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BOUNDS FOR THE COHOMOLOGY AND THE

CASTELNUOVO REGULARITY OF CERTAIN SURFACES

M. BRODMANN AND W. VOGEL * }

0. Introduction

Let X <Ξ P r be a reduced, irreducible and non-degenerate projective variety

over an algebraically closed field K of characteristic 0. Let regQO be the

Castelnuovo-Mumford regularity of the sheaf of ideals / <Ξ 0pr associated to X.

Then it is an open problem—due to D. Eisenbud (see e.g. [E-Go])—whether

(0.1) reg(X) < degUO - codimUD + 1,

where degQO denotes the degree of X and codimGD denotes the codimension of

X. In many cases, this inequality has been proven to hold true.

So Gruson, Lazarsfeld and Peskine have shown (0.1) in case X is a curve

(s. [G-L-P]). For smooth surfaces, the requested inequality has been proved by

Lazarsfeld [L]. Stuckrad and Vogel [St-FJ have settled the case of an arbitrary

Buchsbaum variety X. In [Ho-V] the above inequality is shown if X is an arith-

metically quasi-Buchsbaum (1-Buchsbaum) surface.

Nowadays, the study of /c-Buchsbaum varieties (A: > 1) is of growing import-

ance (see e.g. [Fi-V]). It should be noted that any projective locally

Cohen-Macaulay variety is /c-Buchsbaum for some k ^ 0. A systematic way of

constructing such varieties is given by the methods of [Ev-Gr] and [Go].

One of the goals of this paper is to study the first case in which the problem

(0.1) is open: The case of (possibly singular) surfaces which are 2-Buchsbaum. We

namely shall prove that such surfaces satisfy the inequality.

(0.2) regGX) < degtX) - r + 3.

If degUO ^ r, one may conclude by a theorem found in [Hό-St-V]. If degGO
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> r + 1 and if the generic hyperplane section Y of X is either non-smooth or

non-rational, we shall use a lemma of [Ho-M-V] and the fact that Y is not of

maximal regularity (s. [G-L-P]) to conclude. So, the crucial point is to study the

case where the generic hyperplane section Y is smooth and rational. In the termi-

nology of [Br2] this means that X is normal and of sectional genus 0.

We study this case in detail, thereby admitting that X is arithmetically

λ -Buchsbaum for some natural number k. (If X is normal, such a k always exists).

Observe that (if we do not want to specify k) this case may be characterised by

the facts that X is Cohen-Macaulay and has smooth and rational generic hyper-

plane sections. In this situation one of our main results (see (3.11)) gives bounds

for the first local cohomology module of the homogeneous coordinate ring of X in

terms of r, degOO and k.

Setting k = 2, these bounds easily furnish the inequality (0.2) if deg(X) > r+ 2

and deg(X) > 6. The remaining cases deg(X) = r + 1 and deg(X) = 6, r = 4

need a more detailed analysis, which heavily relies on the assumption that k

equals 2.

Acknowledgement. We would like to thank Le Tuan Hoa for his helpful com-

ments on the proof of Proposition (4.1).

1. Preliminary results

Let K be an algebraically closed field of characteristic 0. Let P y =

PIΌJCKLXQ,. . . ,Xr]) be the projective space of dimension r over the field K. First,

we recall the definition of a closed λ -Buchsbaum scheme in Pr.

Let Y — ProjCA) be a closed subscheme of P and let k > 0 be an integer.

Let P — A> 0 be the irrelevant ideal of A. Then Y is called (arithmetically)

λ -Buchsbaum if the local cohomology modules Hp(A) are annihilated by P for

Let X <Ξ Pr be a closed non-degenerate irreducible and reduced surface.

Assume that

(1.1) X i s arithmetically λ -Buchsbaum for some k ^ N.

(1.2) If Pr = H <Ξ pr i s a generic hyperplane, the (scheme-theoretic) intersec-

tion X Π H is a smooth (connected) and rational curve.
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(1.3) Remark. Let Y be a pure-dimensional closed subscheme of P with

ideal sheaf β Q upr> We recall that the following conditions are equivalent

(a) F i s a locally Cohen-Macaulay scheme.

(b) There is an integer k > 0 such that Fi s /c-Buchsbaum.

In terms of Serre cohomology the condition that Y is /c-Buchsbaum may be

expressed as follows:

(c) (X0,...,Xr)
k [ Θ H'(Pr, /(»))] = 0 for i = 1,.. .,dimGX).

«<=z

(1.4) PROPOSITION. X is normal.

