A GROUP OF AUTOMORPHISMS OF
THE HOMOTOPY GROUPS

HIROSHI UEHARA

It is well known that the fundamental group =;(X) of an arcwise connected
topological space X operates on the #-th homotopy group n,(X) of X as a group
of automorphisms. In this paper I intend to construct geometrically a group
U(X) of automorphisms of n,(X), for every integer # =1, which includes a
normal subgroup isomorphic to 7;(X), so that the factor group of W (X) by 7;(X}
is completely determined by some invariant Y(X) of the space X. The complete
analysis of the operation of the group on =,(X) is given in §3, §4, and §5.

Throughout the whole paper, X denotes an arcwise connected topological
space which has such suitable homotopy extension properties as a polyhedron
does, and all mappings are continuous transformations.

§1. Definition of the group W (X).

Let x, be an arbitrary point of the space X, and 2 a collection XY{(x, %)
of all the mappings that transform X into X and x; into 2. For two maps
a,be= 2, a is said to be homotopic to & (in notation : @ ~ b) if there exisis a
homotopy %: & Q (for 1 =1 =:0) such that %y == @ acd &, = &, A mapping 2= @
is called to have a (two sided) homotopy inverse, if there is a map ¢ & 2 such
that a¢ ~ 1 and ¢a ~ 1, where 1 denotes the identivy transformation of X onto
itself. Let 2% be the collection of all the mappings belonging to 2, each of
which has a homotopy inverse.

Now let X x 7 be the topological product of X and the line segment /
between 0 and 1, and let us consider the totality U of the mappings 9: X x [
~> X which satisfy the following conditions :

i) 0] X x0e £* }

(1.1) ii) i} (xo, 1) = X

For two maps 0, §’ & U, 0 is homotopic to 6§’ (notation : # ~ ') if there exists a
homotopy %:: X x I - X (for1=1=0) such that
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i ho=0, by=10,
1.2) 1) 20 1 %

i) he(%0,0) = Re(%, 1) = %0.
It is easily verified that this relation is an equivalent relation, and therefore U
is divided into equivalent classes in this sense.

We shall denote by [#7] the class containing 6. For # & U we construct a
mapping ¢ & U as follows : a mapping g, which ie defined continuously on the
set {(X x 0)v (% % )} such that ge(x, 0) = % and de(%0, #) = 9(xs, £), can be
extended to a mapping g¢ € U, provided that {x,} has a homotopy extension
property in X relative to X. The extended mapping is, of course, not unique
but the homotopy class containing s is uniquely determined if the set {(x, X I)
“ (X x 0)¥(X x 1)} has a homotopy extension property in X x I relative to X';
another arbitrarily extended map o’ i3 homotopic tc ¢s. Now two maps 6, 6.
€: U are ‘multiplied’ together by the rule,

_f edx, 2, 1=t
T loeg(p(x, 1), 26 =1), 124

l

=0,

1
23

i

(1.3) 0y x 0x(x, )

ity

where p(x, 1) = 0,(0,(x, t), ). Then we have

Lemma 11 8, x 6. is again 2 member of the collection U.

FProof. Let a;(x) = 6,(x, 0), a:(x) = 0.(x, 0), then both a4 and . belong
to £% so that ¢, and a. have homotopy inverses ¢,, ¢, respectively. From the
considerations that ¢,¢, is a homotopy inverse of a4, and that 0, X 0:(x, 0)
= p(x, 0) =0, (0;(x, 0), 0) = 8:(a; (%), 0) = a:(a; (%)), we have 0, x 0, | X x 0"
& 2% and therefore the condition (1.1) i) is satisfied. Also we have 0; X 62 (%, 1)
= doy (p (0. 1), 1) = o, (%0, 1) = 02 (%, 1) = %,. This proves the Lemma.

Lemma 1.2 The class [[d; x 8] depends only on the classes [¢;] and [6.].

