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W-ARY ALGEBRAS

RENATE CARLSSON

1. Introduction

iV-ary algebras are modules with a n-fold multiplication which we
assume to be associative if nothing else is stated. They are a canonical
generalization of binary and ternary associative algebras. Ternary rings
were first investigated by Lister [8]. The aim of this note is to show
that the Wedderburn structure theory and the usual cohomology for
binary associative algebras can be extended to π-ary algebras. For
ternary algebras this has been done in [8] and [1]. Moreover analogous
results are wellknown for Lie and alternative triple systems, and for
ternary Jordan pairs.

iV-ary algebras are a special case of algebras with τι-ary multiplica-
tion operators which were studied especially by Kurosh [7]. Let A be a
not necessarily associative n-axy algebra over a ring k. Assume that the
^-module A is free over k of finite rank r. Then A corresponds to a
system of r differential equations in r variables xu ί — 1, , r, xά — Pj(x),
x: = (Xj)rj-i9 Pj(x) e k[x], Pj a homogeneous polynomial of degree n9 shortly
x = p{x), p a homogeneous vector polynomial. This has been established
by Rδhrl [11].

So one notes that the result analogous to the Wedderburn decomposi-
tion as shown in the following implies the complete reducibility of the
corresponding system of differential equations.

The proofs in the subsequent make use of the theory for binary and
ternary associative algebras.

2. Definitions and imbeddings

Let k denote a commutative and associative ring with a unit 1.
The ^-modules U considered are taken to be unitary. Let ϊ7Cn] for n e N
denote the n-fold cartesian product. Then a n-multίple system A for
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neN\{ί\ is a ^-module together with a n-linear inner composition μ: Aίnl

-> A with

where xte A. The multiple system is called associative or in short a n-

ary algebra if the following associativity conditions are valid. Let yte A

with y2: = <#«)?= 1, the x* as afore. Then for any r e {2, -,ή\

( l ) <y<>?-i = <**>?-i

with Zii = xt when l < i < r , zt: = yt for r<i<n, and 2r : = <(;*>?.! with

ι><: = Xr-i+z if 1 < i < h- = n ~ r + 1 a n ( i ^ 0 + / = ^i+j if 1 < j < r. More in-

formally, for any r

μ(μ(χ19 , χ n ) , y 2 , - - -, y n ) = μ ( χ i , ' - , χ r - u μ ( * r , - " > y r \ y r + u , y » )

By (1) the multiplication in A is associative in the obvious sense. The

length of any monomial is congruent to 1 modulo n — 1. If n = 2 then

A is a binary associative algebra.

For an associative ^-algebra B, xteB, and seN, let Πί-i x * : = χ\

further Πί-ϊ^t' = ( Π ^ i ^ ' ^ + i Suppose that A is a r-ary algebra, and

Xi e A for ί e {0, , r — 1}. Define the right multiplication p by

If deN\{ί\, n: = (r — ΐ)(d — 1) + 1 then we consider A as a τι-ary

algebra Aτ(d) by

π ^ ( , J
\y=o

Ar(d) is a d-ary algebra if r = 2. Define A1: = A and

A.(r-D+i. = /JJ^ p(Aίjyίiλ(A) where A,,: = A and s e N .

For a 7z-ary algebra A the concepts of a (n-ary) morphism, automorphism,

ideal, subalgebra etc. are defined obviously (cf. [2]). For a submodule B

we denote by (ί)B the ^-module generated by the monomials <#*>?=! with

xt e A and xiχ, xί2 e i? for two different subscripts. If B is an ideal in A

then obviously (1)JB is an ideal.

EXAMPLES. 1.) Let A be a ternary ring.

2). For neN, n>2, Zn_x the rational integers modulo n — 1, and
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ie Zn_x let Vt denote a ^-module. Set Ft\ = Moτk (Vt, Vi+1), the β-module

of the module morphisms, and F: = Θ Ft for ίeZn_x. The structure of a

n-ary algebra can be induced on F obviously as follows: If fi^Ft and

if fj+ifj for j e Zn_x denotes the product of maps then with st e Zn_ί let

if st_t = st + l when t > l .

