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ON PRIME VALUED POLYNOMIALS AND CLASS NUMBERS

OF REAL QUADRATIC FIELDS

R.A. MOLLIN AND H.C. WILLIAMS

§ 1. Introduction

Gauss conjectured that there are infinitely many real quadratic fields
with class number one. Today this is still an open problem. Moreover,
as Dorian Goldfeld, one of the recipients of the 1987 Cole prize in num-
ber theory (for his work on another problem going back to Gauss) recently
stated in his acceptance of the award: "This problem appears quite in-
tractible at the moment." However there has recently been a search for
conditions which are tantamount to class number one for real quadratic
fields. This may be viewed as an effort to shift the focus of the problem
in order to understand more clearly the inherent difficulties, and to reveal
some other beautiful interrelationships.

One of the avenues of inquiry has been to search for criteria in
terms of prime valued polynomials. The impetus for this search has come
from a result for complex quadratic fields which is almost 75 years old.

THEOREM 1.1 (Rabinowitsch [13] and [14]). If d = 3 (mod 4) where d is
a positive square-free integer, then p(x) = x2 — x + (d + l)/4 is prime for
all integers x with 1 < x < (d — 3)/4 if and only if h(— d) = 1.

It is now well-known (see [2], [5], and [17]) that there exactly nine

complex quadratic fields with class number one. They are Q(V — d) for
d e {1, 2, 3, 7,11,19, 43, 67, 163}. Thus together with Theorem 1.1 we get
the remarkable:

THEOREM 1.2. If d = 3 (mod 4) is a square-free integer then x2 — x +
(d + l)/4 is prime for all integers x with 1 < x < (d — 3)/4 if and only if
d e {7,11,19, 43, 67, 163}.

Given Gauss' open conjecture cited at the outset, the story for real
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quadratic fields and prime quadratics is not so neat. However recent

headway has been made and we will now detail this history culminating

in the criteria which we have discovered.

In [6] Kutsuna found a necessary and sufficient condition for an

arbitrary real quadratic field to have class number one. However the

condition involves so-called stδrend fractions and is nearly impossible to

apply in practice. However a consequence of his result is more readily

applied and is more pertinent.

PROPOSITION 1.1 (Kutsuna [61).

(a) Let d = 1 + 4m be square-free positive integer. If — x2 + x + m

is prime for all integers x with 1 < x < ^/m — 1 then h(d) = 1.

(b) If m is odd and (djp) — — 1 for every prime p with 2 < p < ^/m

then h(d) = 1. (Here (*/*) denotes the Legendre symbol)

At this juncture we digress to introduce a conjecture of S. Chowla

[3], since this is the point of entry of the authors' work on the problem.

S. Chowla conjectured that if d = £2 + 1 is prime and £ > 26 then h(d) > 1.

Proposition 1.1 is unsatisfactory in this regard since it fails to be of

value when m is a square. However with Kutsuna's result as an in-

spiration, Mollin [81 achieved the following result:

THEOREM 1.3. Let d = 4mi + 1 be square-free and positive where m is

a positive integer. Then the following are equivalent.

(1) Λ(d) = l ;

(2) p is inert in Q(V d ) for all primes p < m;

(3) fd(x) = — x2 + x + mι -φ. 0 (modp) for all positive integers x and

primes p satisfying x <p <m;

(4) fd(x) is prime for all integers x with 1 < x < m.

These conditions are certainly quite strong, yet the Chowla conjec-

ture remains open. However Mollin and Williams [12] were able to use

Theorem 1.3 together with the generalized Riemann hypothesis (G.R.H.)

to prove it.

A similar conjecture for d = πiι + 4 was made by Yokoi [18] wherein

he conjectured that if m > 17 is prime then h(d) > 1. Moreover in [9],

Mollin conjectured that for square-free d = τriι — 4 with m > 21 then

h(d) > 1. We establish all three conjectures (modulo G.R.H.) in Section 2.
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The results of this paper generalize, improve or contain as special

cases certain results of Azuhata [1], Louboutin [7], Mollin [9], Mollin and

Williams [12], Sasaki [16], and Yokoi [18].

