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HOMEOMORPHISMS WITHOUT THE PSEUDO-ORBIT
TRACING PROPERTY
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§0. Introduction

Recently, A. Morimoto [5] proved that every isometry of a compact
Riemannian manifold of positive dimension has not the pseudo-orbit tracing
property, and that if a homeomorphism of a compact metric space has
the pseudo-orbit tracing property then E, = O, (see §1 for definition).
The purpose of this paper is to show that every distal homeomorphism
of a compact connected metric space has not the pseudo-orbit tracing
property.

The author benefited from reading the papers by A. Morimoto [5, 6].

§1. Definitions

Let ¢: X — X be a (self-) homeomorphism of a compact metric space
X with distance function d. A sequence of points {x}icw,n (—o0 < a <
b < o) is called a §-pseudo-orbit of ¢ if d(p(x,), x,,,) < & for ie(a, b — 1).
A sequence {x;} is called to be efraced by xe X if d(pi(x), x;) < e holds
for ie(a,b). We say (X,¢) to have the pseudo-orbit tracing property
(abbrev. P.O.T.P.) if for every ¢ >0 there is 6 > 0 such that every o-
pseudo-orbit of ¢ can be e-traced by some point x € X. The system (X, ¢)
is said to be minimal if a ¢-invariant closed set K is necessarily K = §
or K= X. Let A be a subset of the integer group Z. Then A is syndetic
if there is a finite subset K of Z with Z =K + A. Let xc¢X. Then x
is an almost periodic point if {ne Z:¢"(x)e U} is a syndetic set for all
neighborhoods U of x. Let (X, ¢) be distal, that is, if inf,., d(p"(x), o"(¥))
= (0 then x = y. Then every x¢ X is an almost periodic point and the
converse is true (p. 36 of [2]). It is clear that every equi-continuous
homeomorphism has this property and is hence distal. But the converse
does not hold. To check this for example, let 7% be a 2-dimensional torus
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and define a homeomorphism ¢: 7% T* by o(x,, x,) = (¢ + %, nx, + x;)
((x), x) € T*) where aeT" and 0 = ne Z. Then it will be easily checked
that ¢ is distal but not equi-continuous. A point x € X is said to be non-
wandering (with respect to ¢) if for every neighborhood U of x; there is
an n>0 with UN ¢u(U) = 8. The set of all nonwandering points is
called the nonwaendering set and denoted by £(p). Since X is compact,
we get 2(p) # 0. If in particular (X, ¢) is distal, then it is easily proved
that 2(p) = X since every x € X is almost periodic. We know (cf. p. 132
of [7]) that there is always a Borel probability measure ¢ on X which is
preserved by ¢ and ¢!, and (cf. p. 135 of [7]) that if (X, o) is minimal then
#(U) > 0 for all non-empty open set U.

The set 2% of all closed non-empty subsets of X will be a compact
metric space by the distance function d defined by

d(A, B) = Max {Max,., d(A, b), Max,., d(a, B)} (A, Be2%)

where d(A, b) = inf,., d(a, b) (cf. p. 45 of [4]). We denote by Orb’(p) the
set of all §-pseudo-orbits of ¢ and by Orb’(p) the set of all A e2%, for
which there is {x;} € Orb’ (p) such that A = Cl{x,:ie Z}, Cl denoting the
closure. Let E, denote the set of all A e2* such that for every ¢ >0
there is A, € Orb* (p) with d(4, A,) <e An element A of E, is called an
extended orbit of ¢. On the other hand, we define O, = C1{O,(x):ic Z}
where O,(x) = Cl{¢(x):ie Z}. We can easily see that E, is closed in 2%
and that O, C E, holds.

§2. Results

Throughout this section, X will be a compact metric space with dis-
tance function d and ¢ will be a self-homeomorphism of X,

THEOREM. Assume that X is connected. If (X, ¢) is distal, then (X, ¢)
has not P.O.T.P.

Lemma 1. If (X, ¢) has P.O.T.P., for every ¢ >0 and every x,e 2(p)
there is a point ye X and an integer k = k(x, ¢) > 0 such that O,y) C
U.(x,).