0 otherwise,

Π defined obviously. If any Vt is free of finite rank rt > 0 we denote

this n-ary algebra by &(r<)?~ί.

3.) If A is an associative algebra, ψ an automorphism with ψn~ι =

Id^, and ξ e k, ξ a n — l th root of unity then the corresponding rootspace

is a n-ary subalgebra of Ar(n).

Define a n-multiple module over A to be a ^-module M together with

n multilinear maps μj9

μj:A
ίn-v X M-+M

where j e{l, -9ή\. The ^-module direct sum Eo: = A®M can be con-

sidered as a n-multiple system with ll)M: = {0}, the n-linear multiplication

in Eo extending μ and the μjm M is called a {associative) n-ary module

over A if Eo is associative. Eo is called the semidirect sum of A and M

or the spZiί zero extension of A by M. In the following we denote by A

a n-ary algebra and by M a n-ary module over A if we state nothing

different.

Similarly as in the ternary case we can imbed A into an associative

algebra S(A). For this let E(A): = Θ j i ί Θ Ά . We induce the structure

of a binary algebra on the ^-module E(A) as follows. If p, q e {1, , n — 1}

let x: = (8?=! *<, y: = ®?.i yy with xuy, e A. Then

(x ® y iΐ p + q < n — 1

p+g-(n-l)

(x) ^ if p + g > n .
For the latter case let ut\ = xt when 1 < i < p, ut: = yt_p if p < i < n,

further ^ : = <WΪ>?=I, and ^ : = y</+(w_p) otherwise. Then any product of

length not exceeding n is associative.

Let K denote the submodule of E(A) generated by
{v\3j,2 < j < n — lymum2eN,mι + m2 = n — j:ve A 3 : = ®jA

AvAn-j A n - j

V = AmioVoAm* = {0}}.
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It is shown by an obvious verification that K is an ideal in E(A)9 and

that S(A): = E(A)/K is an associative algebra. Then c:A~+S(A) with

a •-• a + K is a n-ary monomorphism of A into S(A)τ{n). We call S(A)

the standard imbedding of A.

Let B denote an associative algebra with multiplication (y, z) »-* y o z

for y,ze B, together with a map c: A —> B. Then (f?, <τ) is called an

imbedding of A if c is a monomorphism of A in B r ( n ), and J3 = Σi=ι C(B)J.

Then Π?-i c(χi) = '«**>?= 1) f° r χ i e -A> the product taken in B. If the sum

is direct then the imbedding is direct. For a direct imbedding let e,: B

-+Bji = (e(A))J be the canonical projection. Then BioBj = Bp with p =

i + j modulo (n — 1), p e {1, , n — 1}. If £ e β, ξ a primitive n — lth

root of unity, weB and w = J^zlwj with wόeBό then φ:B->B with

w; »-> Σj=ί fitfj is an automorphism of B. An imbedding (B, *) of A is

called universal if for any imbedding (C, Λ;) of A there exists a (unique)

morphism f: B—> C of the algebras with /V = K.

PROPOSITION 1. Let A denote an associative n-ary algebra over k.

Then there exists a universal imbedding (U(A),c) of A. (U(A),c) is direct.

Proof. Let T*(A): = ®neN (®w A) denote the nonunitary tensor

algebra of the ^-module A. The ideal Q of T*(A) is generated by ®?=i xt

-<«,>?.i for x,eA. Set 17(A): = T*(A)/Q, further ί :χH->x+Q. Then

(C/(A), ί) is an imbedding by the existence of the standard imbedding, and

the elementary properties of the tensor product. From the latter the

imbedding is direct. []

Note that U(A) = Φj;} (®J A). In the following we may suppose

that t is the inclusion map. Define the subset V of U(A) by substituting

U(A) instead of E(A) in (2). Let J(A) denote the ideal spanned by V.