Proof. By assumption (1.1), X is a CM-surface. It thus remains to be shown,

that X has only finitely many singular points. Let us assume that this is not the

case ! Then, the singular locus Y of X is a closed one-dimensional subset of X.

Now, let H <Ξ Pr be a generic hyperplane. By (1.2) the scheme-theoretic intersec-

tion X Π H is a smooth curve. Hence the points of X Π H are regular points of X.

This implies that Y Π H = 0 and thus contradicts our assumption that Y is of

dimension 1. •

Let A be the homogeneous coordinate ring of our surface X. So A is a graded

integral if-algebra of Krull dimension 3, which is generated over K by finitely

many forms of degree one. We write An for the w-th homogeneous part of A. The

dimension of the if-vector-space An will be denoted by an. Moreover we write H

for the i-th local cohomology functor HP : ModΛ —* Mod^ defined on the category

ModΛ of graded A-modules by the irrelevant ideal P — A>0 of A. By Hι(-)n we

denote the w-th homogeneous part of the functor H , (« e Z). If ilί is a finitely

generated graded Λ-module, we write ti(M)n for the (finite) dimension of the

if-vector-space H*(M)n.

Now, we may formulate the following result on the local cohomology modules

H'(A) of A:

(1.5) PROPOSITION, a) H°(A) = 0.

b) Hι{A)n = 0, for all n < 0.

c) H\A) = 0.

d) H3(A)n = 0Joralln> - 1.
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Proof, a) follows from the fact that A is integral and of positive dimension,

b) from the reducedness and connectivity of X.

To prove c) and d) we choose a generic element h ^ Aχ— {0} such that

Y = ProjG4//k4) is a smooth, connected and rational curve. (Such elements h ex-

ist by our hypothesis (1.2)). Applying cohomology to the sequence 0~+A

+A/hA(ϊ) —+ 0 we get the following exact sequences

n+^ E\A)n^ H2(A)n+ι->

- H2(A/hA)n+1 - H3(A)n

 Λ H3(A)n+1 - 0.

As Y is smooth and rational its geometric genus vanishes, and hence we have

H2(A/hA)n+1 = H\Y, ΰγ(n + 1)) = 0

for all n > — 1. So, for all n > — 1 we obtain isomorphisms H (A)n = H (A)n+1.

As H3(A)n = 0 for n > 0, this implies d).

For all n > — 1 the vanishing of H (A/hA)n+ι implies epimorphisms

H (A)n—+H (A)n+1—• 0. As X is normal (s. (1.4)) the vanishing theorem of

Kodaira-Mumford-Ramanujam [MuJ furnishes that

H2(A)n = H\Y, θx(n)) = 0 for all n < - 1. Altogether, this proves c). D

If we use the terminology of [Fi-V] or [Ho-M-V] the next corollary shows

that X is (k, 2)-Buchsbaum.

(1.6) COROLLARY. Let I e Aλ\ {0}. Then Pvoj(A/lA) is again k-Buchsbaum.

Proof. By (1.5) H2(A) = H°(A) = 0. Hence (1.6) follows from the exact

sequence of the previous proof applied with / instead of h. Π

(1.7) Remarks. A) As an immediate consequence of (1.5) we get exact sequ-

ences

0 - H°(A/lA)n+1-> H\A)n± H\A)n+ι-^ H\A/lA)n+1-^0

for all n e Z and all l^A,~ {0}.

B) As another consequence of (1.5) we obtain

H2(A/lA)n = 0, for all n e No, and all / e A, - {0}.

We write d for the degree of X. Then we have
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(1.8) LEMMA. Let I e Aλ - {0}. Then hι(A)ι = hι{A/lA)ι = d - r + 1.

Proof. By (1.5) b) and the sequences of (1.7) A) we get h1(A)1 =

hι(A/lA)v By (1.2) we may choose / e Ax - {0} such that Y = ?ro)(A/lA) is a

smooth connected rational curve. It suffices to prove that A (A/IA)1 — d — r + 1

for such a particular element /. The homogeneous coordinate ring B '-= (A/IA)/

H°(A/IA) of Y satisfies H\B) = Hι(A/lA). It thus remains to be shown that

hl{B)x = d + r ~ l .

