g t

Σ (— 1) " " I JPί>V(2ί-(2Jk+l)j))(2)-l)V(2fc+l)(2)-l)l

[ί/p-1/2] /(* _ . ,
,7 i \ — L) I Jrrl Ik

k=[^t—s~m)/p} \kp+s—t-\-m '

On S2n+1, cyclic group π^ acts freely in standard way, and S2n+1 has

the CW-complex structure with p-cells in each dimension, and πp acts

cellularly. We denote this πp CW-complex by W(2n+1), and put W-\imW<2n+1K

We fix a πP equivariant homotopy equivalence W-+J~itP9 and we identify

these spaces, and hence identify Lp = Wlπp and J°°πPlπP. In § 1 we define

a continuous map h0 : Lp = J"'πp\πP -> QQSQ. AS in § 0, we define Xj e î ycp-i)

for /e.fiΓ, / = (β!,/!, ,ε r,y r).

In H*{QoS° : ZP), the Adem relations between xs and Qy are following.

PROPOSITION 2-4. /w H*{Q0S° : Zj>), ^ following relations hold.

a) £ > s(p + 1), 5 > 0 .

(2-5) Q(2t-2spXp-l)(%s)

fcp+s-ί

r>0

b) t ~^L s{p + 1), 5

t/pi

Σ (~i

r>0
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2-2. We shall define a filtration in C as follows;

(2-6) 1) C = GoΏdΏGzΏ

2) Gi = ker ε where ε : C ->ZV is the augmentation.

3) ω{xj) = p\ where / e # , / = (εl9jl9 , ε r + 1 , ; r + 1 ) and ω(x) =

inf {# # e G ς } for a ε C .

4) ©(tfj/Ί xJr

k') h

if deg x Jt = odd then fcs = 1.

Then C become a filtered algebra, i.e. ω(x 'y)^ω(x) + ω(y). And £0C

denotes the associated graded algebra. Then we have easily obtain the

following proposition.

PROPOSITION 2-5. E0C is a free commutative algebra generated by

By the definition of the filtration on C and by Proposition 2-3 and 2-4

we obtain the following proposition

PROPOSITION 2-6. If x<=C belongs to Gq, and J = (εl9jl9 ,ε r,y r), e t=0

or 1, i i^O, ^ z Qj(α ) belongs to Gprq.

COROLLARY 2-7. For j^l, and J as above, the element QAβpXj) belongs

We shall define the Zv module homomorphism Λ \C®C-*C as follows

to Gpr.

(2-7) Λ : H*(QQS* : Zv) ® H*(Q0S
Q : Zv) -> H*(

Then we have the following proposition.

PROPOSITION 2-8. The following relations hold. Let a,b,c&C.

(2-8) i) Λ((« + δ))®c) = A(a®c)+ A(b<g>c)9

ii) Λ(α ® (b + c)) = Λ(α ® 6) + Λ(α ® c),

iii) Λ(l®«) = Λ(«®l) = 0 ifdega>0,

Λ(1®D = 1,

iv) Λ((β 6)®c) = Σ ί - l

ίϋfer̂  Δ(c) = Σ c ' ® c"9

V) Λ(«® (fc C)) = Σ(-l)de g
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Proof, i) and ii) are trivial, iii) follows from the result that if Oeζ)o(S°)

is the trivial element, then the image of OxQ0{S0)-±Q0(SQ) is 0. iv) and v)

follows from Proposition 1-7.

Next we shall introduce a filtration on C®C as follows;

(2-9) Gj(C (x) C) = Σ_ Gh{C) (x) G,2(C).

PROPOSITION 2-9. If x&C belongs to Gq9 then A(x)^C0C belongs to Gq.

This follows easily from Cartan formula, and Proposition 2-6.

Our final object in this chapter is the following.

PROPOSITION 2-10. If %^{QJβpXj)®{QJfβv'xj,)9 where I = (εl9jl9 , ε r ,/ r ) 5

]' - (ε'uJΊ, * >s;,/ί), and j,j' >0, then Λ(#)eC belongs to GPr+.-i.

We shall prove this proposition in the last of this chapter.

COROLLARY 2-11. If a ε C (x)C belongs to Gq9 and q>09 then /\(x) belongs

to Gq+1.

This corollary follows from Proposition 2-8 and Proposition 2-10, by

tedious calculation.

We shall define ζr : U -> Q0{S°)9 r = 1,2, , in the following way,

where Uv — LPx LV9 r-fold product.

L E M M A 2-11. The image of (ξr)* : H*(Lr

p)-+H*{Q0{S°)) coincides with the

submodule generated by Qjβpxj9 7=(Si, Ju >εr_i, yr-i), ε^=0 ί?r 1, .7* ̂ > 0, y ;> 1,

ε = 0 or 1, i# positive degree.

Proof. This follows easily, using induction on r, from lemma 2-1, and

the commutativety of the following diagram:

(€r) 0*
H*(Lr

p) ""- ~- " ' "
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LEMMA 2-12. The following diagram is homotopy commutative.

SrXζs Λ
Lr

p x L% > QoS°

Δ,+i

( L ; x vp) x {Lr

P x L P ) P

-txid)* z ,. )P Tirfx(-l)*

-1 x L})p > QoS°

where jrr_i : LJ = LI'1 xLj,^-Lp"1 w ί& projection to the first part. This lemma

follows easily from the results that hQ is equal to h\/{-pid) and the distributive law

of Proposition 1-7.

LEMMA 2-13. c = (—1)* : H*(Q0S
0)-* H*{Q0S°) is filtration preserving.

Proof. The following two diagrams are homotopy commutative.

Δ
a)

(-I)X(-I)
b) QoS°xQoS0 >QoS°xQoS°

l v (-D l
QoS°

b) shows that c is algebra homomorphism, and y^H*(Q0S°), A{y) = y®l

+ 1® y + Σ2/r® y"> Then ε(y) = c(y) +y+'J]y'c(y"), where ε:C-+Zp is

argumentation. Since c is algebra homomorphism, it is sufficient to prove

c{Qjβe

pXj)^Gvr if I/I = r. This follows by induction argument from Corollary

2-7. and Cartan formula.

Proof of Proposition 2-10. From lemma 2-11, it is sufficient to prove that

the image of Λ* (?rΛ£«)* belongs to G^r+s-i, r, s ^ l , for positive dimen-

sion. If y(=H*(Lr

pxLs

p), and deg y > 0, then AP+ί{y) = 2/ ® 1 ® ® 1

+ Σ2/i ® 2/2 ® ® 2/2 + Σ2/1 ® 2/2 ® ® 2/p+i, where in the third term,

(2/2, ,yP+i) is not of the form {y2, ,#2) Then lemma 2-12 shows

(-l) (fr+t-lW^r-l
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But in the third term, since (y2, , yp+i) is not of the form (y29 , 2/2) if

(#2, , yp+i) 'appears then its cyclic permutation (yβ(2), ,ΪΛr(p+o) appears

for (TGJΓJ,. SO that the third term vanishes. By lemma 2-13, (—l)*(?r+,-.i)*

(πr-ιXtd)^(y2) belongs to 'GPr+ -2, so that the second term belongs to
j

Gpr+»-i. The first term belbngs to G^+s-i by lemma 2-11 and Corollary

2-7. This proves proposition

§3. Pontrjagin riiig H*(SF,ZP)

3-1. In this chapter, p denotes an odd prime number. We shall

'consider H*(QO{S*),ZP) as a Hopf-algebra with product- ~Λ* : #*(Qo(S°), Z )̂ (x>

H*(Q0(S0),Zφ)->H*(QoS0xQoS0,ZP)-+H*(Q0S
0,Zί)), and with standard diagonal.