Obviously S(A) ^ U(A)/J(A).

3. Radical and semisimplicity

Let A be a ra-ary algebra. We define the Jacobson radical R(A) or

22 of A. If n = 2 let [9]

( 3 ) R(A): = {xe A\yye Alze A: x + z = x-y-z = z-y-x}.

If n > 2 set R(A): = R(U(A)) Π A. i?(A) is an ideal of A. A is called

semisimple if J?(A) = {0}.

For reiVo let A ( r ): = A r(n"1) + 1. We call A nilpotent if A ( r ) = {0} for

some r. For an ideal / set (0)J: = / and ( r + 1 )7: = (1)((r)7) if reN. Then
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the ( r ) I define a descending chain of ideals in A. I is called A-solvable if

<r>J = {0} for some r e No. Obviously the sum of A-solvable ideals is A-

solvable.

LEMMA 1. An ideal I in a n-ary algebra is nilpotent if and only if

I is A-solvable,

Proof. If re NQ define dr e NQ by nr = dr (n - 1) + 1. Since ( r)7 D J(rfr),

A-solvability implies nilpotency.

On the other hand the defining monomials z in ( r )J have 2r factors

in I. Let r = 2n. We may assume that the product of any n consecutive

factors in each z is in I. Now 22n/n > In - 1. Thus

(2n)T r- T1 L_ i ( 2 ) .

Assume ( 2 s n ) I c 7(2s) for some s e N. Then

(2(» + l)7l)T /— (2*Λ)/(2n)T\ /— mn)T\ r- (J \ r~ J

Hence nilpotency implies A-solvability. []

LEMMA 2. A^y nilpotent ideal I in a n-ary algebra A generates a

nilpotent ideal in U(A).

Proof. For an ideal / in A denote by I [A] the ideal in U(A) gen-

erated by /. If r e NQ hence

{I[A\r c (^I)[A] .

Thus by Lemma 1 if J is nilpotent then I [A] is nilpotent.

We call A artίnian if U(A) is an artinian ring. By Hopkins Theorem

R(U(A)) is nilpotent. Hence

COROLLARY 1. The radical R of an artinian n-ary algebra A is the

maximal nilpotent ideal in A.

If the ring k contains a primitive n — l th root of unity then k is

called n — 1 split. Let k and k be fields with k C k: The base field ex-

tension Ag: = A ®fc ̂  can be considered as a n-ary algebra in the obvious

way. Call A separable if A^ is semisimple for any k. By standard pro-

perties of scalar extensions one derives S{A^) = S(A)& with canonical

algebra isomorphism. If A is artinian then (R(S(A)))JI corresponds to a

submodule of R(S(AU)).
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THEOREM 1. Let A be a n-ary algebra over a ring k.

(1) // A is semisimple and k n — 1 split, or k a field with char (k)

J( n — 1 and A artinian and separable over the field then S(A) is semi-

simple. If in the latter case A is finite dimensional over k then S(A) ̂

U(A).

(2) Any semisimple direct imbedding of A is ίsomorphic to S(A).

Proof. (1) We may assume that k contains a primitive n — lth

root of unity ξ, and that A is semisimple. Generate the automorphism

φ of U(A) by ξ. We consider the radical of U(A), R: = R(U(A)). R is

^-invariant by (3). Since ψn~x = ϊdUU) then similarly as in the finite dim-

ensional case there is a rootspace decomposition of R for φ, R = (D^zl Ru ξ
1

the root belonging to i?€. Assume ml9 m2e N and mx + m2 = n — i.
Since AnioRtoAn* = An~l o R. = R.o An~ι = {0} if i > 2, hence R c J(A).

Now J(A) is nilpotent thus J(A) = R. Hence S(A) is semisimple.