To do so, we write bn for the dimension of the if-vector space Bn of all

w-forms of B. As Y is a smooth, rational and connected curve of degree d, its

characteristic polynomial χγ satisfies the equation χγ(n) = dn + 1 = h (Y,

ΰγ{n)) — bn + h (B)n for all n > 0. As Y is non-degeneratedly embedded into

the generic hyperplane by which it is cut out LF-V], we have b1 = r. Consequent-

ly we obtain d + 1 = χ r ( l ) = h (B) + r, hence our claim. •

(1.9) PROPOSITION. The characteristic polynomial χx of X is given by

χx(Ί) =^T2 + ^γ^T+l.

Proof In view of (1.5) we have χx(n) = an + hι(A)n for all n > 0. As X is

of degree d, we also have χx(T) = ~o T + bT + c with b, c ^ Q. Putting Γ = 0

we get c = χx(ϋ) = a0 + h\A)0 = 1. Putting 7 = 1 we get | + ft + 1 =

χ z ( l ) = flx + A 1 ^ ! . As X is non-degenerate, we have a1 = r + 1. By (1.8)

A 1 ^ ! = rf - r + 1. Therefore we get | + b + 1 = rf + 2, hence ft = ^ j r ^ . R

2. Generic pairs of linear forms

We keep the notations and hypotheses of the previous section. We say that

two elements A, / ̂  Aλ are a generic pair of linear forms if the following conditions

are satisfied:

(2.1) Y =Proj(A/hA) is a smooth, connected and rational curve.

(2.2) Z : = Proj04/(AA + IA)) is reduced and consists of d ' = degOO points

which are in general position in the subspace Pr~ of Pr which is defined by A

and /.
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(2.3) Remarks. A) We recall that d points are said to be in general position

in Pr if no hyperplane Hr of Pr contains r — 1 of these points.

B) In view of our assumption (1.2) there is a linear form h ^ Aλ which satis-

fies (2.1). If we fix such an h, the general position lemma [H] shows that there is

a linear form / ^ Ax for which (2.2) is satisfied. Hence generic pairs of linear

forms exist

The following lemma will play an important role. It is an immediate consequ-

ence of [St-V2, Thm. 1], (see also [N, 2.1.2.2]).

(2.4) LEMMA. Let h, I e Aλ be a generic pair of linear forms and let C '- =

A/(hA + IA). Then, hι(C)n < maxίO, d - 1 - n(r - 2)} for all n>0.

Now, we write

(2.5) t' = j ^ , (d = deg(X)).

Using this notation, we have the following result, which follows immediately

from (2.4).

(2.6) LEMMA. Let h, I ^ A1 be a generic pair of linear forms and let C : =

A/(hA + IA). Then Hι(Qn = 0 for all n> t. D

Now, we fix a generic pair h, I & Aι and study the functions n •-•

h\A/(λh + μl)A)n for arbitrary pairs W, μ) e K2 - {(0,0)} of coefficients. To

do so, we recall some useful facts on cohomological Hubert functions and

Castelnuovo-Mumford regularities.

(2.7) Remarks. A) Let 5 > 2 be an integer and let S be the polynomial ring

K[X0,. . . ,XS]. Write P s = Proj(S). Let T be a graded homomorphic image of S

and consider the closed subscheme W— Proj(T) of P s defined by T. Let βw^

Θγ>s be the ideal sheaf associated to W. Then, the Serre-Grothendieck correspond-

ence yields graded isomorphisms

H\Ί) = Θ Hι<&*,βw{n)) (i = l , . . . , s ~ l ) ,

which give rise to the equations

h\T)n = h'(Ps, βw(n)} ; ( » = ! s - 1 n e Z).
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B) Let m €= No. Then βw is m-regular in the sense of Castelnuovo and Mum-

ford iff h*(Ps, βw(n)) = 0 for all n > m - i and all i > 1. So, the m-regularity

of βw is equivalent to the statement that ht(T)n = 0 for all n > m — i and all

Now, we are ready to prove the following auxiliary result:

(2.8) LEMMA. Let h, I e Ax be a generic pair, let (λ, μ) e K2 - {(0, 0)}

/ef £ = AΛλh + μt)A. Then hι(B)n < maχ{0, h'iB)^ ~ 1} for all n > t + 1.

Proof. There is a linear form u ^ Kh + Kl ^ Ax such that Qλ + μDA +

uA — hA + IA. We write Pr for the hyperplane defined by λh + ^/ in Pr and

consider F '-= ProjCB) as a closed subscheme of P . The linear form u defines

a hyperplane L in Pr~ whose scheme-theoretic intersection with Y is given by

Z : = Proj(A/(M + IA)). Let / z c 0Z be the ideal sheaf associated to Z.

