PROJECTIVE INVARIANT METRICS FOR EINSTEIN SPACES

SHOSHICHI KOBAYASHI*)

1. Introduction

In my recent paper [1], I associated a projectively invariant pseudodistance d_{M} to every affinely connected manifold M and proved the following

Theorem 1. Let M be a Riemannian manifold with metric $d s_{M}^{2}$ and Ricci tensor Ric_{M} such that $\operatorname{Ric}_{M} \leq-c^{2} d s_{m}^{2}$. Let δ_{M} be the Riemannian distance defined by $d s_{M}^{2}$. Then

$$
d_{M}(x, y) \geq \frac{2 c}{\sqrt{n-1}} \delta_{M}(x, y) \quad \text { for } x, y \in M
$$

The purpose of this paper is to show the following
THEOREM 2. Let M be a complete Einstein manifold with

$$
\operatorname{Ric}_{M}=-c^{2} d s_{M}^{2} .
$$

Then

$$
d_{M}(x, y)=\frac{2 c}{\sqrt{n-1}} \delta_{M}(x, y) \quad \text { for } x, y \in M
$$

The following corollary has been known for some time [3], [4].
Corollary. The projective transformations of a complete Einstein manifold with negative Ricci tensor are all isometries.

Since Theorem 1 is not stated in [1] in the same manner as above, we shall first indicate how it can be derived from the results proved in [1].

We should remark that d_{M} vanishes identically if $d s_{M}^{2}$ is complete
Received March 31, 1978.
*) Guggenheim Fellow, partially supported by SFB in Bonn and NSF Grant MCS 76-01692.
and $\operatorname{Ric}_{M} \geqq 0$, [2].

2. Proof of Theorem 1

Let ρ be the distance function on the interval $I=\{u ;-1<u<1\}$ induced by the "real Poincaré metric" $4 d u^{2} /\left(1-u^{2}\right)^{2}$. Our Theorem 1 is an immediate consequence of the following two results proved in [1].

Lemma 1. Let M be a manifold with a torsionfree affine connection. Let Proj (I, M) denote the family of projective maps $f: I \rightarrow M$. Then
(1) $\rho(a, b) \geqq d_{M}(f(a), f(b))$ for $a, b \in I, f \in \operatorname{Proj}(I, M)$;
(2) If Δ_{M} is any pseudo-distance on M such that

$$
\rho(a, b) \geqq \Delta_{M}(f(a), f(b)) \quad \text { for } a, b \in I, f \in \operatorname{Proj}(I, M),
$$

then

$$
\Delta_{M}(x, y) \leqq d_{M}(x, y) \quad \text { for } x, y \in M
$$

This is Proposition 3.5 of [1] and follows directly from the construction of d_{M}.

Lemma 2. Let M be a Riemannian manifold with $\operatorname{Ric}_{M} \leqq-c^{2} d s_{M}^{2}$. Let δ_{M} be the Riemannian distance defined by $d s_{m}^{2}$. Then

$$
\rho(a, b) \geqq \frac{2 c}{\sqrt{n-1}} \delta_{M}(f(a), f(b)) \quad \text { for } a, b \in I, f \in \operatorname{Proj}(I, M)
$$

This is Corollary 4.14 of [1] and follows from its infinitesimal version, Lemma 4.1 of [1].

3. Proof of Theorem 2

Since Theorem 1 established an inequality in one direction, we have only to prove the opposite inequality. Given two points x, y of M, we take a minimizing geodesic $x(s)$ parametrized by its arc-length s in such a way that

$$
x=x(0), \quad y=x(a)
$$

where a is the Riemannian distance $\delta_{M}(x, y)$ from x to y.
A projective parameter p for this geodesic is defined as a solution of the differential equation

$$
\{p, s\}=\frac{2}{n-1} \sum R_{j k} \frac{d x^{j}}{d s} \frac{d x^{k}}{d s}
$$

where $\{p, s\}$ is the Schwarzian derivative, (see [1]). Since $\operatorname{Ric}_{M}=-c^{2} d s_{M}^{2}$ by assumption, the differential equation above takes the following simple form :

$$
\{p, s\}=-\frac{2 c^{2}}{n-1}
$$

This equation has a general solution of the following form ([1; § 5]) :

$$
p(s)=\left(\alpha e^{k s}+\beta e^{-k s}\right) /\left(\gamma e^{k s}+\delta e^{-k s}\right) \quad \text { with } \quad \alpha \delta-\beta \gamma \neq 0
$$

where $k=c / \sqrt{n-1}$.
We use the following special solution:

$$
p(s)=\left(e^{k s}-e^{-k s}\right) /\left(e^{k s}+e^{-k s}\right)
$$

so that

$$
p(-\infty)=-1, \quad p(0)=0, \quad p(\infty)=1
$$

We use the obvious projective map $f: I \rightarrow M$ given by $p=u$. Since the points x and y correspond to $s=0$ and $s=a$ respectively, they correspond to $p=0$ and $p=\left(e^{k a}-e^{-k a}\right) /\left(e^{k a}+e^{-k a}\right)=p(\alpha)$. In other words, $x=f(0)$ and $y=f(p(\alpha))$. From Lemma 1 above, we have

$$
\rho(0, p(a)) \geqq d_{M}(x, y)
$$

Since

$$
\rho(u, v)=\left|\log \frac{1+v}{1-v} \cdot \frac{1-u}{1+u}\right|
$$

we obtain

$$
\rho(0, p(a))=\left|\log \frac{1+p(a)}{1-p(a)}\right|=2 k a=2 c a / \sqrt{n-1}
$$

Hence,

$$
d_{M}(x, y) \leqq 2 c a / \sqrt{n-1}=\frac{2 c}{\sqrt{n-1}} \delta_{M}(x, y)
$$

This completes the proof of Theorem 2.

Bibliography

[1] S. Kobayashi, Projective structures of hyperbolic type, Proc. U.S.-Japan Seminar on Minimal Submanifolds and Geodesics (1978).
[2] S. Kobayashi and T. Sasaki, Projective structures with trivial intrinsic pseudodistance, ibid.
[3] T. Nagano, The projective transformation on a space with parallel Ricci tensor, Kodai Math. Seminar Reports 11 (1959), 131-138.
[4] N. Tanaka, Projective connections and projective transformations, Nagoya Math. J. 12 (1957), 1-24.

Department of Mathematics
University of California, Berkeley and
Mathematisches Institut
der Universität Bonn