Let A be finite dimensional over the field k and A separable. Then

there exists a Wedderburn decomposition U(A) = B Θ c/(A) of C/(A) with

a semisimple subalgebra B where φ(B) = B [11]. Since (c/(A))! = {0} one

has AdB, thus U(A) = J5. Hence J(A) = {0}.

(2) Let JB denote an arbitrary direct and semisimple imbedding of

A, and /: U(A) —> B the corresponding morphism. If z e ker (/) then

zt: = £i(z) e ker (/) for i = 1, , n — 1. Now ̂  = 0. Hence with mγ and

m2 as before then i ^ o ^ o i ^ = i ' 1 - ^ ^ = ^ o i 7 1 " 4 = 0 if i > 2. Since

J(A) is nilpotent ker (/) c J(A) C ker (/). Hence S(A) ̂  B. []

We call a w-ary algebra A with An =̂  {0} simply if {0} and A are the

only ideals in A. We then get as a corollary

THEOREM 2. Lei A be an artinian n-ary algebra over a ring k, k n—1

split, and A semisimple. Then

A = @Si, re7V0,
i = l

where each Si is a simple ideal in A.

Proof. Let A Φ {0}. By Theorem 1 the standard imbedding S(A) is

semisimple. Thus S(A) decomposes into a direct sum of ^-simple ideals

CJ9 S(A) = ΘJ=1 Cj, reN. Observing Theorem 1 then A = Θj= 1 (QX is a

decomposition into a direct sum of simple ideals. []

Let M be a n-ary module over A and ίJ0 = A 0 M the semidirect
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sum. If Ms denotes the ideal in S(E0) generated by M then Ms is a bi-

module for U(A) in the obvious way. Ms is called the standard imbedding

of M. Irreducible n-ary modules over A and complete redudbility are defined

obviously. We then have further

PROPOSITION 2. Suppose that k is a n — 1 split field, and M a n-ary

module over a semisίmple n-ary k-algebra A, the dimensions finite. For

the center Z of U(A) let Z®kZ be semisίmple. Then M is completely

reducible over A.

Proof. Let M Φ {0} and W: = U(A) ®fc ί/(A)op. Then Ms can be

considered as an associative left module over W where for a, be U(A)

and m e Ms one has (a ® b)m = a°m<>b. Now Ms has a two sided φ-

invariant Peirce decomposition for the unit e e U(A). Let

Ms = (Ms)n ® (MX Θ (M5)ol Θ (MX

be the decomposition over e. Now observe [5, p. 117] and [1], Lemma 2].

Any Peirce component is completely reducible over W and over U(A)

from the right and from the left. Thus Ms = @r

iτsl N(ί), reN9 any N(i)

a ^-invariant minimal subbimodule not zero for U(A). Hence M= ®r

i=1 (2V(i))i

is a decomposition into irreducible n-axy submodules. []

4. The cohomology

Let B and IΓ be direct imbeddings of the π-ary ^-algebras A and

A^ V a submodule of B and /: V [ r ] —> JB7 a multilinear map. Let 7: =

{1, , n — 1}. Similarly as in [1] / is isovarying if x: = (xέ)£=1 e VCr] with

XieBj{i) for j(i)el and j e 7 with jf: = Σί=ii(0 modulo (zz — 1) implies

/(x) e JBJ. / is called antivarying if /(x) e Θ B'p for p e I\{j} Any multi-

linear map / has a unique decomposition / = /Ί + /0, /x isovarying and /Q

antivarying. Let ε: / >-> /1# Hence ε2: = ε ε = ε.

We consider the Hochschild cohomology of U(A) for Ms. The

modules of the cochain complex are C°: = M8, and the ^-modules Cq of

the g-linear maps from U(A)ί(ύ in Ms iΐ qeN. If re No the coboundary

operator δ: Cr -> C r + 1 is defined for α* e C7(A) by

df(ad = arf- f-a, iΐfeC0

if/eC
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with bij . = a,j if j < i, bu: — dioai+1, and 6^: = aj+1 if ί < j . The &-

modules of r-cocycles and r-coboundaries are denoted Zr and S r where

J5°: = {0}, and Hr(U(A),Ms): = Zr/Br is the r-dimensional cohomology

group. Extend ε to C° by e: = εn_lβ Any ε-invariant submodule T of Cr

decomposes, T=TX®TO with Tt: = {fe Cr\εf = i f} for ie{0,l}. Let

Cr : = (C% Thus C r = Cί Θ Q, and i(Ci") c C[+1.