In view of (2.7) B) we get from (2.6) that βz is ^-regular for all n > t + 1.

Now, let / Y £Ξ 0p r_! be the ideal sheaf associated to F. As Z is a CM-scheme, so

is Y. So, the members of Ass(0K) are all generic and thus avoided by L. As a con-

sequence we have / z — βγ\ L. Now, the Lemma of Mumford-Le Poitier [Mu2,

p. 102] shows that h\Pr'\ βγ(n)) < maχ{0, h\n - 1)) - 1} for all n > t+ 1.

In view of (2.7) A) this proves our claim. Π

As a complement to (2.8) we have

(2.9) LEMMA. Let B be as in (2.8) and assume that n — 1 <t < n. Then

h1(B)n<h\B)n_1.

Proof We write C = A/(hA + IA) and choose u ^ Aλ as in the previous

proof. Writing / for the kernel of the multiplication map u\B~^B we get a

graded exact sequence 0—• B/I(— 1) —• J3—• C~> 0. As I ^ H (B) we have

i/ (Z?//) = // GB). So, applying cohomology we get exact sequences

ττι ί TT\ y Tji / D\ ^ J-T (C*\ (h G1 7s)

Now, we conclude by (2.6). •

(2.10) LEMMA. Let h, I £= Aι be a generic pair of linear forms. Then

a) Hι(A/hA)n = 0 for all n > d ~ r + 2.

b) Hι(A/(λh + μl)A)n = 0 for all n > t + k - 1 and for all pairs (λ, μ) e
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K2 - {(0,0)}.

Proof, a) Let H — P £Ξ P be the hyperplane defined by h. Then,

Y : = ProjiA/hA) is a smooth, connected and non degenerate curve in H. Let

βγ^UH the ideal sheaf associated to Y. Then, by [G-L-P] the sheaf βγ is W ~ r

+ 3)-regular. So (2.7) B) proves our claim.

b) We use the notations of (2.9). Lemma (2.6) and the sequences ( * ) of the

proof of (2.9) give rise to epimorphisms u : H iB)n_k—> H (B)n for all n > t +

k — 1. By (1.6), these epimorphisms are all 0. So H (B)n vanishes for all n > t +

k - 1. •

Next, we define the integer a by

(2.11) a<t<a+l

and the function F : No —* Z by

(2.12)

Thereby we use the convention that ( 9 ) = 0.

Using these notations we get the following result:

(2.13) PROPOSITION. Let h> I e Aι be a generic pair of linear forms. Let

(λ,μ) e K2 - {(0,0)}. Then:

(np() f Λ J t
: = max{0, F(a) — (n — a — 1)} a < n.

Proof In view of (2.8) and (2.9) it remains to be shown that h (B)n

< F(n) for 0 < n < α, where B stands for A/(λh + μl)A. This is done by induc-

tion on n. If n = 0, the sequence Hι{A)0~+ Hι(B)0~* H^A)^ together with (1.5)

shows that h{B)0 = 0 < F(0). So, let 0 < n < a. The sequence ( * ) of (2.9)

together with (2.4) furnishes the inequality h (B)n < h {B)n_ι + d — 1 —

(r — 2)n. Applying the hypothesis of induction we finally obtain h (B)n < F(n —

1) + d - l - (r-2)n = Fin). D

3. Bounding1 the numbers h iA)n

We keep the previous notations and hypotheses. The aim of this section is to
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give bounds on the numbers h (A)n. We start with the following auxiliary result:

(3.1) LEMMA a) h\A)d_r+2 < h\A)d_r+ι.

b) h\A)n < maxίO, hι{A)n^ -I) for all n > d - r + 3.

Proof. Let h G Ax be a generic linear form. The inequality a) now follows im-

mediately from the exact sequence H1(A)d_r+1 —> H1(A)d_r+2 —* H1(A/hA)d_r+2

and from (2.10) a). To prove statement b), let H = Pr~ <Ξ Pr be the hyperplane h

defines in P r . Then, Y '= Proj(A/hA) is a smooth, connected and non-degenerate

curve in H. Let β γ <Ξ ̂ p y _i the ideal sheaf associated to Y. Then / r is (d — r +

3)-regular by [G-L-P]. Let / ^ <Ξ ̂ p r be the vanishing ideal sheaf of X Then

$Y~$X\H allows to apply [Mu2, p. 102], hence to conclude that h (A)n

< maxto, hι(A)n^ - I) (s. (2.7) A)). •

As a first application of this we get the following result, in which α, F(n),

are defined respectively by (2.11, 12, 13), and in which

(3.3) G(»):= W - l ) ( n J 1 ) + ( 2 - r ) ( ^ + 2 ) , (w

(3.4) r:= d- r+2.