We shall denote this Hopf-algebra by C. Then C and C are naturaly iso-

morphic as coalgebras. Since SF is an //-space, H*(SF,ZP) is a Hopf-

algebra over Zv. Let i : Q0S
Q—>SF be the inclusion defined in (1-6). Then

ί* : C = H*(Q0S°) -* H*(SF) is a Hopf-algebra isomorphism because of defini-

tion of "Λ, c.f. (1-7). So to determine the structure of Pontrjagin ring

H*(SF,ZP)9 it is sufficient determine the ring C.

PROPOSITION 3-1. If u,v^C, and u^Gi9 v^Gjf then ~]\*{u ® v) belongs to

Gi+j, and Λ*(^®^) and u v are equal mod Gi+j+ί.

Proof. If Δ(«) = u®l + l(g)u + ΣLW® U", and Δ(t ) = v®l + 1 ® r

+ Σw/®t;//, then by Proposition 2-9, uf®u" belong to Gi9 and v ' ® ^

belong to Gy. By Corollary 1-6.

~R*{u®v) = uvΛ t\*{u®v)

+ Σ ( - l ) d e g w / / ^ ^ ( i i V J A * ^ ® i 'O

+ Σ(-l) d e g Γ M

The term uv belongs to Gi+j9 and by Corollary 2-11, other terms belong

to Gi+j+1. This proves the proposition.

We shall introduce a filtration in C by that of C. Then Proposition

3-1 shows the product in C is filtration preserving.

THEOREM 1. As an algebra H*(SF9 ZP) is a free commutative algebra generated

by xj = Uxj)9



CHARACTERISTIC CLASSES 17

Proof. Let E0C, and E0C denote associated graded algebras with respect

to the nitrations. Then Proposition 3-1 shows that E0C and E0C are iso-

morphic as algebras by Eoi*. On the other hand C and E0C are isomorphic,

and these are free commutative algebras generated by Xj and {xj}, J^H,

respectively. This proves the Theorem.

§4. Hp structure on BSF

4-1. If πι : ζ -> X and π2 : y -> Y are two spherical fiberings, then we

shall define the exterior Whitney join product as follows.

(4-1) ίΓiίίΓa :ξ*y-+XxY.

where ςtη = {(t^xy)® t2{xxe2)<=(ξxX)*(Xxη)

ίri(^) = x and π2(e2) = y if ίlf ί2 > 0 } .

and (jri*3Γ2)(ίi(^iXy)Θ t2{xxe2))

if

if

And if Z = F, then we shall define the interior Whitney join ς*η ->• X as

fiber product.

<4~2> 1 Δ 1
X > Xx

By the same method as in Hall [5], it is easy to prove that Whitney

join is a spherical fibering.

We can interpret the iterated exterior Whitney join of πέ •:?*-> AT*,

i = l, . . ., q, by the following.

TΓi* «7Γg . ςi* * *ςq ^ A ^ A Λq.

- ,<fi* iζq

= [(t^βixx^x » l t q )© ®(ίς(α?ς § 1x xa ̂ -iXe,)

G(^XX2X XXq)* *(-XΊX Xl3_iX? ?).

Λvith

^ i . β = = • • • = xq-ΐt'q"— πq(eq).
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if tj = 0 then we omit the condition on πj(ej) and xkJ }

Let ξq -> Xq denote the exterior q-th. join of ξ -> X with itself. Symmetric

group Σ<z a c t s o n -^α a s permutation, and on ξq as follows. For

<j(*i(ei X α?li2 X X XUq) Θ Θ tq{xqΛ X X Xq,q^ X eβ)

Then the operation σ commutes with projection ξq-+Xq, and define a

fiber map.

Let π2 \ J~^qxXq -*Xq be projection on the second factor. If π*(ξq) =

/°°ΣgXί9 is the induced fibering of ξq by π2, and 2 5 operates on π^{ξq) by

ίf(β)f e) = (σ(ω), σ{e)\ ύ ) £ / % eef', <;EΣg, then a is a fiber map covering the

operation σ :

PROPOSITION 4-1. 7%£r£ m ^ β spherical fiber space P(i) -+ J°°*Σlqx ΣqX
q and

a bundle map π*{ζq) -> P(ξ) such that the following diagram is commutative for any'

(4-3) I

It is easy to prove this proposition so we omit it.

We shall call this, fibering P{ξ)-> J°°J]qxXQ by the extended p-th join

off.

PROPOSITION 4-2. Let ^ ς -> X and π2;η-±Y be two spherical fiber spaces,.

then.

a) There is a natural fiber map as follows.

(4-4) i
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b) If X—Y, then the following two spherical fibering are naturally isomorphic.

" Σ,

COROLLARY 4-3. The following isomorphism holds.

P(f»l) . > P(ξ)*P(l)

I I
r Σ, χ^χq >• r Σ3

1 -»• X denotes the trivial bundle with fiber S°.

Let BSG(n) be the classifying space of SG{n), and Tn-+BSG{n) denote

the universal oriented spherical fibering with fiber S71"1. Consider P(rn)-*

J~J]qXzq(BSG{n))q, then if n is even, then P(ΐn) has the natural orientation,

since σ : S71"1** *Sn~1 -^S71"1* *SΛ"1, < / e Σ ? is orientation preserving.

Define

(4-7) θ = θi: ΓI]qXΣq(BSG(n))p -> BSG(qn)

as the classifying map of P{Tn). We shall also consider

(4-8) θ = θl Γπq Xπq(BSG(n))q -> BSG(qn)

as the restriction of θl of (4-7).

4-2. Consider regular representation N = Nq

(4-9) N=Nq:Σ«->0(q)->G(q).

Then it is easy to see that the bundle P(l) ->• /°°Σg X Σ q X
q is the associated

spherical fiber space to the principal J]q bundle J~Y\qxXq-+ J~Y\qxΣqX
q with

Consider the following map fn

(4-10) fn : Lc

p

2m+1) =

where p is odd prime number and xo^BSG(n). Then fn is the classifying

map of the associated spherical fibering with πp principal fibering W(2m+1)-+

L<2m+1) ^y w-times regular representation: πp-ϊSOiφn) -+SG(pn). By Kambe
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[6], the order of regular representation in KO(L^m+Ό) is a factor of p\ where

s = [(2m -f l)l(p — 1)] + 1. So if n is divisible by ps and greater than 2m + 1,

then we can assume that 0(I^(2m+1)x*ί,(tfo)2) = yo^BSG{pn).