§ 2. Results

With the work on the Chowla conjecture (see § 1) as a stepping stone

we shift attention to the more general question of obtaining class number

one criteria for arbitrary real quadratic fields. We begin with a very

general result which is stated separately since it is of interest in its own

right.

For the remainder of the paper we set:

f- x2 + x + (d - l)/4 if d ΞΞ 1 (mod 4)
fa(x) = | _ χ2 + d if d=£l (mod 4)

where d is a square-free integer.

LEMMA 2.1. // a is any positive real number then the following are

equivalent

(1) p is inert in Q(V d ) for all primes p < a; i.e., (d/p) = — 1 for all

odd primes p < a and d = 5 (mod 8) for 2 < a.

(2) fd(x) =fc 0 (mod/?) for all integers x and primes p such that 0 <

x < p < a.

Proof First we assume that (1) holds. Suppose that fd(x) = 0 (modp)

for some prime p and integer x with 0 < x < p < a. Therefore, if p > 2

then:

_ ί(2x - I)2 (mod j?>) if d = 1 (mod 4)
= [x2 (moάp) if d =έ 1 (mod 4)

whence p is not inert in Q(V d). If p — 2 then x e {0,1}, whence

d φ 5 (mod 8); i.e., p = 2 is not inert in Q(Vd). Thus (1) implies (2).

Conversely assume that (2) holds and that there is a prime p < a

such that p is not inert in Q(V d). Therefore if p > 2 there is an integer

x such that:

((2x - I)2 (modp) with 0 < x < (p + l)/2 if d = 1 (mod 4)
d ΞΞ <

[ 2 (modp) with 0 < x <p i f d ^ l (modp) .
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Hence fd(x) = 0 (modp) for some integer x and prime p with 0 < x < p < a.

This contradicts (2). If p = 2 and d ΞΞ 1 (mod 4), then /d(0) = /d(l) =

(d — l)/4 Ξ£ 0 (mod 2): i.e., d = 5 (mod 8) contradicting that p is not inert.

Therefore dφ\ (mod 4), /d(0) = d Ξ£ 0 (mod 2), and /d(l) = d - 1 =£ 0 (mod 2),

a contradiction. This establishes the result. Q.E.D.

Now we particularize a situation more germane to the central theme.

For the remainder of the paper we set:

f (Vd-l)/2 if d = l (mod 4)

W~d if d ξέ 1 (mod 4).

Moreover since we will have occasion to refer to the following state-

ments several times throughout the balance of the paper we label them

once and for all at this juncture as:

CONDITIONS.

( I ) p is inert in Q(V d ) for all primes p < a\

(Π) fd{x)φQ (modp) for all integers x and primes p such that

0< x<p <a;

(III) fd(x) is a prime for all integers x with 1 < x < a;

(IV) h(d) = l.

LEMMA 2.2. (I) φ (II) => (III) => (IV). Additionally if d = 1 (mod 4)

*Λerc (ΠI) => (II).

Proo/. The equivalence of (1) and (II) is a special case of Lemma 2.1.

Now we show that (II) implies (III).

Suppose that fd(x) is composite for some integer x with 1 < x < a.

If all primes dividing fd(x) are larger than or equal to a then fd(x) > a2,

whence x < 1, a contradiction. Hence there exists a prime divisor p of

/^(x) such that p < a. If p also divides x then fd(0) = 0 (modp). This

contradicts (II). Therefore p does not divide x and so we may assume

fd(x) = 0 (mod p) for some integer x with 0 < x < p < a, contradicting (II).

Next we show that when d = 1 (mod 4) then (III) implies (II), whence

(I) & (II) <=$ (III). Assume (III) holds and fd(x) = 0 (modp) for some in-

teger x and prime p with 0 < x < p < a. If x > 1 then /d(x) = p from (III).

However, x < a implies that x(l — x) > α(l — a), whence fd(x) — p > a, a

contradiction. Hence x e {0,1}, whence p divides α2. Therefore /d(p) =

p(— p + I + a2lp) By (III) fd(p) = p, where p = a, a contradiction.
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Finally assume (III) holds, and suppose h(d) > 1. If d φ. 1 (mod 4)

then d < 11 is forced and the result holds. Therefore assume d = 1 (mod 4).