(3.5) PROPOSITION.

' G(w) 0 < n < a.

h\A)n<<
M(n):=G(a)+ Σ Urn) ;a<n<γ-l.

m=a+l

M(γ — 1) n = 7.

maxίO, Λ/X7) — (w — 7)} n > 7.

/. Let h ^ Aλ be a generic element. Then, the sequences i/ (A)n_1

J^H1(A)n->H1(A/hA)n together with (1.5) b) show that

h\A)n < Σ h\A/hA)m for 0 < n < α,
m=0

A'CO, < h1(A)a+ Σ A^/ΛA), . for α < n < r

As G(n) = Σm=0F(rn) we get the requested estimate in the range 0 < n ^ 7 — 1.

Now, the cases n > 7 are clear from (3.1). D
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(3.6) COROLLARY, a) hι(A)n = 0 for all n > M(γ) + γ.

b)k<M(γ) + r - 1. D

(3.7) EXAMPLE. Let d = r + 1. Then obviously α = 1, γ = 3. By (3.5) the

values /z G4)w are bounded as follows:

n

h\A)n <

0

0

1

2

2

4

3

4

4

3

5

2

6

1

7

0

...

...

In particular we get k < 6.

For the previous bounds it is not necessary to know k. If we know k, sharper

bounds may be deduced. To obtain them, we need an auxiliary result. To state it,

we introduce the invariant

(3.8) βo:=a + min{/c, F(a) + lK

(3.9) LEMMA. h\A)n < maxίO, tfiA)^ - 1} for all n > β0

Proof. Let h, I £= Aι be a generic pair of linear forms. Then, for any pair

(λ,μ) <ΞK2- {(0, 0)} we have exact sequences Hι(A)n-ι ^ ) Hι(A)n-+

H (A/(λh -f- μί)A)n. If n > β0 the last term in the above sequence vanishes by

(2.10) b) or by (2.13). So we get epimorphisms {λh + μl) \ Hι(A)n_λ-+Hι(A)n~+

0. Now, we may conclude by [Br1? (3.2)]. •

Next, we set

(3.10) a) β:=min{βo,γ},

ίo,aβ0<r
b) £ ' - {

where β0 and γ are defined according to (3.8) respectively according to (3.4). Now,

combining (3.5) and (3.9) we get the following estimate:

(3.11) THEOREM.

h\A)n

Gin)
M(n)
M(β - ε)
max{0, M(β) - (n

;0<n<a.

a < n < β — ε.

;n = β.

-β)} ;n>β. D
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Now, we give some right-vanishing bounds for the function n *-> h (A)n. First

of all we have

(3.12) LEMMA. H\A)n = 0 for all n > β + k - 1.

Proof. Let h €= A be a generic linear form. Then the exact sequences

H\A)m_ι

J^Hι(A)m-*Hι(A/hA)m together with (2.10) and (2.13) give rise to

epimorphisms h : Hι(A)m^x ~*H1(A)m-+ 0 for all m > β. So, if n > β + k ~ 1,

we get an epimorphism h : H (A)n_k —* H (A)n—* 0, which at the same time is 0.

Hence Hι(A)n = 0 for all n > β + k - 1. •

The previous result tells us in particular that H (A)n vanishes whenever

n > a + F(a) + k or n > a + 2k — 1. We now prove a result which partially

improves these estimates.

(3.13) PROPOSITION.

a) k < F(a) + 1 => H1 (A)n = 0 for alln > a + F(ά) + 1.

b) k < F(a) + 1 =* H1 (A)n = 0foralln>a + F(a) + k - 1.

Proof. Let h, I ^ Ax be a generic pair of linear forms. Then the exact sequ-

ence H\A)βo_2

Λ*Hι{A)βo_1->H\A/hA)Bo_1 together with hH\A)βo_2 Q

A^iAϊβ^z shows that Wβo^ '= H1 (A)ρ^/Afl1 (A)βo_2 is a if-vectorspace of

dimension M ^ - I ^ ^ (A/A^D^ x.