Proof. Since x,¢ 2(p), for 6 > 0 with § < e there are a point xe X
and an integer £ > 0 such that x and ¢*(x) belong to U,,(x,). Now, set
Xnpr: = @(x) for ne Z and 0 < i < k. Obviously, {x}iez ={ -+, %, 0(x), - - -,
o '(%), - - -} € Orb’ (p). Hence we can find a point y € X such that d(o%(y),
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x;) < e for ie Z. In particular, d(p"*(y), x,,) < e and hence d(p"*(y), x) <e¢
for ne Z. Therefore we have O,(y) C U(x,).

CoroLLARY 1. Assume that X is connected and not one point. If (X, ¢)
is minimal, then (X, ¢) has not P.O.T.P.

Proof. Let ¢ = diameter (X)/3 and assume that (X, ) has P.O.T.P.
By Lemma 1 we have that for some x,e X there are ye X and & > 0 with
O,(y) < U(x,). Since X is connected, O,(y)=0,y) = X and so diameter
(X) < 2. This is a contradiction.

CoroLLARY 2. If (X, ¢) is minimal, then E, = O,.

Proof. 1t is proved by A. Morimoto that every A e E, is ¢-invariant
(p(A) = A). In fact, for every ¢ > 0 there is ¢ > ¢, > 0 such that d(p(x),
o(y) < ¢ when d(x,y) <e. By definition we can find {x,} € Orb** (p) with
d(A, Cl{x)}) <e. Set y,=o(x,) for icZ then d(y,x;,) <e and so
d(Cl{x},Cl{y}) <e. It is clear that d(e(y,),:..) <e¢ for ie Z. Hence,
{y:} € Orb* (p). Let A’ = Cl{x,}. Then d(A’, p(A")) < ¢, and since d(4, A’)
< we get d(p(A), p(A)) <e. Therefore

d(p(A), A) < d(p(A), p(A) + d(p(A), A) + d(A’, A) < 3
and so d(p(4), A) = 0; i.e. p(4) = A. Therefore we get E, = {X} = O,.

Lemma 2. If (X, ¢) has P.O.T.P., for every integer k> 0, (X, ¢*) has
also P.O.T.P.

Proof. For every ¢ > 0 there is 6 > 0 such that {x;} € Orb’(p) is e-
traced by a point in X. Take {y,;} e Orb’(p) and put x,.., = ¢(y,) for n
eZ and 0 < i< k—1 Obviously, {x;}€Orb’(p). Hence there is ye X
with d(e(y), x;) <e for ie Z. In particular, d(p*)"(y),y.) = d(e ™ (¥), x..)
< ¢ for ne Z. This completes the proof of Lemma 2.

Lemma 3. Let (X,¢) be distal. Then for every xeX, (O,x),¢) is
minimal.

Proof. Since every xe X is almost periodic under ¢, for a neighbor-
hood U of x there is a finite set K = {n,, ---, n,} of Z such that Z= A
+ K where A ={neZ:¢"(x)eU}. Hence O,(x) =Cl{p"(x):ne A} U
Cl{p"™(x):ne A} U ... U Cl{p"*"M(x): ne A}. Let ye O x). Then O,(y)
N U+ @§. This implies that x € O,(y). Hence O,(x) = O,(y).
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Remark 1. If (X, ¢) is distal and topologically transitive, then it is
clearly minimal (by Lemma 3).

We shall now give a proof of the theorem.