REMARK 4-4. »Sm^ ί& order of the regular representation N in KOU^q) is

finite, if t is finite, the above consideration holds when we consider / * Σ β instead of

W(2m+1) for some t and n<

Let π : ESG{n) -»BSG{n) be the associated principal fibering with

ϊn->BSG(n)9

(4-11) ESG{n) = {/ : Sn~ι ->Tn / : orientation preserving fiber map}

* -+ BSG(n)

Af) - /(*).

Fix an element gn^ESG{n) with π{gn) = x0, and define gn'.SG(n)-+

ESG(n) by gn(f) = gn f. Then we can identify the image of gn with the

fiber jΓ-^β). Define gpn : SG(pn)-+ESG(pn) by putting ^ Λ : S1"71"1 -> rPΛ,

rΛ+

and ^ Λ (/) = / o gpn. And identify π"ι{yQ)^ESG{φn), with SG(pn) by this
map gpn.

Define a map ôΛ : W(2m+1) -> SGipn) by

( , 0 n £»)
(4-12) j5n(ω) : S ^ " 1 > WΓ(2»+i) χ γp > p o { T ^

I I I I
m+v x(BSG(n))p > W(2m+v xπpBSG{n)p > BSG(pn).

Define a homomorphism pn : πv -> SG(pn) by

P{σ)(t1x1 ® v © ίs,a?P)..= U.ω^ω ® ® t^x

(Mi Θ Θ ί p ^ J e r 1 * *Sn'1 = S^"1.

Then we have,

PROPOSITION 4-5. The following formula holds.

(4-13)" M
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Proof. This follows from the commutativety of the following diagram.

(ω, gn* *gn)

(BSG{n))p

»+i) x (BSG(n))p

P R O P O S I T I O N 4-6. Z^ί ^o^,: T7 ( 2 w + 1 ) -> SG(n*), t = 1,2, έ^ ίfe m ^ o/ (4-12).

ρn*pn2 and pni+n2 are πv equivanantly homotopic as maps, W(2m+1) ->SG(wi+w2).

Proof is easily follows from proposition 4-2.

Define a map θί : W^m+1)x(ESG(n))p -> ESG{pn) as follows.

-,fveESG(n).

(ω,Λ*

I 1 I
+1) X(BSG(n))p

I I
πp(BSG(n))p-*BSG(pn)

PROPOSITION 4-7. #£ is a %v equiυariant map, where πP operates on ESG{pn)

trivially.

This follows easily from definition as that of proposition 4-5.

By proposition 4-7, we can define the following fiber wisemap.

SG(φn)

(4-15) Sn :

1
W<*»+ι>Xπ,(BSG(n))p

ESG(pn)

1
BSG(pn)

PROPOSITION 4-8. θn : W}2m*l)Xπp{SG(n))p is expressed as follows.

(4-16) ${a>\ /i, , /p) = p(ω) p(ω)-\
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PROPOSITION 4-9. The following diagram is homotopy commutative.

idx(o)p

W(2m+D x πp(SG{n) x SG{n))p > W<2™+1> X πp(SG(n))p

(4-17) ^

+l) χ ( S G(W) χ SG(u))P SG(u)
πpχπp

i enχθn Γ
πp(SG{n))p x W<>2m+» x ^ ( S G ί n ) ) 2 7 > SG(n) x SG(rc)

R E M A R K 4-10. By remark 4-4, £fe above construction θn can be extended as

follows

> SG(pn)

(4-18) θn : EΣΰ'X Σp(ESG{n))p > ESG{pn)

I I
BSG(pn)

At the last we shall consider the relationship between θn and the sus-

pension homomorphism.

PROPOSITION 4-11. The following diagram is homotopy commutative, where

s = [(2m + l)l(p - 1)] + 1.

(4-19) WVm+1>Xπp(BSG(n))p > W<2m+Vχπp(BSG(n + ps))p

BSG{pn) >BSG(p(n + p8))

Proof By proposition 4-2, the fiber space P0{ϊn*(ps)) is equivalent to

Po(rn)*(p*N). And the fibering (p*N)->W(2m+1)Xπp(BSG(n))p is equivalent to

the trivial fiber space. So proposition follows.

PROPOSITION 4-12. The following diagram is homotopy commutative,

s = [(2m + l)l(p ~ 1] + 1).

(4-20) WQm+»Xπp(SG(n))p >W«m+Vχπp(SG(n + p*))p

SG(pn) > SG(pn + pp+1).

Proof is analog as that of proposition 4-11.
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§5. Decomposition of θ.

5-1. In this chapter we shall study the map θ : WXnpSGp ->SG. p is

always an odd prime number. For topological spaces X, F, we denote by

G(X9Y), the space of all continuous maps from X to Y with compact open

topology. And if X and Y are endowed with base points, we denote by

F(X,Y), the space of all base preserving continuous maps. We denote by

G(n), the space G(Sn~\Sn~ι), and denote Gq(n)9 the subspace of G{n) consist-

ing of the maps of degree q,q<=Z.

We denote g*={£ = {εί9e2, ,Sj,);Si=0 or 1}. And for Eeg 7 , \E\ is

the number of elements of the set {εi9 ε< = 1; E — (εl9

 9

9εP)}. The cyclic

group ίΓp operates on g7 by σ(εi, , εp) = (ε,(D, , ε^)). Introduce a total

ordering in g* by

E < Ef β! = ε{, , ε,_i = εj_lf ε, < εj,

where £ = (e^ ,ep) and £ ' = (ε(, ,ε£).

g7 is by definition If/jr̂ , and w : g5 - > ^ denotes the projection. Define a

cross section s :W-*& by 5({£"}) = the first element in [E] by the total

ordering, and g^0 denotes the image s(!f).

Define a map φ2 : S
n'1 -> SJ"1 VS?"1, by the following way, where SJ"1 VS?"1

denotes the one point union of two spheres SS"1 and S?"1.

(5-D φάΦnMu , - i ) )
l ^ ( , U e S Γ 1 , 1 / 2 < ^ i <

where ψn^ : (In~ί

9dIn~ι)-^(Sn~\^ ) is relative homeomorphism.

For £ oegΌ, define a continuous map ̂  : (Q^S*-1)* -+G(pn)

S3™"1) by the following diagram. lu ^

2̂* *̂ 2

WΛ, •,/,) i s- 1 *. ••s-1 •—•(s -'vsr1)*- ••(sr1vs?-1)
(5"2) I ιEo(iw ,ip) Ispn~[< v sj— j

w h e r e S Γ " 1 = S 2 7 1 * - ••S?;1 for E=(εl9 ,ep) a n d / ^ ( Λ , • • • , / , ) r e p r e s e n t s

t h e f o l l o w i n g m a p .
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(5-3) a) if E^=σ(E0) for any σ^πP, then lEo(lί9 ,/,) is 0* *0, where

0 : S n " 1 - > * - > S n " 1 .

b) if E=σ{E0) for some ( J G ^ , then /*,(/i, -,lp) is /ϊ1* *lp% where

/{ = idn-u and /} = lί9 E = (εly ,sP).