Let m>β0, let Ŵ m : = H\A)m/Am+2_βo H1(A)βo_2 and let ww denote the

if-dimension of W ŵ. Let /z, /: Wm_ι—^ Wm be the linear maps induced respective-

ly by the multiplication maps hf I : H1(A)m_ι-^ H\A)m. Let Q, μ) e i ί 2 -

{(0, 0)} . As w > jS0, we know already from the proof of (3.9) that λh + μl :

H (A)m_1—*H (A)m is an epimorphism. Hence the same holds true for the map

λh + μϊ\ Wm_1—^ Wm. In view of [Br2, (3.1)] this shows that wm < maχ{0, wm_1

- 1 } .

w

So we get Wn = 0, hence Hι(A)n = An+2_βH
ι(A)βo_2 for all n > β0 - 1 +

?o_lf thus for all n > β0 - 1 + h1(A/hA)βo_1.

Now, let k < F(a) + 1. Then β0 = a 4- /c and by (2.13) we get hι{A/hA)βo_λ

< F(a) - ( a + k - l - a - l ) = F(a) - k + 2. Consequently

H \A)n — An+2_a_k H {A)a+k_2

for all n > a + k - 1 + F(ά) - k + 2 = a + F(ά) + 1.
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If n > a + F(ά) + 1, we have n + 2 — a — k > F(ά) + 3 > k, and thus get

Hι{A)n = An+2_a_k H1(A)a+k_2 = 0. This proves statement a).

To prove statement b), let k > F(a) + 1. Then β0 = a + F(a) + 1 shows

that h'iA/hA)^ = h\A/hA)a+F(a) < 1 (s. (2.12)). Consequently Hι(A)n =

An+1_a_F(a) Hι{A)aJ,F{a)^ for all n > a + F(ά) +l.Forn>a + F(ά) + k - 1

we have n + 1 — a — F(ά) > k and thus obtain Hι(A)n = A*+1_α_F(α)

(3.14) EXAMPLE. Let d= r+ 1. Then, using (3.7), (3.11), (3.12) and (3.13)

the numbers h (A)n may be bounded as shown in the following table

n

h\A)n <

< 0

0

0

0

0

0

1

2

2

2

2

2

2

4

4

4

4

0

3

4

4

4

3

0

4

3

3

3

0

0

5

2

2

0

0

0

6

1

0

0

0

0

> 7

0

0

0

0

0

values of k

5,6

4

3

2

1

In the cases k — 1,2 we made use of (3.12) (and (3.11)), whereas in the cases

k — 3,4 we used (3.13). In the next section we shall see that an improvement of

these bounds is possible if k — 2. We namely will show that h 04) 3 = 0 in this

case.

4. The case k = 2

The goal of this section is to give regularity bounds for projective surfaces

which are 2-Buchsbaum. It turns out, that the case in which (1.2) is satisfied

plays a crucial role. Among the surfaces occuring in this case, those which satisfy

degGD — T + 1 are of particular importance. For the moment we therefore keep

the notations and hypothesis of the previous section and give the announced im-

provement of the bounds presented in (3.14).

(4.1) PROPOSITION. Let d = r + 1, r > 3, k = 2.

Then H\A)n = 0 for all n > 3 .

Proof. In view of (3.14) it suffices to show that H (A)3 = 0. Let us assume

to the contrary, that Hι(A)3 Φ 0.
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Let h, I G A1 be a generic pair of linear forms, and let V denote the subspace

AιH
ι{A)ι of H\A)2. Let υ be the ^-dimension of V. Let (λ, μ) <Ξ K2 - {(0, 0)}.

As β0 — 3 the multiplication map λh + μl : H (A)2—* H (A)3 is an epimorphism

(cf. proof of (3.9)). As /c — 2, this epimorphism maps V to 0. So, we get induced

linear maps h,Ί\ Hι(A)2/V~> Hι(A)3 such that λh + μl: H\A)2/V-> Hι(A)3

is an epimorphism for all pairs (λ, μ) ^ K — {(0,0)}. By [Br^ (3.2)] this in-

duces that hι(A)2 - v > h1(A)3 + 1 > 2, hence that ti(A)2 - v > 2. As (λh +

μϊ)H (A)1 <Ξ V the exact sequence

Hι(A)γ

 λh+ul ^H\A)2-+H\A/(λh + μΐ))2 shows that

2 < /z1W)2 - t; < Λ1U)2 - dimx [(λh + μDH^A),] < hι(A/(λh + μί)A)2 = : «.

As 1 < t = y Ξ y = 7-ZΓ2 ~ 2 ( 2 9 ) a n d ( L 8 ) s h o w t h a t u<d-r+l = 2.

