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ON p-ADIC PROPERTIES OF THE EICHLER-SELBERG
TRACE FORMUILA II

M. KOIKE

Introduction

Let ©, be the space of cusp forms of weight & with respect to
SL(2,Z). Let p be a prime number and let T,(p) be the Hecke operator
of degree p acting on &, as a linear endomorphism. Put H,(X) =
det I — T, (p)X + p*'X?), where I is the identity operator on &,. H,(X)
is a polynomial with coefficients of rational integers, which is called the
Hecke polynomial.

In this paper, we shall prove the congruences between Hecke
polynomials :

THEOREM. Let p>5 be a prime number and let « be a positive
integer. Let k be an even positive integer such that k>2x + 2 and
dim; S, pe_pe—s < ¥*"'. Then we have

H.(X) = H(X) (mod p*Z[X])
for every even positive integer k' > k satisfying k' = k (mod p* — p=~Y).

In the case of @« = 1, our theorem is a weaker version of the pro-
perty of contraction of U,, which was proved by Serre. The proof of
our theorem makes essential use of the p-adic properties of the Eichler-
Selberg trace formula which is finer than what was proved in our pre-
vious paper [2].

§1. Congruences between traces of Hecke operators.

We fix a prime number p once and for all. For each positive
integer n, let T,.(n) be the Hecke operator of degree n acting on &, as
a linear endomorphism. The Eichler-Selberg trace formula for T.(n)
reads as follows:

Received May 12, 1976.

87



88 MASAO KOIKE

tr Tk(%) = Z Z _— ﬁF(k—z)(p’ pl) . %:l de-1

{p;p’} 03p w, no_
1 ) d>0,d<vn
( + 5“/7{) k — 1nk/z-x + 0 (k > 2) ’
12 Sd k=2,
G

where we use the same notations as in [2].
We shall prove finer congruences between traces of Hecke operators
than what was proved in our previous paper [2]. Our result is as follows:

PROPOSITION. We assume p > 5. Let m and o be positive integers.
Put ord,m = B. Let k' and k be even positive integers satisfying (1)
F =k@modp* — p*™) and (2) ¥’ > k> Max {2« + 2,a + g + 2}. Then we
have

tr T)..(p™) = tr T,,(p™) (mod p=+#) .

Remark. In order to prove congruences between traces of Hecke
operators in our previous paper, we made use of the property that h,
is merely a rational integer. On the other hand, the proof of Proposi-
tion makes essential use of the fact that &, is the number of proper o-
ideal classes.

Proof. We consider the trace formula for T.(p™) mod p*+¢. Since
k > 4, the fourth summand is equal to zero. By the condition (2), the
second (resp. third) summand is proved to be congruent to one (resp.
zero) mod p**f. Let us deal with the first summand. Let K be an im-

aginary quadratic field which contains p and p’ and let (—I;—) denote

Kronecker’s symbol. In the case of (%) = —1 or 0, F'*=2(p, p’) is easily

proved to be congruent to zero mod p**¢, So we may assume (l{—) =1,
D

p = p-p’ with two prime ideals in K. If the conductor of o is divisible
by », F*~2(p, p) is congruent to zero mod p***. Hence we may assume
the conductor of o is not divisible by p. Put p,=p No and p; = p' N o.
Let d be the smallest positive integer such that p? is principal. Put
y=ord,d. We may put p? =nzo with zco, or what is the same as
p¢ = no,, 0, being the maximal order of K. If p is not primitive,
F®=3(p, ') is congruent to zero mod p**’. So we may also assume that
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p is primitive and that p’ = 0 (mod p). Since p-p’ = p™, we have (p) = p'™.
Hence p'»?"~* ig principal and it is proved that there exists an imaginary
quadratic integer p, such that p?"" = p. Therefore we have

F*=2(p, o) = 1 Pt pfE=BPETT (mod perAr)
o—¢
k-1
= 0 7 (mOd p“-ﬂ_r) ’
o—p
= F(k_Z)(,O, p/) (mod pﬁﬂ—r) .