Proof. Let 6/ [6,] and 0 €= [g-], then thers exist two homotopies ks, & ¢
X x }'-» X (1=s=0) such that k= 8,, iy = 0/, k = 0., and &k, = §;, Putting
0s(%, 1) = ks (hs(x, t), 0), we have

1) 00(x, 8) = 0:(6: (%, 1), 0), ps(x, £) = 9/(8) (%, &), 0),
(1.4) i) ps (%0, 0) = &s(hs(%0, 0), 0) = &s (%o, O) = %, }
i) ps (X, 1) = &s(Bs (3, 1), 0) = Bs(x0, 0) = X,
Since ks (%, 0) = ks(%, 1) = %, we can construct, in virtue of the homotopy
extension properties previously mentioned, or, & U (1= s 2 0), which is also
continuous with respect to s, just as in case of o9. Then clearly we have ar, (%, 0)

= x and gp, (%0, t) = ks (%, £) by the construction of the function ogz,.

ﬂs(x, Zt)y %:—i—téo,

Hs(x, t) E{
ory {ps(x, 1), 2¢ - 1), 1=t=1},
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is obviously continuous and satisfies the conditions (1.2) of the homotopy ; as
to the condition ii), we have H;(x,, 0) = ps(%, 0) = x, from (1.4) ii) and
Hs (%0, 1) = or, (05 (%0, 1), 1) = ars (%0, 1) = ks(%0, 1) = %, from (1.4) iii).

Since (1.2) i) is evidently satisfied from (1.4) i), the lemma has been proved.
Thus the multiplication in U induces a multiplication in the set of the homotopy
classes ; [0,] x [0.]1 = [0, x 0:].

TueoreM 1. By the multiplication defined above, all the homotopy classes
of U constitute a group W(X) with x, as the base point.

Proof. Let us prove that the multiplicatoin is associative. Let 8y, 6., 65 < U,
then ([6,] x [8:]) x [0s] and [8,] x ([0:] x [#5]) are represented by mappings
(0; X 0:) x 05 and 8, x (0. x 03) respectively. By definition

05 (02 (0, (%, 41), 0), 0), 1=t=0,26X,
(0; x 05) x 05 (x, 1) = {03(@2(62(0; (x, 1), 0), 4¢ ~ 1), 0), i=t=} 2EX,

Jog (0'5 (092 (02 (01 (x’ 1)9 0)9 1)9 0)’ 2t - 1)’ 1été%1 x EXs
and

8, X (B2 X 0s) (%, t):{w”(ﬁ-('(”’ ), 0), 0) b=t20 X

Goaxos (03 (0:2(0,(%, 1), 0),0), 2t - 1), 1=it=%, v X,

As it is rather difficult to show directly the existence of homotopy between
(0; X 05) x 05 and 6, x (f:'% 63), we prove it by making use of the homotopy
extension property referred to above. From the relation above we have (8; x 0.)
X 05(%, 0) = 85(8:(8,(x, 0), 0), 0) = 6, x (6: X 03) (%, 0), and from the property

of gy we have

05 (02(0 (%0, 42), 0),0), $I=t=1,
(1.6) (61 X 02) X 03(2\70, t): {03 (0 (x’n, 4t - 1), 0) 5}% = 1,
03(230, 2t—1), létééu

Since JT9ox 03 (0’1(02 (01 (xO: 1)~ O)s O)y zt - 1) = GGQX‘)s(xW 2t - 1) =

03(02’- (xU’ 4t ~ 2)9 0)1 2' été ;12"
0‘.‘ X 63(270, 2t e 1) = {093 (03(03(5(0, 1)= 0,) 4t"'3)
= 0o5(%0, 4% —3) = O5(x,, 46~ 3), 1=t=1%,

we have

0'&(02(01 (xO, 2t), 0)0 0): %?téos
(1.7) 01 X (05 % 03) (%, t) = %33(0';(-’50, 4t-2),0), g=t=3,
03 (%9, 4% — 3), 1=¢t=1%.

L
From (1.6) and (1.7) there exists a homotopy %(x, s, t) defined on {%,} X I x 7
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such that
h(xo, 0, ) = (6, x 0:) X 05(x0, 1), 1 =t=0,
B{xo, 1, £) = 0, X (02 X 05) (%0, ), 1=¢=0,
and h(%o, s, 0) = h(%xy, s, 1) = x, 1=s=0.