LEMMA 5-1. 7%* following formula holds for any σ e π, and lί9 ,

(5-4) VB (l,φ, * '» /.<p>) = PWVEO(II, ',lv)p[σ)"K

Proof This follows from the commutativety of the following diagram.

pn~ι

where Piσ)]^ : SΓ~ι -+S!£;\ is defined,by y

® v Θf.<p>a,(p)).

Next define a map 0£o : T F ^ ^ x ^ Γ ^ - T ^GOm), by the following

for

(5-5) ^ 0 ( ω : / l f ,7.p) = ρ(ω)yEo{ll9 - , lv)ρ{ω)~ι.

PROPOSITION 5-2. 0έ<> : WΓ ( 2 m + 1 )x(i2Γ1Sn"1)p -+G(pn) is a πp equivanant map.

So we can obtain

(5-6) θs. ' WV**»XxvW
lS*-x)* -> G{pn).

This follows from the formula (4-13); ρ{σω)p{σ) = j5(ω), and lemma 5-1.

5-2. Denote V SΓ" 1 by X, V SIΓ 1 bY x<» a n d V SίS;,1 by ̂

J^ o for £oeifo Let ί̂ 0 : XEo -+X, iEo S ? 7 1 " 1 - ^ ^ be natural inclusion, for

isΌegV Define continuous maps, π:X-*X0, π0 : X0-+Spn~ι

9 πEo :'X-+XB99

πEo : ^ o - ^ S ^ " 1 = Spn"K for Eoe%Ό as follows.

id
(5-7) ii) π01, , : S i p 1 ^ Spn-i — > Spn'1,
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id
, > gpn-l = ggn-i^ Jf £ =

for some

> (*)* . *(*) =
if E ψ σ{E0) for any

d if E = Eo

n"1 o* *0 if E ψ Eo.

Define the maps 9j99jE, : (ΩΓιSn-1)p ^G(Spn"ι

9X0)9 E0(Ξξf0, by the follow-

ing way. EQ = (εlf , εp), ll9 , -

(5-8)
?Λ(/I, ••••/,) = is. ^o ?(/i, , /,) : S**-1 ~> Xo

For ( » ε P » + 1 ) , define p'(ω) : Xo-±Xo as follows.

(5-9) ^ ( ω ) ! ^ : SJ?"1 = S'""1 — ^ U s ^ " 1 = SSJ"1.

For σejrj,, define ί>'(σ) : Xo -> Xo as follows.

(5-10) ι<>'(σ) I _ . , : SiΓ1 = S2"1

Then it is easy to show the following formula.

(5-11) p'(σω)p'(σ) = p'(ω"

Define continuous maps 6', Θ'E% :

by the following.

(5-12) i) ff'(ω; lu , /,) = p'(ω) ?f(/,, , lv)pW~ι

ϋ) ^o(ω; /i, , /p) = p'{ω) ^ 0 ( / l 5 , lP)p'{ω)'{ω)~ι

Then it is easy to show that 0', and (?ίβ are πp equivariant, and we obtain

the following maps.

(5-13) i) θ : W(2m+1)xπp(ΩΓιSn-1)p -> GiS**-1, Xo)

ϋ) θEΰ
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5-3. We shall consider the relations between Θ and θE09 and between

θ and θEo. Let A be a finite CW complex, (not pointed), and EA denotes

the (not reduced) suspension of A, i.e. EA = AxI/—. We endow the base

point on EA by {(A90)}. And J?A denote S{EA) = (EA)AS1. Define a

map y> : Σ M -> Σ2-4 by,

(a,tl92t2)

(a,tu2tt-l), l/2s£*

Then Σ 2 # and Σ 2 ^ 0 are defined as follows.

(5-14) Σ 2 0 : T7( 2 w i + 1>xπ pW 15 n~ 1) p->G(S p n-\X o)

Introduce a product in F&2Spn-\ll2Xo) by the following.

ψ (fVg)
(f\/9): H2Spn1 Σ 2 S ' n 1 V Σ 2 S 1 " 1 1

Then define the map V

(5-15)

PROPOSITION 5-3. Σ 2 ^ and V Σ 2 ^ E ° fl^ homotopic on (pn — 5) skeleton of

Proof. By definition Σ 2 ^ o = (Σ 2 ^o) ° (Σ 2 ^o) (Σ2#~) so that proposition

follows easily from the following lemma.

LEMMA 5-4. Let Xl9 , Xr be connected finite CW complex with base
i

points, and X€ is (n + mj connected, n>0, mi>l. Then Ωn{Xι\/ \fXr)-±
V

Ωn{Xίx xXj) = Ωn(Xι)x x ^ ί ^ - ^ β ί-XiV V-Xr) is homotopy equiva-

lence on (m — 2) skeleton, where m = m i n {ml9 , mr).

Continuous maps π0 : X 0 -^S p n " 1 , and πE, : XQ-^Spn"ι

9 c.f. (5-7), define

maps πθ9πEo:G{Spn-]

9Xo)~ϊG(Spn~ι

9S
pn'~ι) = G{pn). In §4 we introduce a

continuous map θ : W(2w+1>Xιtp(SG(w))p -+SG(pn). We also denote by 0 the
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, „ lVΓ ϊ

following map : W«m+» x πp{Ωn

0-
ιSn~ι) > W«m+1) X *,(SG{n))p -> SG

(pn). Then we have

P R O P O S I T I O N 5-5. θ = πo θ and θEo = πEo-θEo, E0(=ξf0, as maps W(2m+1)xπp

From this proposition and proposition 5-3 we have.

PROPOSITION 5-6. Σ 2 # and V H2θEo ore homotopic on {pn — 5) skeleton

as the maps : Wi2m+1)Xπp{Ω^ιSn'Ύ ^F{Σl2Spn''ι9Σi

2Spn''1) = Ωpn+ιSpn+1.

It is easy to show that 0(o 0> W^2m+1)Xπp{ΩΓ1Sn"1)p -*G1(pn) is constant

map, so we obtain.

PROPOSITION 5-7. The following diagram is homotopy commutative on {pn—5)

skeletons.

θ Σ 2

-G(pn)—>Ω\n+ιSpn+ι

Δ Ωp

o

n+1Spn+1

tv' TT"V2Λ V11 / i ΌE§ I

Π ^W(2m+l)v (On~λ Qn~l\P\ ^. TT (QPn+l Opn+l\J?

