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DISTRIBUTION OF LENGTH SPECTRUM OF CIRCLES

ON A COMPLEX HYPERBOLIC SPACE

TOSHIAKI ADACHI1

Abstract. It is well-known that all geodesics on a Riemannian symmetric
space of rank one are congruent each other under the action of isometry group.
Being concerned with circles, we also know that two closed circles in a real
space form are congruent if and only if they have the same length. In this
paper we study how prime periods of circles on a complex hyperbolic space are
distributed on a real line and show that even if two circles have the same length
and the same geodesic curvature they are not necessarily congruent each other.

§1. Introduction

The aim of this paper is to study the distribution of the length of closed
circles on a complex hyperbolic space. In our recent works we gave a light
on geometric properties of circles on a Kähler manifold. For example, we
interpreted holomorphic circles in terms of magnetic fields ([1], [3]). We
defined Kähler magnetic flows associated to these circles, and showed that
Kähler magnetic flows of small geodesic curvature on a complex hyperbolic
space are conjugate to the geodesic flow, hence are of Anosov type. This re-
sult gives us information on length spectrum of holomorphic circles of small
geodesic curvature on a compact manifold of constant holomorphic sectional
curvature: The number of closed holomorphic circles grows exponentially
with respect to their length (cf. [18], [8], [14] for more detail). In this paper
we add another result on the feature of the length spectrum of circles of
large geodesic curvature on a complex hyperbolic space in connection with
the action of the isometry group.

A smooth curve γ: R −→ M on a complete Riemannian manifold M
is called a circle of geodesic curvature κ (≥ 0) if it is parametrized by its
arc-length and satisfies the following equation:

∇t∇tγ̇(t) = −κ2γ̇(t),
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where ∇t denotes the covariant differentiation along γ with respect to the
Riemannian connection of M ([17]). Needless to say, circles are classified
by their geodesic curvature. When κ = 0, this equation is nothing but
the equation of geodesics. One may think that the notion of circles is just
a natural extension of the notion of geodesics. But when M is a Kähler
manifold we have another tool for classification of circles which is associated
with the complex structure J : For a circle γ we define its complex torsion
τ by 〈γ̇, J∇tγ̇〉/‖∇tγ̇‖. This does not depend on t and satisfies |τ | ≤ 1. It
might be natural to think that some properties of circles are related to the
Kähler geometry of the base manifold.

We call a circle γ closed if there exists a constant T with

γ(T ) = γ(0), γ̇(T ) = γ̇(0),∇tγ̇(T ) = ∇tγ̇(0).

This condition is equivalent to the condition that γ(t + T ) = γ(t) for every
t. The minimum positive constant with these properties is called the prime
period of γ and is denoted by length(γ). We put length(γ) = ∞ for an
open circle γ, a circle which is not closed. We are interested in how prime
periods of closed circles are distributed on the real line. It is well known
that on a compact rank one symmetric space every geodesic is closed and
has the same length. Moreover all these geodesics are congruent each other,
and the same thing holds for geodesics on a rank one symmetric space of
noncompact type. Here we call two circles γ1 and γ2 are congruent if there
exist an isometry ϕ and a constant t0 with γ2(t) = ϕ ◦ γ1(t + t0) for every
t. Being concerned with circles, we have that on a real space form two
closed circles are congruent each other if and only if they have the same
prime periods. At this stage we are naturally come to have the following
problems on circles on a rank one Kähler symmetric space:

1) Is it true that closed circles (of geodesic curvature κ) with the same
length are congruent each other?

2) If it is not true, then how many congruency classes are there with the
same length?

In order to attack these problems we shall consider the moduli space Cir(M)
of circles, which is the quotient space of the set of all circles on M under
the congruence relation. The length spectrum of circles on M is the map
L: Cir(M) −→ R ∪ {∞} defined by L([γ]) = length(γ). Sometimes we
also call the image LSpec(M) = L(Cir(M)) ∩ R in the real line the length
spectrum of circles on M . On a non-flat complex space form, two circles are
congruent if and only if they have the same geodesic curvature and the same
absolute value of complex torsion (see [15]). The moduli space of circles on
a non-flat complex space form hence has canonical foliated structures. So
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we also consider the length spectrum of circles of given geodesic curvature
and that of given complex torsion.