Moreover putting
h(x, 0, t) = (01 X 02) X 03 (x, t), xEX, 1=t=
hix, 1,t) =0, x (0: X 03) (%, t), xeX, 1=t=
and h(x, s, 0) = 05(0:(0,(x,0),0),0), x£X, 1=s=

I is defined continuously on the set {(X X [i X 0) v [(x % [5) Y(Xx0)v(Xx D]
X [L). Thus, if {(x¢ X I) ¥ (X x 0) V(X x 1)} has a homotopy extension property
in X x I relative to X, 2 can be extended to a mapping X X 78' X ; - X, which
gives a homotopy between (6; x #.) x 03 and 8, x (6, X 05).

Next we must prove the existence of the unity in U(X). Let 6o(x, ) = x,
then clearly 0,& U. For any 0 & U we have from the definition of multiplication
o(x, 2¢), xeX, i=1t=0,

(0x00)(x,t)={690(p(x, 1),2t-1), 2 X, 1=t=1},

where p (%, 2¢) = 0,(0 (x, 21), 0) = 0 (x, 2¢), and aq, (x. ) = x may be assumed.
Since go, (0 (%, 1), 2¢ = 1) =p(x, 1) =0, (0(x, 1), 0) =0(x, 1) for 1=¢t=}, we
have

0 (x, 2b), »& X,

1
2
(0 x o) (%, 1) = {(}(x, D, 26X 1=

[0(;;, 1_3—!3‘) xex, Stlsiso,

hs(x, t) =
[se D, rex 1=r=il

then hs satisfies the conditions of the homotopy (1.2), so that &, = 0 X 6, and
hy = 0. Thus 6, represents the right side unity of the group A(X).

Lastly we proceed to show the existence of the inverse element of any
element [§] = A(X). By the assumption on an element 6 in U, we have 6| X x 0
€ 0%, so that 6| X x 0 has a homotopy inverse ¢ & 2*. Now we define a
mapping 0-' & U as follows : if we put

-1(x, 0) = ¢(x), xe X,
0- (%9, 1) = (0 (%, 1 — 1)), 1=¢=0.

then 0-' can be extended to a map: X x I - X because of the homotopy
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extension property of {x,}. This extended map #-' is shown to represent the
inverse of [#]. Indeed, we have

o(x, 2t), i=t=0, xE X,

1
0x 0 (x,t) = { 2
a1 (p(x, 1), 2t =1), 1=t=},xEX,

where p(x, t)=0-"(0(%,1),0) =¢(0 (%, %)), 00-1 (%, 0)=x, and a4=1(%o, 1) = 0~ (%, )
= ¢@(0(%, 1—~1)). As ¢ is a homotopy inverse of § | X x 0, and on the other
hand -1 [0 X I represents the inverse element of [p | x, x 1], we have a continuous

s 2 k4
function % defined on {(X x I x O)¥[(X x O)¥(X X 1)V (%, X [)1 x [ } such that

Bz, s, 0)=k(x, s), xEX, s,
8 t

h(xﬂa S, t)= I(S, t)’ SET, tEi;
t

h(x,0,8) = 0% 0-'(x,1), xE€X, te],

hix, 1, t) = x, xeE X, tEIL,

where % is a homotopy obtained by the relation ¢f ~ 1, and [ is also a
homotopy whose existence is assured by o(xo, 1 —¢) = 04-1(%,, #). Again, by the aid
of a homotopy extension property of {(xox [)¥(X x0)¥(X x1)}, 2 can be
extended to a map : X x I x I-» X, which gives a desired homotopy. This com-
pletes the proof.

In order to clarify the conditions preassigned to the space X we put down
here all the homotopy extension properties assumed in the arguments of the
above Theorem ;

i) {x,} has a homotopy extension property in X relative to X,
(1.8) i) {(wxI)v (X x0)¥(X x 1)} has a homotopy extension property
in X x [ relative to X.

These assumptions are, of course, satisfied by a polyhedron.

§ 2. A group of automorphisms J(X) and the structure of A(X).

Now we define a group 2(X), which operates on 7,(X), as we shall see
later, as a group of automorphisms, and study a homomorphism of (X) onto
X (X), the kernel of which is isomorphic to the fundamental group m;(X) of X.