\VV y\7Zp\ύaQ tj ) ) EQ r J-X \""1 O /-*-^0

(5-16)

5-4. For 2so^iPo> define continuous maps pEo : X->Spn~ι, and 2?£o : XEo

-±Spn~ι by

Sj—i = S^'1 — > Spn~ι if E = <τ(£) for some

\SPn

VEO =

0* *0
^S1171""1 if E ψ σ{E) for any

Introduce continuous maps AΛβ : Lc

p

2 m + n=T^ ( 2 m + 1 )/ίrP -+G{pn), for

as follows. hEo{ω), α>eW(2m+1) represents the following map.

(5-17) hEo(ω) : S^" 1 > Spn~ι > X > Spn~ι

PROPOSITION 5-8. The following diagram is homotopy commutative for

0 < \E0\ <p.
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θEo

—>G0(pn)
(5-18) ^

G(pn) x G0{pn) > G0{2pn)

where lEQ(l) = /βl* •*/'*, Eo = (εx, .,6,), I) = id, /} = /,.

/ . At first, choose a homotopy F S θ f ί : β j " 1 ^ " " 1 -ϊGQ(2pn) with the

properties, a) FΛ,<>(/) = (/βl* •*/*')*irfPn.1.

b) FEQM)= idpn-i*{lei* ' */ β ? ). And then define fcOfί : βJ^S 7 1- 1 .-+G(XS9

*Spn~ι,XEo*Spn-1) as follows, where X* = XxJΔrι= V ^ ^ S S T ^ S ^ T V Δ 2 7 ' 1 .

And define ^ o . c : ^ Γ ^ * " 1 ->G{2pn), as follows,

And define 0Λfβ(<»,/) == (p(e))*irfpn-i) ° (VEOΛD) °(/o(ft>)"1*ίW2,7l-1). Then it is easy

to show that ^ O t O and (*irf P f t . 1 )(i ίxΔ,) is homotopic, and £ f fOt l and (*)

(hEoxΓEQ) is homotopic. This gives the proof.

Now introduce the following map (fp : TF C 2 m + 1 ) x(^Γ 1 S n ~ 1 ) p -^G 0 (pn) as

follows.

(5-19) 0,(ω Λ, , /P) = p(βι) (/i* •/,) ιδ(ω)-1.

PROPOSITION 5-9. θp and θ<n D : Wi2m+1)Xπp(ΩΪ~ιSn-1)p-+G0(φn) are homo-

topic.

This proposition is proved by the same idea of two proof of proposi-

tion 5-8, so we omit the proof.

The following is the easy consequence of proposition 5-9.

PROPOSITION 5-10. The following diagram is commutative.
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(5-20)

id

χ

#(l....,l)X#(l 1) ψ

Q

Next define Sψ : W r< 2 l Λ + 1>χW | >(flr 1Sn" 1) p—>G qp{pn) as ί c «(ω / l f ,

= /δ(o)) (/i* */2>) p(a))~K T h e n we o b t a i n following proposit ion easily.

PROPOSITION 5-11. Tfe following diagram is commutative.

idXπ,(o)»

(5-21)

( ^ Γ 1 S71-1) X T^^2--1) X ̂ ( β ? - 1 S71-1

Remark 5-12. 4-4, θp, and θ^ can be extended on

§ 6. Computation of the spectral sequence.

6-1. We shall introduce the extended p-th power operations Qj9 j=0.

1,2, on H^BSF,Z.P) and H*(SF,Z<p), where p is an odd prime number.

For an element χ(=H*{BSF,Zv) and ^O, we shall pick up a large number

n divisible by p' for large s, and represent x as an element of H*{BSG(n), Zv)>

and then define Qj(x) as the element θ*{ej<g)xp). Then by Proposition 4-11,

Qj{x) does not depend on the choice of n. For xeH*(SF,Zp) we shall define

Qj(x) similarly.

These operations Qj have the similar properties as the extended p-th

power operation Q; defined by Dyer-Lashof [4],

(6-1) a) Qt is Zp-module homomorphism. j = 0,1,2,

b) Qo is the Pontrjagin p-th. power.
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c) (?2j-i = β-pQzj, where βp is the Bockstein operation.

d) For x<=Hr(SF9ZP) or x<=Hr{BSF,Zp), Q2j{x) = 0 unless the change

of dimension 2j + pr — r is even multiple of p — 1.

e) Cartan-formula holds, i.e. for x<=Hr{BSF,ZP)9 y^H${BSF,Zp) or

xe^Hr{SF,Zp)9 y^Hs(SF9ZP)9 following formula holds:

Qφy) = (-i)rHP~1)/2ΈQ2ί(χ)Q2j-2i(y).
i = 0

Now we shall consider the following principal fibering SF-^y ESF-+ BSF.

And then consider the Serre spectral sequence associated with this fibering.

Then we obtain the following proposition.

PROPOSITION 6-1. (transgression theorem) In the spectral sequence El*=H*{BSF,

ZP)®H*{SF,SP)9 E%*=ZP. We obtain the following relation.

Suppose x&E2

2n;o is a transgressive element, and y&El,2n-ι is an element such

that, τ{x) = y in 2£j>*2n-i Then

(6-2) a) τ(Q0(x)) = τ(xp) = cQpUy) in £ ^ V - i , c ψ 0,

b) τ(xp-1 ®y) = cQ^2(y) in E\n

2%l\, c ψ 0.

This proposition can be proved by the same method as Theorem 4-7

of Dyer-Lashof [4], so we omit the proof.

We will compute this spectral sequence using this proposition. So we

must compute Qv-2{x) and Qp-ι{x) in H*(SF,Zp). The answer of this problem

is the following proposition.

PROPOSITION 6-2. For any J = (εujl9 ,εr,jr)9 r ^ l , e4 = 0 or 1,

and e = 0 or 1, and j > 0 . QP~2(Qjβp%j) ond Qp-ι{Qjβe

PXj) belong to Gv^ι9 and

as elements of G P « i/(G P " i + 1 + decomp.), they coincide with c{Qv^1QJ^xj) and

c{Qp-ιQjβ*%j) respectively, where c is a non-zero constant. And decomp. means sub-

space of Gpr*i consisting of decomposable elements in H*(SF).

Let qjelPJto-viBSFiZp) denote the -th Ww-class ; = 1, 2, , and Δqj

denotes its Bockstein image.

LEMMA 6-3. For any x^H*(SF,ZP), x^G2f <x,σ(Aqj)> = 0 and <x,σ(q)>=0,

where σ denotes the suspension homomorphism and ζxj9 <τ(Δ )̂> ¥= 0 and (βPxj9

LEMMA 6-4. For J = (εl9jί9 , εr9jr), r ^ O , ε,: = 0 or 1, ; 4 ^ 0 ,

= 0 or 1, ; > 0 . ΘE^eMQjβ^jY) belongs to Gp^+l9 if \E0\ ^ 0,1,p.
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LEMMA 6-5. If /, i9 ε and j are the same as lemma 6-4. Then 0α,o...o)*

{ei®{QjβpXj)p) belongs to Gy+ l, and as an element of Gv+1/(G2>r+1+i + decomp.) it

coincides with c{QiQjβpXj)9 c ψ 0, decomposable means in H*(Q0S° : Zp).