Thus by Kutsuna [6, Propositions 3 and 4, p. 126] we have that there

exists an integer a and a prime p such that 0 < a <p < a and both:

(a) N(a - j9) = 0 (moάp) where β = (1 + V"3")/2;

and

(b) There does not exist an integer k such that |iV(α + kp — β)\ Kp2,

where N is the absolute norm.

From (a) it follows that fd(ά) = 0 (modp). If a > 1 then (III) implies

that fd(ά) = p. However setting k = 0 in (b) yields that /d(α) > p 2 a

contradiction. Hence α e {0,1}, and so p divides a\ whence fd(p) =

p ( - p + 1 + α2/p). From (III) it follows that a = p. If k = 1 in (b) then

p 2 < |iV(α + p — 9̂)| = p, a contradiction.

2

3
5

6

7
11

13

17

21
29

37
53

77

101
173

197
293

437

677

Table 2.1. h(d) = 1.

prime values of f
d
(x) for 1 < x < a

-

-
—

2
3

2,7
11
-

3

5

7

7,11
7,13,17

13,19,
13,23,

19,29,

17,31,

19,37,

37,59,

23

31,
37,

43,
58

79,

37,
43,

53,
67

97,

41

47

61,67,71
79, 83,97,103,107

113,127,139,149,157,163,167.

We conjecture that the entries in Table 2.1 represent all of those d

for which fd(x) is prime with 1< x < a. We will establish this conjecture

(modulo G.R.H.) at the end of the paper. First we observe that the
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entries d > 13 in Table 2.1 share a common property. They are of

narrow Richaud-Degert (R-D) type (see [4], [10] and [15]); i.e., d = m2 +

rφδ,13 where | r |e{l, 4}. This is not an accident. In point of fact it

tells the whole story, as we shall see.

LEMMA 2.3. If (III) holds for d > 13 then d ΞΞΞ I (mod 4) and d is of

narrow R-D type.

Proof. If d ^ 1 (mod 4) then for d > 6, fd(2) is even composite when

d = 2 (mod 4), and for d > 13, fd(3) is even composite when d = 3 (mod 4).

Hence d = 1 (mod 4). By Lemma 2.2 (III) => (I), whence d = 5 (mod 8) when

d > 17. Since 17 is of narrow R-D type we assume henceforth that

Set d = m2 + t where 0 < t < 2m. If t is divisible by two odd primes

p and q then by Lemma 2.2 (III) => (I) we must have that t >pq

> (d — l)/4 since neither p nor q is inert in Q(V d). Therefore d = m2

+ t>m2 + (d - l)/4. Since t < 2m then m2 + 2m > m2 + (d - l)/4; i.e.,

m2 — 8m + t — 1 < 0. However £ > 15 since it is divisible by two odd

primes; whence m2 — 8m + 14 < 0, a contradiction. We may now assume

that t = 2apb for a e {0, 2} and b e {0,1}, when p is an odd prime. If b = 0

then c£ is of narrow R-D type so we assume that t — 4p or t = p. If

t = 4p then p < m/2. If m/2 < (Vd — l)/2 then (I) is contradicted. Hence

m > Vcϋ — 1 i.e., m2 > m2 + 4p — 1, a contradiction; whence t — p. Set

d = (m + I)2 — (2m + 1 — p) = (m + I)2 — s, say. If s is divisible by two

odd primes then s >(d — l)/4 by (I) again. Therefore d = (m + I)2 — s

<(m + I)2 - (d - l)/4; i.e., (5d - l)/4 < (m + I)2. Thus, 5(IΛ + I)2 - 5s

— 1 < 4(τn + I)2; i.e., (m + If — 5s — 1 < 0. However s < 2m, therefore

(m + If — 10m — 1 < 0, whence m<7. The only solution to 13 < d =

m2 + p for m < 7 and p < 2m is d = 21 which is of narrow R-D type.

Hence s = 2eqf where e e {0, 2}, / e {0,1}, and q is an odd prime. If / = 0

then d is of narrow R-D type. Thus we assume that s = 4q or s = q.

If s = 4q then q < m/2, since s < 2m. By (I), q > (\/d — l)/2, whence

m > Vd — 1; i.e., m2 > m2 + p — 1, a contradiction. Therefore s = q; i.e.,

2m + l = p + g Ξ U (mod 2), a contradiction. This completes the proof.