In the preceding paper [5] we already investigated the length spectrum
of circles on a complex projective space. Hence we here have to treat the
length spectrum of circles on a complex hyperbolic space, another model
space for Kähler geometry. In treating circles we find a difference between
their feature on complex hyperbolic spaces and their feature on complex
projective spaces: Circles on a complex hyperbolic space with small geodesic
curvature are unbounded open curves. This should reflect on the structure
of the length spectrum. In this paper, we first bring our attention to circles
of sufficiently large geodesic curvature. On a complex hyperbolic space
CHn(−c) of holomorphic sectional curvature −c, every circle with geodesic
curvature κ >

√
c is bounded. In section 2, we compare by a map of

duality the structure of the length spectrum of circles of geodesic curvature
κ (>

√
c) on a complex hyperbolic space with that on a complex projective

space. Once a map of duality was constructed, some arguments in [5] go
through on our case. We show the following in section 3.

Theorem 1. On a complex hyperbolic space CHn(−c) of holomorphic
sectional curvature −c,

1) we can not distinguish congruency classes of circles of geodesic curva-
ture κ by their length spectrum.

2) The number of congruency classes of circles of geodesic curvature κ
with length λ is not bounded with respect to λ.

The unbounded property of circles of small geodesic curvature reflects
on internal properties of length spectrum. With the aid of the map of
normalization constructed in section 2, we obtain a natural foliation on
the moduli space of bounded circles. This foliation leads us to many nice
results on the length spectrum. On a compact projective space, the circle
with minimal length in the set of circles of curvature κ is a holomorphic
circle, a circle with complex torsion ±1, and the circle with second minimal
length is a totally real circle, a circle with null complex torsion. Contrary,
we have the following:

Theorem 2. On a complex hyperbolic space CHn(−c),

1) totally real circles have the minimal length in the set of circles of
geodesic curvature κ,

2) holomorphic circles have the second minimal length in the set of circles

of geodesic curvature κ if and only if κ ≥ 5
√

c
4 .
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The unbounded property also reflects on the structure of the full length
spectrum LSpec(CHn(−c)). For a spectrum λ ∈ LSpec(CHn(−c)) we call
the cardinality ]

(

L−1(λ)
)

of the set L−1(λ) the multiplicity of L at λ.
The multiplicity indicates the number of congruency classes of circles with
length λ. When the multiplicity is one, we shall call this spectrum simple.
Different from the case of complex projective spaces, we trivially find that
there is no simple spectrum for L. In particular, we find no congruency
classes of circles can be distinguished only by the length spectrum. We
show in section 4 the following result.

Theorem 3.

1) The length spectrum LSpec(CHn(−c)) of circles on CHn(−c) coin-
cides with the half line (0,∞).

2) The multiplicity of length spectrum L is finite and greater than one at
each point λ ∈ R, and is monotone increasing.

3) There are no circles γ on CHn(−c) of complex torsion τ (0 < |τ | < 1)
with length(γ) ≤ 8

3
√

c
π.

In the final section we also study the length spectrum of circles of a
given complex torsion. With the study of structure of the natural foliation,
we give an estimate of the first length spectrum in these. For the sake
of readers’ convenience we give tables which show the difference between
the length spectrum of circles on a complex hyperbolic space and that on
a complex projective space. But the reader should refer [5]. Some proofs
which follow directly from [5] were left out.

The author would like to thank Professor Masakazu Yamagishi for valu-
able advice on classical number theory.

§2. Canonical transformations on the moduli space

In this section we study some fundamental properties on the length
spectrum of circles of geodesic curvature κ on a complex hyperbolic space
CHn(−c) of holomorphic sectional curvature −c. In the preceding paper [4]
we showed the following on prime periods of circles on a complex hyperbolic
space.

Fact 1. ([4]) For given τ (|τ | ≤ 1) we denote by κ(τ) the unique
positive solution for the equation

(4κ2 − c)3/2 − 3
√

3cκτ = 0.