LEMMA 6-6. If J = (εl9ju ,ε r,/ r), r ^ l αwrf i <p — 1.

(^®(Qjft^)2 ϊ) * ώ ^ to Gpr+i+1.
These lemmas will be proved in §7.

Proof of Proposition 6-2. From the proposition 5-7, the following diagram

is homotopy commutative:

W x πvQ0(S°)p > SG > Ω~S~

I*
o l+o

| π Σ 2 ^ v

On the other hand, we have

AM

So above homotopy commutative diagram, and Lemma 6-4, 6-5 and 6-6

show that (V*)(ΠΣ2^o)*Δ*(^i®(Qji9j^)p) belongs to G^+i, and as an element

of H*{QoSQ Zp), it is of the form cQiQjβ pXj + » + 2/, a ε G ^ , yεG,«i+ 1,

and a; is decomposable as an element of H^{Q0S°). Since i*(x)^H*(SF; ZP)

can be expressed as ajj + a?2, ^iGG/+ 1, ^ e G ^ , and a?i is decomposable as

an element of H*{SF), this proves proposition 6-2.

It is well known the following results.

(6-3) a) H*(SO,Z~,) = Λ{uι9U2, ) as an algebra, where deg ut = Ai — 1.

b) H*(BSO,ZP)=Zp[vuv29 •] as an algebra, where deg vt = Ai9 and

vj) = Σ ^ , ® ^ 2. ô = 1.
+ j j

c) In the homology spectral sequence associated to the universal

fibering SO-> ESO-+BSO, EU9zH*{BSO,ZP)®H+{SO,Z9), EU^ZP.

i) diJv*(vT) = yP*j if (Λp) = l
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We shall denote the inclusion SO -> SF9 BSO -* BSF by j . Then by Peter-

son-Toda [12], Im j * H*(BSF9ZV) is the polynomial ring generated by

y*(VjB_i ), / = 1,2, , and by dimensional reason, j*(Vj) = 0, if j ^ 0, > y ~ ^

We shall denote z5 = j*(v g^, j = 0,1,2, , then A{zj) = . Σ _ Zj®zh.

We consider i*(wp.i) = #*, ί = 1,2, . Then we obtain the following

lemma.

/-»»•

LEMMA 6-7. ys = cβpXj + x, x<=G29 cφO, in H*(SF9ZP).

Proof. Because (yj9 σ(qj)> ψ 0, so this follows from Lemma 6-3.

PROPOSITION 6-8. As the algebraic generators of H*{SF,ZV), we can choose-

the following elements:

(6-4) i) xj, yj9 j = 1,2,

ii) xl9 /Gi/ί, i = 1,2.

iii) Qp-i Qp-i(xi), I^H~9 * = 1 , 2 . QP^ operates on xl9 Mimes

iv) Qp-2QP-i Qp-i(%i)$ I&Hi, i = l,2. O^i operates on x7, Mimes

Proof This follows trivially from Proposition 6-2 and Lemma 6-7.

We can now formulate the main Theorem and prove it.

THEOREM 2. i) H*{BSF,Zp) = Zp[zί9z2, -](g)Λ(σxuσx2, ) ® C * , where

C* zV the free commutative algebra generated by σxj9 J^H^H^ σXj and σxj are

primitive elements and A{ZJ) = Σ zh (x) 2^.

ii) H*(BSF, Zp)=Zp[ql9 q2, ] ® A{Aql9 Aq29 ) ® C, C = yl

( )* ώ?z0te ίfe ί/z/̂ / elements.

/. ii) follows easily from i) and the following facts

a) <x, qj> = 0, <a, Δ ^ > = 0, if α e C * ;

b) <(τ^;, Δ^> =¥0, j = 1,2,

c) Zi is in the image of j * : H*{BSO) -> H*(BSF).

So it is sufficient to prove i).

We shall consider the following formal spectral algebra:
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with differential d

a) rf^ajy) =

b) diwj p<(zj)pk) = yP*j9 if (/, p) = 1,

c) rf2c,-i>, ,-»(2, ,0 = (^)^"1 ( ί >"1 } ® VJ ,-*, if (/, p) = 1,

d) d2j(p-iMxj)) = Xj, j = 1,2, ,

e) ί / W ^ i H = ^-i(x/), /e/Γ7f ί = l,2 and q = deg

f)

(7 = degίτ(^/), / G ^ ί , i = 1,2,

g) dβ(n(aί/)) = 2/, /eff j , 1 = 1 , 2 ,

Then dr is determined uniquely and /E%,^=ZP. Then we shall difine the

spectral algebra homomorphism fr : ^ ί ,*-• £*,* with f2{Zj) = zj9 f2(σ(x)) = σ(x),

x = xj or Xj. By Proposition 6-1, and the properties of dr in the homology

spectral sequence associated to SO -> ESO -> BSO, fr extsts. Then the

comparision theorem for spectral sequence shows that fr is an isomorphism

for r^.2. So we obtain H*{BSF,Z~,)=ZPlzj\® Λ{σ[Xj)) ® C*. So we obtain

the theorem.

§ 7. Proof of Lemma 6-3,6-4,6-5, and 6-6

7-1. The object of this section is to prove Lemma 6-3, 6-4, 6-5 and

6-6. p is always an odd prime number.

Let X be a finite connected CW complex with base point, and / : X

-> SG(N) be a continuous map. Let ξ = ξf -> SX be the spherical fiber

space of fiber S^"1 over SX associated to /. Let / : Xx SN~λ -> S""1 be the

representative of /, and G{f) : X*^"1 -> S^ be the Hopf construction of /.

LEMMA 7-1. Let T(ξ) be the Thorn complex of ξ = ξf. Then T(ξ) is

homotopy equivalent to SN U C(X*SN~ί), the mapping cone of G(f).

Let g : X-^Ωo"1SN'1 be a continuous map, and consider g = (g\/ idN~x):

X-±Q?-lSN-l->SG[N). Let OJO e X, SOGS^" 1 be the base points, then

X^SN-1l(X^sQ)\/(x0*SN-ί) is equal to XASιASN~1, and this gives the homotopy

equivalence between X*SN~ι and XAS1ASN~1, and we identify X*S*~ι with

XAS'AS"-1 by this map.
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LEMMA 7-2. G(g) yXtS*-1'-*^' is honwtόpic to (idΛhg) : XASN->SN, where

idxAg is adjoint map of idxAg : X-+Ω$SN.

LEMMA 7-3. Let Xu X2 be finite connected CW complexes with base points.