Set Cr(A, M): = Cί for reN0. Then the C r(A,M) together with the

restriction d of δ onto the Cχr define a cohomology complex of A for M.

The r-cocycles and r-coboundaries are Zr(A, M): = Zί respectively -Br(A, Λί):

= J5[. Denote the r-dimensional cohomology group by Hr(A, M). Hence

LEMMA 3. If A is a n-ary algebra over a ring k then for reNQ

Hr(A, M) = ZΐjB[ , and

H'(U(A), M8) ^ Hr(A, M)

COROLLARY 2. Let k be a field, char (k) \ n — 1, A separable and

finite dimensional over k. Then for all re N and all n-ary A-modules M

Hr(A,M) = {0} .

Proof By Theorem 1, (1) U(A) is separable. Q

A linear map D: A -> M is called a derivation of A in M if

with 6i:/: = aj if ^ ί and 6W: = ^ ( α j .

If D(A, M) denotes the ^-module of the derivations of A in M then

D(A, M) ^ Z\A, M), the isomorphism given by the restriction of fe Z\A, M)

onto A, f\Δ. Inner derivations are the restrictions of the elements in

B\A, M) onto A. Hence

COROLLARY 3. If A and M are as in Corollary 2 then any deriva-

tion of A in M is inner.

A short exact sequence of n-ary ^-algebras M, E, A, the connecting

maps e and p n-ary algebra morphisms,

{0} >M-^-> E -?U A • {0}
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is an extension of A by M. The extension is singular if (1)(e(M)) = {0} in

E. The equivalence and splitting of extensions is defined in the obvious

way.

Let M(E) denote the ideal in U(E) generated by e(M), and P: = M(E)

Π J{E). Set U'(E): = U(E)/P.

For any singular extension there is a commutative diagram with

exact rows

{0} • M - ! * E -^-> A • {0}

{0} >Ms-^> U'(E) ~^> U(A) > {0}

<=—> the inclusion map and e\ pf algebra morphisms invariant for ε (cf.

[3], pp. 158-159). A ^-module V is k-projective if any ^-module extension

of V is split. The tensor product of two projective ^-modules is k-

projective. Thus if A is A-projective there exist two ^-linear sections

q: A -> E and qf: U(A) -> U'(E) with εq' = q' and q'\A = q.

For a n-ary A-module M a factor set of 4 in M is a ^-linear map

/: ACn] - > M s o that a τι-ary algebra £ ; : = A 0 M i s defined by

together with C1)M: = {0}, and the A-module structure of M. f is trivial

if there exists σ e Morfc (A, M) with

where bυ: = Xj if i Φ j and bu\ = a(Xi). Let F(A, M) denote the ^-module

of factor sets of A in M, and F f(A, M) the submodule of trivial factor

sets. Using an argument similar to the one in [3] we get

THEOREM 3. Let A be a n-ary algebra and M a n-ary module over

A, further A k-projective. Then

H\A, M) ^ F(A, M)/Ft(Af M) .

There exists a 1-1 correspondence of an element in H2(A, M) to a class of

equivalent singular extensions of A by M. The split extensions correspond

to zero.
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The proof of the statement for A with radical R analogous to the
Wedderburn Principal Theorem reduces in the case of finite dimension
over a field k to (1)i? = {0}. Hence by Corollary 2

COROLLARY 4. Let k be a field, A a finite dimensional n-ary algebra
over k, R the radical of A, AjR separable and char (k) \ n — 1. Then

A = SΦR,

S a semisίmple n-ary subalgebra of A.