Since h, is divisible by d, we have ord,%,>y. Hence we have

ﬁF"‘"”(‘o, o) = ﬁ"—F"‘"”(p, o) (mod p=*#). Thus Proposition is completely
w, w

o 0

proved. Q.E.D.
In cases of p =2,3, we can prove following propositions by the
same arguments as above:

PROPOSITION. (Case of p =2.) Let m and o be positive integers.
Put ord,m = B. Let k' and k be even positive integers satisfying (1)
K = k(mod2%) and (2) k' > k> Max {2« + 6, + g + 4}. Then we have

tr T,..2™) = tr T, (2™) (mod 2+#) .

PROPOSITION. (case of p =38.) Let m and « be positive integers.
Put ord;m = B. Let k' and k be even positive integers satisfying (1)
=k (mod3  — 3" and (2) ¥ >k>Max{2« + 4, « + g+ 3}. Then
we have

tr T,,(3™) = tr T,(3™) (mod 3+%).

§2. Preliminary lemmas
Let x,---,2y be indeterminates. For each positive integer n, we

define  S,(y, - xy) = 1@ and  Fo(w, - o ap) = (=" 51 @
i=1 1L11< 0o <ip <N

- %;,. We simply write S, and F, instead of S,(,, ---,2y) and F,(x,,
<.+, 2y). It is obvious that F, = 0 if n is greater than N. It is well
known that there exist following relations between two functions S, and
F,, which are called Newton’s formulae;

1

S, + S Fy+ - +SF,,+nF,=0.
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By means of Newton’s formulae, F', (resp. S,) can be described as a
polynomial of S; (resp. F,) with 1 <7< n as follows:

Il

Fn a® iy Sl’ll . S{: s

r=1 1sz1<s <irgn ( »J'r)

E igfs=n
=1

ll

5 S . Fie FE

=11<1< - <ir<n .’ih
1<js
‘éliah=ﬂ
where o and b™ are rational numbers. All these coefficients can be

calculated as follows:

LEMMA 1. We have

(2) ’,ifr) = (( 1)‘ 2/ n] Y»,/a) - ,

and

(3) bty = (= B «Z )= )
J1yeee, Jr I;[ ]

Proof. We use induction on n. It is obvious that (2) is valid for
n = 1. Suppose that (2) is valid for all a® with 1<é¢<n—1. By

Newton’s formulae, we have F, = —%(Sn + "fs,,_ka). If i, =7, )
k=1

is obviously valid. So we may assume 7, <n. Then we have

,
a<n> (£, 7)1

Dty = = (=D

s Jr

[Z{d - vra paval ).

B fm o N S
= (o= (fLate) L i,

s$=1
Eafe L\
= (B (z:ya!zz')
s§=1

Hence (2) is proved to be valid. Let us prove that (3) is valid. We
also use induction on n. It is obvious that (3) is valid for n = 1.
Suppose that (3) is valid for all b with 1< /4 <n — 1. By Newton’s
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formulae, we have S, = —(nF,, + jska) If 4, =mn, it is obvious
=1

that (8) is valid. So we may assume ¢, <#n. Then we have

b 5 (-t () -2) )
71?1,-",131 = - - = < = . n— 1),
AR G~ DI [T 3!

J1yeecsdr

[T 7!
s=1
£ () -
= (——-'1)‘=l s=1 - n
20!
s=1
Therefore (3) is proved to be valid. Q.E.D.

By making use of Lemma 1, we can prove the following lemma:

LEMMA 2. Let GX) =[] —aX) and HX) = [[(L —b,X) be
=1 1

Ft
polynomials with coefficients of rational integers. Put s, = S,(a, -+, a;),
t, = Sy, -+, b)), 0, =F,(a,---,a,) and 7, =F,(b,---,b). Let a be
a positive integer. Then the following statements are equivalent:

1) s,=t,(modp+rirn) for every n>1,

2) o, =1, (modp* for every n with 1 <n < Max {k, ¢},

B) F(X) = GX) (mod pZ[X]).

Proof. It is obvious that the statements (2) and (3) are equivalent.
So we shall show that the statements (1) and (2) are equivalent. Let N
be any positive integer. We assume that (1)y_,: s, = ¢, (mod p=*°r%7) for
every n < N — 1 and @) y_,: ¢, = , (mod p*) for every n < N — 1. Under
this assumption, we show that the following statements are equivalent:

Dy s, =t, (mod perorien) for every n < N,

@)y 0, =7, (mod p*) for every n < N.
By making use of (8) in Lemma 1, we have

N .
sv=—Noy+ 3 3 bl al,

’

. . (Bt
r=11<i1< <N J1s00e 5 Jr
1<js

La P
X isjs=N
=1
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N
ty = —Nty + 2, i,,---,z,)szl iy
r=11<01< 2+ <0 SN  \Jy,eee, Jr
1<js
L tade=N
=1
r . ' s .
Si (8;198)' : tional int Js b d (;]a) pan
ince =1/ is a rational integer, M iy and =L L pan
ﬁ i ) N J1yeessgr
!