Let us define a homotopy concept in 2% in the following sense: we shall
write a ~ b for a, b & 2* if there exists a homotopy 7% &€ £(1 = ¢ = 0) such that
ho=a and h, = b. Then £% is divided into homotopy classes. Let us denote
by F(X) the set of all the homotopy classes. For two maps @, b € 2* we define
(@ x b) (x) =b(a(x)) for any x = X. Then a X b & 2* because ¢ x b € 2 follows
immediately from the definition and, if ¢ and ¢ are homotopy inverses of a
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and b respectively, ¢ x ¢ & 2* is a homotopy inverse of @ x b. Furthermore,
ifa~d and a~ ¥, a x b~ a x b. Thus the multiplication in £* induces a
multiplication in J(X).

THEOREM 2. JX(X) constitutes a group.

Proof. It is evident from the definition of multiplication that the associative
law holds. As to the existence of unity, let E be a class containing the identity
transformation of X, then E- A=A4 and A. E= A for any A& J(X). Lastly
for any A = [a] we choose A~! = [¢] containing a homotopy inverse ¢ of a.
Then AA-'=FE and A-'A = E is clear from the definition of homotopy inverse.

TueoreM 3. X (X) operates on the n-th homotopy group mn, (X, x.), for every
integer n = 1, as a group of automorphisms.

Proof. Let f be a representative of an element a« of 7,(X) and let @ be a
representative of A & J(X). Let us take the mapping af : S* » X as a represen-
tative of Aa. The correspondence A ; « - Aa is a transformation of m,(X)
into itself because, if f’ is another representative of a, we have af ~ af’, and if
@' is another representative of A, we have also af ~ a@'f. Then it is easily
proved that this correspondence is an automorphism of m,(X).

Example of 2(X) :

Let X be an z-sphere S”, then from the concept of Brouwer’s degree we
have Z(S”) ={E =[1], A =[—-1]} where E is a class containing the identity
transformation and A is a class containing a mapping of degree —1. Since
clearly A*= A+ A = E, the group is a cyclic group of order 2.

Now we intend to define a homomorphism ¢ of %(X) onto S(X). Let 6 U
be a representative of an element of % (X), then ay = 6 | X x O represents an
element of J(X). From the homotopy concepts given in §1 and § 2, it is obvious
that if § ~ 0', we have ay ~ as. By the correspondence ¢ : [6] - [a,] we have
the following theorem.

THEOREM 4. ¢ is @ homomorphism of U(X) onto Z(X), the kernel of which is
isomorphic to the fundamental group m(X).

Proof. For two elements [6,], [6-]& A(X), we have ¢([0,]) = [@,,] and
¢([0:1) = [a@e.]. By definition ¢([6,] x [6:]1) = ¢([0; x 6.]) may be represented
by a mapping 6: X 0:| X x 0 = p(x, 0) = 6:(8,(x, 0), 0), so that 6, x 0:| X x O
= ay X aop,. Thus ¢([6,] x [0:]) = ¢([6,]) x ¢([6:]) is proved. Clearly ¢ is an
onto-homomorphism from the definition of the group.

Lastly, in order to complete the proof it is sufficient to prove that the kernel
of ¢ is isomorphic to =,(X). If ¢([0]) = [ae] is unity, we may take without
loss of generality a representative § of [#] as follows :
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1) d: XxI-X,
(2.1) ii) Ix, 0) = x, %

iii) (%0, 1) = x,,
for (1.8) is assuwned. To any element [0} belonging te the kernel of ¢ let there
corrgspond an element [£,] of the fundamental group m(X) by the rule,
(2.2) &o(8) = O0(x0, &),
This correspondence 1 has a definite meaning because, if § ~ ¢, & and &y
represeni the same element of #(X). Ict us prove that 1 is an isomorphism.
Let [8,], 18:] be two elements belonging o the kernel of ¢, then [0, x [0:] is
represented by a map 8, < 8.,