THEOREM 2.1. Let d > 13 ίΛe i (I) & (II) φ (III) & (IV) ΛoZcfe £/ α^d

only ίfd=l (mod 4) αrad d is of narrow R~D type.

Proof. If d = 1 (mod 4) and d is of narrow R-D type then by Mollin
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[9] the result follows.

Conversely if (I) φ (II) φ (III) & (IV) then the result follows from

Lemma 2.3.

COROLLARY 2.1. h(d) > 1 if any of the following conditions hold:

(1) d — m2 + 1 with m > 1 odd;

(2) d = m2 — 1 with m > 2 ei erc;

(3) d = 4τn2 + 1 TOΪ/I /n composite;

(4) d — n2 ± 4 κ iί/1 (d — l)/4 composite.

Corollary 2.1 was also obtained from results for non-trivial class

numbers by Mollin in [10]-[ll]. We also observe that Corollary 2.1 re-

duces the aforementioned Chowla conjecture to the case where d =

4p2 + 1, p > 2 prime, and the aforementioned Yokoi conjecture to the

case where d — m2 + 4 = 4p + 1, p a prime. Furthermore the aforemen-

tioned Mollin conjecture reduces to h(d) — 1 for square-free d — mL — 4

if and only if d e {5, 21, 77, 437}. We now establish all of these conjec-

tures subject to G.R.H.

THEOREM 2.2. If G.R.H. holds and d > 13 then (I) φ (II) φ (III) Φ=> (IV)

ΛoZds i/ and only if d is an entry in Table 2.1.

Proof. By employing the same argument as that used in [12], we

see that when d is a square-free positive integer and d = 1 (mod 4) we

get Λ(cZ) > V^de-Hd)l2(logdfR where 22 is the regulator of QW~d) and;

t(χ) = (3/ττ) + (15.9/2 log log s) + (2/ττ log log x) + (5.3/(log log x)2)

+ (8/log x log log x) + (6 log log x\π log x) + (12/log x)

+ (4/ττlogx)

If 5 < d — m2 ± 4 Ξ 5 (mod 8) then the fundamental unit of Q(V d ) is

(m + Vd)/2 and 22 - log((m + Vd)/2) < log(V^d + 1). If we put:

F(d) = V"dβ-£(d)/(2(logd)2log(Vd^ + 1))

then we have h(d) > F(d). Moreover F(d) is an increasing function of

d. When d = 1013, we have F(d) > 1; hence, h(d) > 1 for any square-free

d > 1013. It remains to deal with the case of d < 1013.

From a result of Mollin [9, Corollary 3] it is easy to see that if

d = m2 ± 4 then h(d) > 1 whenever there exists some prime q such that

q < m — 2 and q is not inert in Q(V d). Since m must be odd we write
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it as 2s + 1 and consider the values of d of the form g^s) = 4s2 + 4s — 3

and g2(s) = 4s2 + 4s + 5. Since d < 1013, we have s < 1.6 X 106. For a

fixed gn(s) (n e {1, 2}) we select a positive integer k and the first k odd

primes {gj?=i. For each of these g* we tabulate those Stj such that

0 < Sij < qt — 1 and (gn(Stj)lqt) = 1. If any s = S^ (mod g) and 2s —

1 > qί9 then the value of d — gn(s) must have h(d) > 1. Hence this value

of s can be deleted from the 1.6 X 106 to be considered. We used a value

of k — 30 and a Fortran program to eliminate all the possible candidates

for s, except s = 1, 2, 4, 5,10 when n = 1 and s = 1, 2, 3, 5, 6, 8 when n = 2.

The computer was able to sieve out all the other values in a little less

than 20 seconds for each gn(s) form. Hence, if s > 10 and the G.R.H.

holds, we must have h(d) > 1. This establishes the result.

COROLLARY 2.2. If G.R.H. holds then (HI) & (IV) if and only if d is

an entry in Table 2.1; i.e., if G.R.H. holds then Table 2.1 contains all

R-D types of class number one.

Thus we have proved the following real analog of Theorem 1.2.

THEOREM 2.8. If G.R.H. holds then fd(x) is prime for all integers x

with 1 < x < a if and only if d is entry in Table 2.1.
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