This corollary can also be derived directly generalizing an argument
of Loos suggested for some ternary case: Since A/R is separable we
may suppose that k is n — 1 split. Then there is a Wedderburn decom-
position

U(A) = SΘR(U(A))9

S a semisimple subalgebra, and S ^-invariant by [12], Thus A = Sλ® R.
Obviously S i s a semisimple direct imbedding of SΊ. By Theorem 1 Sί is
semisimple.

Let D be a derivation of A in A, D nilpotent of index r, reN, and
char(£)i Π?=ΐ'1)J Then a: = exp (D) is an automorphism of A.

For a subset B of a binary associative ^-algebra C the nilindex t
denotes teN, t minimal with xι = 0 for all xe B if it exists. Define
λx,px e End (C) by λx:y •-* xy, px:y ι-> yx, and δ(x): = λx — px. One derives

the statement analogous to the Theorem of Malcev-Harish-Chandra, using
an argument similar to the one in Harish-Chandra's proof for Lie
algebras (cf. [5]):

COROLLARY 5. Let k be a field, the n-ary algebra A finite dimensional
over k, R the radical of A, and AIR separable. Assume that W and T
are semisimple subalgebras and A = T® R. When Rs denotes the ideal
in S(A) generated by R, and t the nilindex of ^(i?s)w_i for A suppose
char (k) J( (n — 1) Uflϊ^j- Then there is an automorphism a of A with
a(W) C T.

5. Classification

We determine the simple τz-ary algebras which are finite dimensional
over an algebraically closed field k with char (k) \ n — 1. For n = 2, 3
these are wellknown. We generalize the arguments in [8] for n = 3.
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Lemma 4. Let k be a field, A a n-ary algebra over k.

(1) If A = k{rx)
niZl r, e N, then A is simple.

(2) Let d, re N\{1}, and A a simple r-ary algebra. Then Aτ{d) is

simple.

Proof. (1) follows in the obvious manner using a standard basis.

For (2) assume that A is a simple r-ary algebra and I an ideal in

Aτ{d). Let z = <jί)Li with yt e A, and yio e Jfor some subscript iQ. Choose

yt with i Φ ί0. Since yteA = A(r"1)(i*-2)+1 trivially z e I. Hence I = {0}, or

I=A. U

The lemma proves one direction of

THEOREM 4. Let k be an algebraically closed field, char (k) \ n — 1,

and A a n-ary algebra over k. Then A is simple if and only if

A s (k{rdlZΪ)τW

with rt e N, and r,deN\{ί} where n = (r — ΐ)-(d — 1) + 1.

Proof. If A is a simple n-ary algebra then by Theorem 1 U(A) is

simple or ^-simple. The latter is evident from the proof of that theorem.

Assume that U(A) is simple. Then U(A) is isomorphic to a full matrix

algebra k(r) of r X r matrices in k, r e N. Since any automorphism of

U(A) is inner then

for some yeU(A). Observing φn~1 = IdUU), Schur's Lemma, and the

Jordan normal form we may take y as a diagonal matrix. Further the

diagonal of y consists of n — 1 matrices ξίEri for i = 1, , n — 1 and

rte N where Eri denotes the unit matrix with rt rows, as is shown easily.

Hence A ^ Jfefa)?-ί.
Let now U(A) be ^-simple but not simple. Obviously the restriction

of the canonical projection π of U(A) onto a simple ideal B in U(A) maps

A monomorphically into Bτ{n). Let U(A) = Φϊziφ^B) with g > 1. Then

q\n- 1. Set r: = (n - ί)jq + 1. Further let

Obviously Bq Φ {0}. Moreover

U(A\ = ίx|x: = £ f-y(y), y e Bq\ .
i i = 0 )
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Now Bq is a subalgebra of JBτ(r), and B is a simple direct imbedding of

the r-ary algebra Bq. For suitable rt e N therefore A = (k{r^lzl)τ{(l+l). []
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