0 % bl 1y o PO 20, 0), i=t=20, 1€X
PO D "‘{4@2(02(0,@,1)9 0),2i~1), 1242}, r& X

Since fromn (2.1) we have 0:(x, 0) = x, (0, (%, 2i), 0) = 0,(x, 28) and 00,(0: (0:(%
1), 0), 24 — 1) = ge(b3(x, 1), 22 — 1) so that by (2.2)
R ) = ¢ 01(%,, 21), 3
Pt T 001 (10, 1), 26— 1), 1
Since 0;(xe, 1) == % and oo(xy, 1) = 0:(%y, £), we have o0, (0: (%0, 1), 27 ~ 1) = 02(x,
2¢ —1). Now &¢,«e.(#) may be described as follows :

(%5, 28), I=7=0,
Eoxoell) = ( . 1 1
10:(5, 26 = 1), 1==iz=,

On the other hand, we have, by the definition of the fundamental group,
AI0:0 < [0:1) = [8oyxoed = [£o,1 0 [§0u] = AL0:] e A[A:],
30 that the homomorphism is established.

Clearly 1 is an onto-hocmomorphism, Lecause of the homotopy exiension
property {(1.8) i). It remains only to prove that from %o ~ &, follows 8; ~ 0.
It may be assumed that 8,(x, 0) = x and 8:(x, 0) = %, Since &, ~ &y, 2 homotopy
hs(1) (1= s =0) exists such that () = 0%, &), (@) = 0:2(x,, 1) and h(0)
= hs(1) == x,. A continuous function 2 may be defined on the set {(X x 7= 0)>

2 L
YA X Y(X x UV (x x ] x 7} as follows :

iz, s, 0) =x, xe X, se],

¢

bz, 0,0 =0(x, ), x<=X, i€/,

L

h(x, 1, 1) = 0:(x, £}, 262X, &/,

3, L

(%0, s, &) = hs(t), se&=[, i/,

1f (1.8) ii) is assumed, it is proved by the aid of the extended map : Xx I X7
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- X that 6, is homotopic to 8,. This completes the proof.

§ 3. Operation of A(X) on the homotopy groups.
Let f/ be a representative of an element a & n,(X) and 6 be a representative
of an element 4 & A(X). Let us define Ja =[] E na(X) by the rule,

3.1 h(x) = 0(f (%), D).

This definition has a definite meaning in the sense that [2] depends only on «
and 4. Then we have,

THEOREM 5. da = (Aa)’ where A = ¢(3)E Z(X) and ¢ is an element of
m(X) represented by 0(x%,, t) 1=¢=0).

Proof. From the definition of homomorphism ¢, A is represented by as(x)
= f(x, 0), and therefore 6(/(x), 0) = ayf (x). It is an immediate consequence
of the operation of A that a,f represents an element Aa of w7,(X). Moreover
if /() = %, for a fixed point p& S*, 0(f(p), t) = 0(x., t) represents an element
¢ of m(X), so that according to the operation of m; on 7, due to Eilenberg
h(x) = 0(f(x),1) represents an element (Aa)* & n. This completes the proof.

As a direct consequence of Theorem 5 we have,

TueoreM 6. W(X) is a group of automorphisms of na(X) for every integer
n=1

Preof. Because of the combination of automorphisms A and ¢, the operation
of # & A(X) on 7, is also an automorphism of 7,(X).

§ 4. Algebraic construction of A(X).

Now that the operation of A(X) on m, has been clarified by Theorem 5, we
can construct the group %(X) from a purely algebraic standpoint. Let Y(X)
={)A4, §); A= 3 (X), ¢ En(X)}; the totality of all the ordered pairs consist-
ing of an arbitrarily chosen element of 2(X) and of an arbitrarily chosen element
of 7,(X). Defining (4, &) () = (Aa)® for any a € n,(X), (4, &) operates on
=x(X), for every integer =~ =1, as an automorphism. If we define a multipli-
cation in the set y(X) of automorphisms just defined by the rule,

(B, ) (4, &§)(a) = (B, n((4, &) (a)),
then we have (B, 7)(A4, &) € ¥(X). In order to prove this, we need the follow-
ing lemma.

Lemma 4.1 A(a®) = (Aa)** = (A, Af)(a) for any a Ern,, where A2 can
be interpreted in the sense that 3'(X) = A operates on the homotopy group of
any dimension, especially on the fundamental group too.