So, we have u = 2, hence t; = dimΛ[QA + μt)H H^DJ, thus F = WA +

μϊ)Hι(A)ι for all Q,μ) ^ K2 - {(0, 0)}. Therefore, we have epimorphisms Λλ +

^/ : H^A),-^ V for all non-trivial pairs U, //) e ϋΓ2. By [Br l f (3.2)] and (1.8)

this furnishes υ < ti(A)ι - 1 = 1, (s. (1.8)).

We keep in mind, that the previous arguments have shown that h (A/(λh +

μl)A)2 — 2 for any non-trivial pair (λ, μ) ^ K . Now, we put B = A/hA and

C = A/(hA + M). Then we write / for the kernel of the multiplication map

B(- 1) -^ JB. As / c ^ ^ β ) we have tf'CB) = Hι(B/I).

So, applying cohomology to the diagram 1, we get the diagram 2 with exact top

row and second column (in which p denotes the map H (π)).

By (1.5) c) H (A)o vanishes. By (2.6) we have H (C)2 = 0. So, we have an epi-

morphism from H (A)λ to the 2-dimensional space H (B)2 which factors through

the space V whose dimension is at most 1. This contradiction proves our claim. •

(4.2) Remark. Let d = r+l and k = 2. Then, according to (3.14) and

(4.1), hι(A)γ = 2, hι(A)2 < 4, and hι(A)n = 0 for n Φ 1,2 (cf. (1.5) b), (1.8)).

By reg(T) we denote the CasteInuovo-Mumford regularity of a closed sub-

scheme T of P . So, if β τ £Ξ Θ-pr is the ideal sheaf associated to T, we may write

(4.3) reg(7) = inίim e Z | / / ' ( P r , / r ( n - i)) = 0, for all z > 0, for all n > m).

Now, as an application of (4.1) we get
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A(2) - ^ U B{2) > 0

C(2)

Diagram 1.

Hι(A)

Diagram 2.

(4.4) PROPOSITION. Assume that X <Ξ P r (r > 3) is a reduced, irreducible non

degenerate surface of degree r + 1. Assume that the hypotheses (1.1) and (1.2) are

satisfied. Then

regO) <
4, for k = 2.

3, f o r / c = l .

In view of (2.7) B) it suffices to show that h\A)n = 0 for all n < 4 —

z (resp. 3 — ί) for z' = 1,2,3 (according to whether k = 2 resp. A: = 1). So, by
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(1.5) c) it remains to show that h (A)n = 0 for all n > 3 respectively all n > 2,

according to whether k = 2 or k = 1. lί k = 2 we may conclude by (4.1). If

k = 1 we use the last row of the table in (3.14). •

Now, we want to bound regQD for arbitrary 2-Buchsbaum surfaces. We

start with a few auxiliary results

(4.5) LEMMA. Let X <Ξ pr be a closed subscheme of postitive dimension which

is arithmetically k-Buchsbaum. Then, for a generic hyperplane H <Ξ P we have

reg(X) < reg(X Π W + k - 1.

Proof See [Ho-M-V, (2.5)]. D

(4.6) LEMMA Let F<Ξ P be a reduced, non-degenerate, irreducible curve of

degree 6 which is arithmetically 2-Buchsbaum and which satisfies h (P , / F ( 3 ) )

Φ 1. Then, reg(F) < 4.

Proo/. Assume that reg(F) > 4. Then, according to the table of p. 504 in

[G-L-P], the curve F i s smooth, rational, satisfies h (P , / F ( 3 ) ) — 3 and is con-

tained in a smooth quadric. We write B for the homogeneous coordinate ring of Y.

Using our previous notations we then get h (B)3 = 3, (s. (2.7)).

Now, we apply the general position lemma and find a plane E = P <Ξ p

such that E Π Y consists of 6 points in general position in E. Let / ^ Bι be the

linear form that defines E and put C = B/IB. Then Proj(C) = E Π F By our

choice of £, we get as in the proof of (2.4) that hι(C)n < max{0, deg(Y) — 1 —

n-2} = max{0, 5 — 2n}. In particular we see that h (C) 2 < 1 and h (C) 3 = 0.