And fii Xi-± SUi are continuous maps preserving base points, i = 1,2, nt > 0f And

assume f* : H*(Snt : ZP) _->#%£ : Zv) are zero maps, _ i = 1,2. Consider fx\f2 :

Sn2 = Sni+nκ Then in H*(Sn^n* U C{XXNX2) \ Zv\ P3(s) = 0,
/1Λ/2

y ^ l , where Pj is Steenrod reduced power, and s E ^ i ^ S ^ ^ U C f ^ Λ ^ ) : Zv)
is the generator representing Sni+n*.

7-2. Proof of Lemma 6-3. If x^H*(SF, Zv) is a decomposable element,

it is well known that <α;,<τ(Δ )̂> = <#,<K#y)> = 0 By the result of §2 and §3,

the algebraic generators of Pontrjagin ring H*(SF) are in the image of

ί*(ίiΛ£r)* : H*{LpALr

p)-ϊH*(Q0S
0)-ϊH*(SF), r ^ O . So to prove the result

that for aj£G2, <#, σ(Δ^ )> = <ίc, σ(^)> = 0, we can assume that a; is in the

image of f*(5iΛ€r)> r ^ l . Let 0 : (Lc^)r+1 -+Ωξ-]SN~1 be the representative

of ?iΛ?r, r ^> 1. And consider ^ = W irfy-i : (Lc

p

m))r+1 -> ̂ J'"1 S^ 1 -> SG(A )̂.

Then by lemma 7-1 and 7-2, Thorn complex of ξγ is of the form

SNUC((L™)r+1AS»). By lemma 7-3, in H*(SN U C((Lfψ+ι ASN) : Zp), P ^ )

and APj{sN) is equal to zero, / ^ l . This proves the results that (x,σ{Aqj)>

= <α;, #(#/)> = 0. To prove the results that (xj9 σ(Aqj) > ψ 0, ^̂ ίCy, <τ(̂ )> ψ 0,

y ^ l , it is sufficient to prove that <J(Δ^)¥=0 in H*{SF:ZV). This is the

result of Peterson-Toda [12], indeed they proved that there is a continuous

map h : SLP -> BSF such that h*(Aqj) Ψ 0.

7-3. At first we shall prove the following lemma.

LEMMA 7-4. Let ξ = (V)* ° (Δ,) : H+iΩ^S"-1 : Z,) ->fl ίflΓ 1^" 1 x x

ΩΓ'S71'1 :ZP)^H^Ωn

0-
1Sn'1 : ZP). If x^Hr{Ωn,'ιSn'1) belongs to Gq, r>0. then

ξ(x) is of the form Σlyp>

Proof Since ξ is an algebra homomorphism, it is sufficient to assume

x = Qjβ'pXj. Then Cartan formula shows the lemma.;

7-4. Proof of lemma 6-4. By proposition 5-8, the following diagram is

commutative.
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H*(Gp(pn) x Goipn)) — > H*(GQ(2Vn))

By lemma 2-11, and its proof, the element :ei®{Qi{foxj)9GHiL(W{*m*v> Xπp

(Ω"-ιSn~ι)p) is in the image of (idxAP)*(A), where A is the submodule of

H*{LT+l) x ΩΓ'S"-1) generated by ek® Qiβ°PXι, r = | / | = | / | , / = 0,1, . . . ,

k = 0,1,2, , ε=0 or 1. So that it is sufficient to prove that (*)*(hEoxlm)*

(ek®Qiβ'pXι) belongs to Gpr*i+U where ek® QiβpX^A. If deg{Qiβ'pxt) = 0,

then dege f c>0, so that {*)*{hE^eκ)®~lE*{Qiβv%ι)) = Q So that we can assume

deg (QiβpXι)>0. On the other hand ΊEo : Ω^S71'1 -+G0(pn) is homotopic to

Λ i
S 1 j < i > s * < i >

Δfco
the map : Ωn^ιSn~ι—>Ωn

Q~1Sn'1 x x Ω^

l<A;o= | J E 0 1 < 2 ? . SO JEo*(Qiβεp%ι) belongs to G/or+Λo-i by Cartan formula

for Ql9 proposition 2-8, iii), and proposition 2-10. Let hEθtO denote the fol-

hE* i (V(-pίrf))
lowing m a p : Lc

p

2m+1)—>G0(<pn)->Ω$nSpn >Ωp

o

nSpn. Then U2m+ΏxG0(pn)

* i
Gp(pn)xGo{pn)->Go{2i)n)-±Ω2opnS2pn is h o m o t o p i c t o t h e m a p , L(

p

2m + 1 )

^ 0 , o Δ 2 Ap
xG0(pn) > Ωp

Q

nSpn x G0{pn) x G0{pn) > Ωp

o

nSpn X Ωp

o

nSpn x

Ax{i)p id XV V
(G0(vn))p >Ω2

0

pnS2pn X (ΩlpnS2pn)p > Ω\pnS2pnxΩlpnS2pn

So the above homomorphism maps A in Gp*or+*o-i+1 by using lemma 7-4 and

the result of § 2. On the other hand kor + k0 — 1 ̂  r + 1, since &0 ̂  2,

0. This proves the lemma.

7-5. We shall consider At s A(ltO...o); LC2m+1>-*Gp{pn) defined in §5. Let

hx : L^^'xS 1 " 1 " 1 ->S p n" 1 be the representative of hλ. And consider the map-

ping cone CTΓ, of A,.

LEMMA 7-5. //z ,ff*(CFl : Z p ) , P^s) ψ 0, Δ P y ( s ) ¥= 0, = 1,2, [2m + 1/

— 1 ] , lϋA r̂β s^Hpn-ι{CΈ: Zp) be the generator representing Spn~ι of C^ = Spn~ι

This l e m m a is proved by tediously long c a l c u l a t i o n acording to the

result of N a k a o k a [10], so we omit the proof.

hi i [M-pidn)
Next define hlt0 as follows, hlt0 : Dp

2m+ι'-+Gp(pn)-±Ωp

p

nSpn >Ωp

Q

nSpn.
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COROLLARY 7-6. In H*{CΈί,Q: Zp)9 P ' ( S ) ^ 0 , ΔJP\S)¥*O, j = 1,

[(2m + l)l(p - 1)], /or s ε f P - 1 ^ , , : Zp) generator.

LEMMA 7-7. In H*(LP : Zp) /or any iQ > 1, ^ r e is a number r > 0, such

that P ; ( ^ < 0 ( ^ D ) ^ 0. or PUe^^ύ-i) Ψ 0,

LEMMA 7-8* Consider huo : H*(Lp

2m+ι' : ZjO-^JϊΛβ ^ S * - 1 : Z p),

*i.o (««<^.i)) = cft ί i + 2/, ί = 1, 2, [(2m + l)/(p - 1)]

hUo<ej)-O if j*p2i{p — l) or 2i{p - 1) - 1.

where x,y&G2, and c^Zp is non zero constant not dependent on i.