Assuming that (X, ¢) has P.O.T.P., we shall draw a contradiction. To
do this, let ¢ = diameter (X)/9. Then there is 6 > 0 with § < ¢ such that
every {z;} € Orb’ (p) is e-traced by a point of X. Lemma 1 insures us that
for y, € 2(p) there are ye X and & >0 with O,(y) C U(y). Put 4 = "
Then (X, 4) has P.O.T.P. (by Lemma 2) and is distal. Since X is connected
and compact, we can take a sequence of points {p,}, in X such that p,
=y, dp,p;.) <38/2 for 1<i<N—1 and such that Y, Uy(p,) = X.
Since (X, ) is distal, every point of X is almost periodic. Hence for 1 <
i < N there is an integer c(i) > 0 such that d(p,, +*@(p,)) < §/2. Let us
put

x; = ¥ (p) @ <0

%, = P(py) O<i<g<ed -1

Xey+1 = ‘l"z(pz) (0 < i < C(2) - 1)

xc(l)+---+c(N—1)+i = 'Sb'i(pN) (O < i < C(N) - 1)
<i<eN—-1—1)

Koty s rem sz = V(Dx_1) (©

Xe(1) +26(2) 4o +26 (N =1) +¢(N) 45 — 1P‘l(pl) (i > O) .
Obviously, {x,};cz € Orb’ () and d(Cl {x;}, X) < 4. By assumption, there is

ze X with d(y'(2), x;) <e (ie Z) so that d(0,(2), X) <d + &< 2, and in
particular

d('(2), ¥(0)) = d(¥'(2), ¥ () < ¢ E<0),
d(v* (@), ¥'(p) = d(¥** @), ¥'(y) <e (> 0)

where ¢ = ¢(1) + ¢(N) + 2> 75 ¢(@). This implies that

¥i(2) € U(y'()) < U(OL(y)) <0,
V@ e UW'(D) C UO() (>0

where U, (0,() = Ureoywy UR). Put O;(2) = Cl{¢(2):i <0} and O;(2)
= Cl{¢(2):i > 0}. Then we have that O;(2) C U(O,(y) and ¥°0;(2) C
U.(O,(y)). Since 0;(z) U 0;(2) = O,(2), by Baire’s theorem either 0;(2)
or O;(2) has non-empty interior in the set O,(2).

Let ¢ be a «-invariant Borel probability measure of O, (2). Since
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(0O,{2), V) is minimal by Lemma 3, every non-empty open set in O,(z) has
p-positive measure. When the interior of O;(2) in O,(2) is non-empty, it
is easy to see that O;(2) = ¥0;(2) and so O;(2) = O,(z). Indeed, assume
v 107(2) € Oj(z). Then V = (M,.0¥ *0;(2) does not contain the interior
of 0;(z) in Oy2). Hence p(O;(2)\V) > 0. Since 0;(2) = U0 ¥ HO7(2)\
w1072} U V, we get u(O;(2)\'0;(2)) > 0, thus contradicting ((05(2)) <
1. If the interior of O}(z) in O,(z) is non-empty; i.e. p(O0;(2)) > 0, then
it follows that Of(z) = O,(z). Obviously O,(2) = ¥°0j(2). In any case
we get 0,(z) C U(Oy(y)) so that Oy(z) C U(Ou(y) C U..(y,) (because Oy(y)
C U.(yy)). Since 2¢> d(0,(z), X) = max,., d(0,(2),x), we have X =
U,.(0,(2)) from which X = U,(y,); i.e. diameter (X) < 8. This is a con-
tradiction.

Remark 2. We know (Application 2 of [1]) that every (group) auto-
morphism ¢ of a zero-dimensional compact metric group X has P.O.T.P.
If (X, ¢) has zero topological entropy (the existence of such automorphisms
is known), then we can prove (cf. Lemma 14 of [1]) that X contains a
sequence X = X, D X, D --- of completely s-invariant normal subgroups
such that N X, is trivial and for every n > 0, X,/X,,, is a finite group.
Hence for x,ye X (x + y) there is n > 0 such that xy'¢ X,. Since ¢/(X,)
= X, for all je Z, we get easily o’(xy ") e X, (je Z), which implies that
d(d'(x), ¢'(¥)) = d(@'(x)X,, ¢'(y)X,) > 0 (the distance function d is a transla-
tion invariant metric of X). Since X,/X,,, is a finite group, we get
inf; d(o’(x), o’(y)) > 0; 1.e. (X, o) is distal. Therefore every zero-dimensional
automorphism with zero topological entropy is distal and has P.O.T.P.
This shows that the assumption of connectedness in the theorem can not
drop out.
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