Now, applying cohomology to the short exact sequence 0—• B(— 1) —• B—> C

—* 0 and observing that H {B)n — 0 for all n > 0 we get an isomorphism W '- =

H1(B)2/IH1(B)1 = H\C)2 and an epimorphism Hι{B)2-^ Hι{B)3 — 0. As B is

a 2-Buchsbaum ring, we have / H (B)x = 0. So, the latter map induces an epi-

morphism W—*H CB)3—>0. Altogether we thus get the contradiction 1 ^ h (C) 2

= dim(W0 > h'(B)3 = 3. D

(4.7) LEMMA. Let F < Ξ P s ( s > 3 ) be a reduced, irreducible, non-degenerate

curve of degree d ^ s + 2, which is either non-rational or non-smooth. Then

r e g ( F ) <d- s + l.
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Proof. This result follows again by consulting the list of all non-degenerate

(d — s + 1)-irregular curves in P 5, which is given on page 504 of [G-L-P]. •

The next result is devoted to a further particular case.

(4.8) PROPOSITION. Let X £Ξ P be a reduced, irreducible, non-degenerate sur-

face of degree 6 which is 2-Buchsbaum. Then regQO < 5.

Proof Let H = P 3 £Ξ P 4 be a generic hyperplane and let Y = X Π H be the

corresponding hyperplane section, which is a reduced, irreducible, non-degenerate

curve of degree 6 in H = P . If reg(F) < 4, we may conclude by (4.5).

So, let reg(F) > 4. Then, by (4.7), Y is smooth and rational. So, X satisfies

our hypotheses (1.1) and (1.2) with k = 2. In particular it follows from (1.6) that

F i s 2-Buchsbaum.

Now, let h, I ̂  Aλ be a generic pair of linear forms such that H is defined by h.

We may write Y= Proj04/M), and so (4.6) and (2.7) show that h\A/hA)3 = 1.

Writing W - = H (A)3/AιH 04)2, applying cohomology to the sequence 0—>i4

( - 1) -^ A-> A/AA-> 0 and observing that hHι(A)2 £ Λ1i/
1(A)2 we get

dim(W) < h\A/hA)3 = 1.

Next, let Q, μ) ^K — {(0,0)}. Then, we have epimorphisms λh + μl :

H1(A)n-^H1(A)n+l-^0 for all n > 3, (s. proof of (3.9)). Choosing n = 3 and

writing h resp. /for the maps W~*H 04)4 induced by h and / (which exist as

hA1H
1(A)2 = IA1H

1(A)2 = 0), we thus get epimorphisms λh + μί: W~^Hl(A)4

- * 0 for all U, μ) ^ K2 ~ {(0,0)}. As dim(W0 < 1 we conclude that fl^U)* = 0

(cf. [Brlt (3.2)]) hence that i / 1 ^ ) ^ = 0 for all n > 4. In view of (2.7) B) and (1.5)

c) this proves our claim. •

To treat the general case, we need a last lemma.

(4.9) LEMMA. Let X £Ξ P (r > 3) be a reduced, irreducible non-degenerate

surface which satisfies (1.1) and (1.2). Let a be defined as in (2.11). Then

regOD < a + 2k.

Proof. By (1.5) and (3.12) we see that A'(A)n_f = 0 for all n > β + k and

for i = 1,2,3 where β is defined according to (3.10). By (2.7) B) this shows that

reg(X) < β + k. As β < β0 < a + k, this proves our claim. D
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Now, we are ready to state and to prove the announced main result:

(4.10) THEOREM. Let X <Ξ Pr (r > 3) be a reduced, irreducible, non degener-

ate, 2-Buchsbaum surface of degree d. Then regOO ^ d — r + 3.

Proof The cases d < r are settled by [Ho-St-V, Thm. A].

So, let d > r + 1. Let H = Prl £ Pr be a generic hyperplane and let Γ = X ΓΊ if.

Then F is a reduced, irreducible and non-degenerate curve in H = P r , whose

degree is d ^ (r — 1) + 2. If F i s either non-rational or non-smooth, (4.7) shows

that reg(K) <d~(r-l)+l = d-r+2. But then, (4.5) implies that

reg(X) < d — r+2 + l = d— r + 3 . Hence, we may assume that Y is smooth

and rational, hence that X satisfies the hypotheses (1.1) and (1.2) with k — 2. If

d — r + 1, we conclude by (4.4).

So, let d > r + 2. If d = 6 and r = 4, we may conclude by (4.8). So, let

W, r) * (6,4). Then d > r + 1j^~ = K ^ ^ - ^ 1 - T h i s i n d u c e s d ~ 7 ^ 2

, r - 3 s K r - 2 ) - l 1 , , ^ d - 1 Λ ,
— d r _ 2 — o = r ~~ r — 2 ' s d — r> r _ o - &s d — r is an

integer, this implies that α + 1 < d — r, where α is defined according to (2.11).

So, by (4.9) we get reg(X) < d - r + 3. D
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