Proof. By lemma 7-6 and lemma 6-3, λito (βsκ<2>-i)) = £&% + >̂ ^i ¥= 0,

2. We shall prove that Ct is indepent on i by induction. Assume

c = d ί= * — c ί 0-! for z'o > 1. By lemma 7-7, there exists r > 0, such that

PKetuip-i)) = β̂ 2Uβ-r)Cp-i>> o r ^ί(^2io(2)-i)) = «^2Uo-r)(2>-i)> f° Γ some 0ψa<=Zv.

And since a4 = ^ 0 * ( ^ ( ? - D ) for Ao : L^^^-^^Γ^ 7 1 " 1 , Pl(xu) = flrαlt.r or

Pl(βp*u) - aβvXi*-r. So that AltO*(Pί^o(2>-i)) = Ai.oK^uo-^ί^-i)) - «cα;ί0-r + »' or

ΐϊi,o*{P*βve2i(p-iύ = acβpxi0~r+ yf for some, a?' or y'<=G2. On the other hand

by naturality of PJ or Pr/3*, Ai.o ^ ί ^ cp-i)) = Pί(AltO*(^2io(p-i)) = Pί(^io^io + α)

= «cίoίcio_r + Pί(a;) or hU0*(Pr βpe2io(P-i)) = Pί^Ai .o^io^-i)) = P*βp(citxu + x)

= acioβφxu-r + Plβpx. On the other hand by the result of Nishida [11],

P*(x)9 PίβPx^G2. This shows cu = c. The results that A1#o (^) = 0 for

j=f*2i(p — l), 2i{p — 1) — 1, follows from the Remark in §5 that hi factors

through J3Σ,(f) as follows, ^ : Lc

p

2m+1)

7-6. Proof of Lemma 6-5. We are given an element

H*{W*m+»Xπp(ΩVSn-Ύ : Z P ) w h e r e J=(εujl9---9εr,jr), r ^ 0 . "βy proposi-

tion 1-9 the following diagram is commutative.

, x Qo

H*(QPS» x QoSd) > H*(Q0S»)

On the other hand by proposition 5-8, the following diagram is commutative.
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I ^( i ,o. . .o)X/(i ,o. . .

W e c a n choose a n e lement x&H*(Lp x Q0S
Q) such t h a t (id x Δ^)*(^ ) = ^ ®

(Qjβ'pXj)** Then by lemma 2-11, x is of the form Yic(k,I,εf,l)(ek®QIβpxι)9

where ^O, / = (εl9 il9 ,εr, jr)9 εf = 0 or 1, and / = 0, 1, 2, . So

Xj = Hc(Jc,I,ε',l)(h*(ek) A(QiβP'Xι)). On the other hand 0(1.o...o)*(^®

+ Ilc(k,I9ε'9l){hilto...o)*(ek)A(QIβ
epXι)). By lemma 7-8, Λ(1,o...o)*(^) = c Λ1|t(βfc)+ί»,

if λ; ̂ 0 , and x^G2, c^O. And by extension of proposition 2-8, iv), Cartan

formula, and extension of proposition 2-10 shows that xA(Qiβi'%ι)^Gpr**+ί,

and by lemma 7-4, h*{eo)A(QiβP'Xι) = ^(i.o...o)*(^o)Λ(Q7^ί) belongs to G^+i,

and decomposable. So £<lfO...o>*(e<® (QjβpXjV) = cQiQjβpXj + x + y, for

, OJ: decomposable, and y^Gp^ι+1, This shows the lemma.

7.7. Proof o/ Lemma 6-6. By proposition 5-9, d̂ o* = ^*. If i = 0,

then θP*(eo®(QjβpXj)p) = AMQjβpXj)*) = A*((QjβPXj)® ®(0/ft^ )), where

Λ: β Γ 1 ^ - ^ xflΓ'S"-1 ->i2(on-OPScn-1)ί)ΛGo(pn). So this element belongs

to Gppr+p-κ So lemma is valid for this case. By Remark 5-12, Θ^(ei®xv) = 0,

if i ^ 0 mod (^ — 1) or (p — 2) or 2(ί? — 1) — 1. So we can assume i = p — 2

or p — 1. And we shall prove in the case i = p — 2, when f = p — 1 the

proof is similar. By proposition 5-11, the following diagram is commutative:

XΩrS
[(AX id)*

H*(G0(pn))

PH*(Gp>(pn)xG0(pn))

On the other hand Qjfta^e/iH^S""1^71"1) belongs to the image of BrΏ

H^Ω^S^xΩ^S71'1) by (o)^ where Br is the submodule of H^Ω^ιSn-1)®

H*(Ωn

0-
ιSn~ι), generated by (βε

Pxk)(S)(QiβpXι\ k = 0,1, ,ε, εr = 0 or 1, / - 0,

1,2, , |/ | = r— 1, r^>l. We shall prove this lemma by induction or r.
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i) r = 1. It is sufficient to prove {°)Λδpxδp)JίAxid)JίeP-2®(βPXk®βp%ι))

belongs to GPi+ι. {AXidU{ep-2)®{β*pxk®βp'XιY) = Σ ( - l ) * ^ , ® ^ ^ ) ®

(^2®($>'tfi)p). On the other hand 0g>)*(e<1<g)&α;Jt)
p) = 0 except the case z\ = 0,

p - 2 , and so on M^2®(&%)p) = 0. So that {θf®θ

βP'Xι)p) = 0 (PP)*(^-2® ( M P ) (x) 0>(eo <g) (βp

rxι)
p) + ( - l ) * W

(ft'a^). And ^)*(^o®(ftα; fcn= A ^ i ) p ) e G ^ » , if deg&»» >0, where

Λ, : Ωn

p-
ιSn'ιx- x f l Γ 1 ^ 1 ^ f l J ί - ^ - M G ^ ) . And δ., {eo®(βP'xι)p) =

/\*((βP'xι)v)eGpp-> if degft'si'x),' where Λ : ^ Γ ^ ^ x x^S^S71-1 ->^r n - 1 )

gpcn-D ̂  G0(pn). So lemma in this case is proved by dividing three cases

a) deg(ftα;fe)>0, deg(&%)>0, b) deg(ftα;k)>0, deg(ft'a?ι)=0 c) deg(ftxfc)=0,

deg(j8jfajl)>0.

ii) We assume that lemma holds when r < r 0 , ro^>l. We shall prove

( o W ^ x W A x i ^ V a ^ ^ ^ Q / f t ' a ; ^ ) belongs to G^o+vi, where / =

(Si, Λ, , εro, yro). (δp

p>* x ΘP)JP)*(Ax idUe^t ® (jSj«4(g) 0/i8j'a?ι)
p) = ^(β^-2®

<βpXt)p)®δP {e0® (QiβpXι)p) + (-l)*θT*(eo®(β'Pxk)
p)®θAeP-2 ® {Qiβp'*ι)p). Then

lemma in this case is proved by using induction dividing two cases a) deg

βpxk>09 deg (Qjβp'xJX), b) degj8 a»=0, deg (Qzβp'Xι) > 0. And these proves

the lemma.
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