@
]
e

are rational integers. Put g = ord, N and y = Min {ordp Jip +++yord, 7y,

ord, i} js}. Then we have ord, b“g‘? ..... o) > B — 7. By the condition (2)y_,,
s=1 19y Jr

we have o;, = 7;, (mod p*) for every i, with 1 <i{, <N — 1. Hence we
have ¢j* = 7{: (mod p=+°?» /) for every %, with 1 <%, < N — 1. Therefore
we have sy — Noy =ty — Ny (mod p*+°o%2?), g0 sy — ty = N(oy — )
(mod p=*ord2¥).  From this, it follows immediately that (1), and (2)y are
equivalent under the assumption that (1)y_, and (2)y_, are valid. Hence

it is proved that (1) and (2) are equivalent. Q.E.D.

§3. Congruences between Hecke polynomials

For any even positive integer %k, we put C,(X) =det( — T, (»)X)
and Hy(X) =detI — T, ()X + p*'XI) where I is the identity operator
on &,. C,X) and H(X) are polynomials with coefficients of rational
integers. H,(X) is usually called the Hecke polynomial.

Combining results in §1 and 2, we can prove the following:

THEOREM 1. We assume p > 5. Let « be a positive integer. Let k be
an even positive integer such that (1) k> 2a + 2 and (2) dim; Sy, pe_ pa—s
< p¥-e*-t, Then we have

H.(X) =Hy(X)  (modp-Z[X]),
Cw(X) = Cy(X)  (modpZ[X]),

for every even positive integer k' > k satisfying K =k (mod p* — p*~Y).

Proof. Since k> 2a + 2, we have H,(X) = C,(X) (mod p*Z[X]). So
we shall prove only C.(X) = C,(X) (modp*Z[X]). By the dimension
formula for &, it is easily proved that k& 4+ p* — p*~! also satisfies the
condition (2) if k satisfies it. Hence we may prove our theorem only
in case of ¥/ =k + p* — p=~'. Let m be any positive integer such that
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m < dim; &,., and put g8 = ord, m. By the condition (2), we have p<
E—a—1, so we have &« + 8+ 2 < k. Hence, making use of Proposi-
tion 1, we have tr T,.(p™) = tr T;,(p™) (mod p**#). On the other hand, by
the recursion formula for T,(p™), we have tr T,(p™) = tr T,(p)™ (mod p*~*).
Therefore we have tr T,.(p)™ = tr T,(»)™ (mod p**#). Combining these
congruences with Lemma 2, we obtain the proof of Theorem 1.

Q.E.D.

In cases of p = 2,3, we can prove following theorems by the same
arguments as above:

THEOREM 1 (Case of p =2). Let a be a positive integer. Let k
be an even positive integer such that k> 2a + 6 and dimg S, ,. < 2%-73,
Then we have

H,.(X) = H(X) (mod 2¢Z[X]) ,
for every even positive integer k' > k satisfying k' = k (mod 2%).

THEOREM 1 (Case of p = 3). Let o« be a positive integer. Let k
be an even positive integer such that k > 2« + 4 and dimg S, za_gar <
3k-a=2 Then we have

H,.(X) = Hi(X) (mod 3<Z[X]) ,
for every even positive integer k' > k satisfying k¥ = k (mod 3¢ — 3°7Y),

We give an application of Theorem 1. In the rest of this section,
we assume p > 5 for the sake of simplicity. Let ¥ > k be even positive
integers such that ¥’ =k (modp — 1) and k> 4. Then, it is obvious
that k& satisfies the condition (2) in Theorem 1 for « = 1. Put n = dim,; S,

and 2/ = dimg S, Itis clear that det (XI — Ty(p)) = X" det (1 - %Tk(p)),

where I is the identity operator on ©,. Therefore, from Theorem 1
follows

COROLLARY. Under the above conditions, we have
det (XI, — T, (p)) = X» " det (XI, — T,(p)) (mod pZ[X]) .