Proof. Let a be represented by a mapping f: S*— X, S* 2 p, > x, and let
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§=[e(?),1=¢t=0]. We have a mapping F: {S” x (0) ¥ (py) x;} - X such that
F(x,0) = f(») for any x & S”, and F(po, t) = e(?). From the homotopy extension
property of a polyhedron we have .an extended map 7 : S" x % - X of F. Since
F (%, 0) =f(x) and F (p, t) = e(t), ,F (%, 1) represents an element «% & mu(X).
Let a be a representutive of A, Putting a(F (1, t)) = G(x, #): S x }-» X we
have [G(x, 0)] = Aa from G(x, 0) = a(f(x)) and [G(x, 1)]= A(a®) from
G(x, 1) = a(F(x, 1)). Also, from G(m, #) = afe(t)) follows [G (%, #)] = AZ.
Thus we have A(a®) = (Aa)4%. Making use of the lemma, we have

(B, 1) (4, §)(a) = (B, 1) ((4, §)(a)) = (B, »)((Aa)?)
= (B((Aa)*))"
= ((B(Aa))®)"
= (B(A))®* 1= (A-E, Be.p)(a).
Thus (B, D(A, &) =(A+B, B¢ p)E 1(X).

THEOREM 7. By this multiplication 7 (X) forms a group.

Proof. As to the associative law we have

(C, O (B, 1) (A, & =(C, (4B, Bg+7)

=(AB.C, C(Bt +7)-0)

(ABC, BCt:Cy-¢)
(BC, Cn-0)(4, &)
(A BC, BC&(Cq-0))
(ABC, BC:-Cr-0)’
Thus (C, OB, 1)(4, &) =((C, OB, n)(A4 &)
The existence of the unity is proved as follows :
(E, e)(A, &) = (AE, Et-¢) = (4, &) where E, ¢ are the unities of J(X) and
m(X) respectively.

(G OB, M)A, &)

Il

Il

The existence of an inverse element is proved thus:
(A7, A7 ))(4, &) = (AA~, A™'e - A0 = (B, AT (Ee ) = (E, o).

This completes the proof.

Now the following Main THEOREM concerning the relation of two groups
A(X) and 7(X) imparts the complete analysis to the structure of U(X) and
also to the operation of A(X) on 7.(X) for every integer n = 1,

MaIN Tueorem 8. A(x) s isomorphic to the group 7(X). Moreover, an
isomorphism can be established between these groups, preserving the cheration or
the homotopy groups.

Proof. The method of proof being analogous as for Theorems 4, 5, we shall
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restrict ourselves to show the correspondence between two groups. Let 6 be a
representative of # & Y(X) and let @y = 0| X x 0, &= 6] x x J. Then to & let
there correspond ([a,], [£y]) & 7(X). It can be shown that this correspondence
is an isomorphism and that the operations of & and of the corresponding element
([ao], [£6]) on 7, are the same.

§ 5. Some remarks on the group (X).

By the aid of the main theorem it is advantageous to use ¥(X) in place of
H(X) in calculating the invariant %(X) of the space X. As is easily seen, two
distinct elements of ¥(X) do not always operate differently on n, so that as the
group of the operation on m,, ¥(X) may be reduced to a smaller group. This
reduction gives rise to an analogous classification of the space X as the sim-
plicity of a space due to Eilenberg.

Let 7*(X) be the totality of all elements in ¥{(X) whose operations on any
element of 7,(X) are trivial ; ie. 7¥(X) = {(4, &8); (4, &) (a) =a for any
element o € 7,(X)}. Then y*(X) is clearly a normal subgroup of 7(X). Simi-
lary, put y*(X) = {(4, ¢); (4, e)(a) =« for any a = z,(X)} and ***(X)
= {(FE, &) ; (F, &)(a) = a for any « & n,(X)}, then these two groups are also
normal in 2(X) and m,(X) respectively as well as in 7(X). It is well known
that the space is #-simple in the sense of Eilenberg if y**(X) =xm,(X). It may
be an interesting problem to consider the spaces satisfying the conditions such
as 1*(X) = {(X) or y**(X) =~ J(X).
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