This result is equivalent to Serre’s result [3, (i), Corollary to Theorem
6].
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§4. p-adic Hecke polynomials

Let « be a positive integer. Put X, = Z/(p* — p=)Z if p #2, and
X, = Z/2:2Z if p =2. {X,} forms a projective system naturally. We
have

XZHmXaZ{ZPXZ/@—l)z ifp+2,
— Z, ifp=2,
where Z, is the ring of p-adic integers. The canonical homomorphism
Z — X is injective. We identify Z with a dense subgroup of X through
this homomorphism. '

Let © denote the ring of formal power series in X with coefficients
in Z,. Let m be the maximal ideal of ©. The powers of m,m"”, n>0
define the m-adic topology on .

We assume p >5. Let {k)}:., be a sequence of monotonically in-
creasing, even positive integers satisfying k, = k,, (mod p* — p=~*) if
o >a, k,>2+ 2 and dim; &, pa_pe—s < p¥«~=~'. Then {k,};., has a limit
in X, which is denoted by k. By means of Theorem 1, there exists a
common m-adic limit of {H,/(X)} and of {C,(X)} in ©. Put HyX) =
lim H, (X). It is clear that FL;(X) depends only on %, but not on the

a—+oo

choice of sequences {k,} with limk, = k. We call HyX) the p-adic Hecke
polynomial.

In the case where & belongs to 2Z, we shall show that H;(X) coincides
with the Fredholm determinant of the p-adic Hecke operator ﬁk(p) and
that Hy(X) is an entire function.

Before this, we extend Lemma 1 as follows:

LEMMA 8. Let GX) =1+ > 0,X" be a formal power series in X
n21

with coefficients o, in o field K, so that log G(X) = nz; (‘"I)ﬂLG(_X)n:'l‘)i

is also a formal power series in X with coefficients in K, which we

write — >, _SLX", with s,c K. Then there exist following relations be-
nzl N

tween ¢, and S,;

n
S, =23 2. b(fgi,'",ir)o'{ll ceeoll,
r=1 lsi1<1-—<:'.<ir5n J1s0ee s r
Js

(4) Eytedemn
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n
— (n)
On=2, 21 O
r=11<i1<++<ir<n J1reees Jr
1<js

ol e sl
where a™. and b™ are the same as in Lemma 1.

Proof. If G(X) is a polynomial in X with coefficients in K, (4) is
equal to (@ and (B) in Lemma 1. Put G,(X) =1+ éaiXi and

(
)

log G,(X) = (—-1) 3, ﬂXi Then it is clear that s = s, for all ¢ with
i>1 1
1 <n. Hence, from Lemma 1, (4) follows immediately. Q.E.D.

Let & be an even integer and let D@ (X) be the Fredholm determinant
of the p-adic Hecke operator ﬁ',;(p) which is defined in [2].

THEOREM 2. We have
HX) =DP(X), for ke2Z.

Proof. Let {k,}] be a sequence of monotonically increasing, even
positive integers satisfying k, =k, (mod p* — p*~') for every o > a,
k, < 2a + 2, dimg Gy, pe_pe-s < P¥* ! and limk, =k Put H,(X) =1

(a)
+ Sl owX and log Hy (X) = — 315X, with ¢ and s@ in Z. When
n=1 n2l n
a— oo, {o{®} and {s{”} have p-adic limits which we deonte by ¢, and s,
respectively. Then we have HiyX) =1 + >,0,X". Since ¢ and s

n=>1
satisfy the relations (4), ¢, and s, also satisfy the relations (4). Hence

we have log Hy(X) = — >} _S» X», On the other hand, we have s =
n

n=1

tr U, (»™) by (41) in [1]. Hence, from Theorem 1 in [2], it follows that
s, =tr ﬁ,;(p)". Therefore we have H #X) = DP(X). Q.E.D.

Since DP(X) is a p-adic entire function, we have the following:
COROLLARY. Hy(X) is a p-adic entire function for ke2Z.

Remark. It is obvious that the p-adic Hecke polynomials converge
for all 2z ¢ Z,.

Remark. In cases of p = 2,3, the same argument as above can be
applied.
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Remark. Recently, Prof. B. Dwork kindly let me know a direct
proof of Theorem is obtained from Adolphson’s thesis and, at the same
time, the condition on dimg &, e p._, can be discarded.
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