Circles on CHn(−c) have the following properties:
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1) Every circle of complex torsion τ and geodesic curvature κ ≤ κ(τ) is
a unbounded open curve.

2) Every holomorphic circle of geodesic curvature κ >
√

c is closed with
prime period 2π√

κ2−c
.

3) Every totally real circle of geodesic curvature κ >
√

c
2 is closed with

prime period 4π√
4κ2−c

.

4) When κ > κ(τ) and τ 6= ±1 we denote by aκ,τ , bκ,τ , dκ,τ (aκ,τ < bκ,τ <
dκ,τ ) the solutions for the cubic equation

cλ3 − (4κ2 − c)λ + 2
√

cκτ = 0.

A circle γ of geodesic curvature κ and complex torsion τ (6= 0, ±1) on
CHn(−c) is closed if and only if one of the ratios aκ,τ/bκ,τ , bκ,τ/dκ,τ ,
dκ,τ/aκ,τ is rational. Its prime period is

length(γ) =
4π√

c
· L.C.M.

( 1

bκ,τ − aκ,τ
,

1

dκ,τ − aκ,τ

)

.

Here, for two real numbers α, β, the least common multiple L.C.M.(α, β) is
the minimum value of the set {αn | n = 1, 2, 3, · · ·} ∩ {βn | n = 1, 2, 3, · · ·}.

On a complex hyperbolic space two circles are congruent if and only
if they have the same geodesic curvature and the same absolute value of
complex torsion. Therefore the moduli space Cir(CHn(−c)) of circles on
CHn(−c) is bijective to the set [0,∞) × [0, 1]/ ∼, where (κ, τ) and (κ′, τ ′)
are equivalent if and only if (κ, τ) = (κ′, τ ′) or κ = κ′ = 0. We denote by
[γκ,τ ] the congruency class of circles of geodesic curvature κ and complex
torsion τ (≥ 0) on CHn(−c). The moduli space Cirκ(CHn(−c)) of circles of
geodesic curvature κ hence is the set {[γκ,τ ] | 0 ≤ τ ≤ 1}. By Fact 1, we find
that every circles on CHn(−c) of geodesic curvature κ is unbounded when
κ ≤ √

c/2 and is bounded when κ >
√

c. To study the length spectrum of
circles, we are enough to treat bounded circles. We define a nonnegative
function ν: [0,∞) → R by

ν(κ) =































0, if 0 ≤ κ <

√
c

2
,

(4κ2 − c)3/2

3
√

3cκ
, if

√
c

2
≤ κ ≤ √

c,

1, if κ >
√

c.
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We then get that circles with geodesic curvature κ and complex torsion
τ < ν(κ) is bounded. We put Mκ = {[γκ,τ ] | 0 ≤ τ < ν(κ)}, and define a
map of normalization

Φκ:Mκ −→ M√
c = Cir√c(CHn(−c)) \ {[γ√c,1]}

by

Φκ([γκ,τ ]) =
[

γ√
c, 3

√
3cκτ

(4κ2−c)3/2

]

.

Lemma 1. The map of normalization Φκ is injective and satisfies

L([γκ,τ ]) = Cκ · L ◦ Φκ([γκ,τ ]), [γκ,τ ] ∈ Mκ

with Cκ =
√

3c
4κ2−c

. When
√

c
2 < κ <

√
c, this map Φκ is bijective.

Proof. Consider the cubic equation cλ3 − (4κ2 − c)λ + 2
√

cκτ = 0. By
putting Λ = Cκλ we find it is equivalent to cΛ3 − 3cΛ + 2

√
cκτC3

κ = 0.
Since 0 ≤ κτ√

c
C3

κ = 3
√

3cκτ(4κ2 − c)−3/2 < 1, this means that

a√c,µ = Cκaκ,τ , b√c,µ = Cκbκ,τ , d√c,µ = Cκdκ,τ ,

with µ = 3
√

3cκτ(4κ2 − c)−3/2. We hence get the conclusion with Fact 1.

This lemma shows the relation of the structures of the length spectrum
of circles of given geodesic curvatures. Let Lκ denote the length spectrum of
circles of geodesic curvature κ, which is the restriction of L onto the moduli
space Cirκ(CHn(−c)). We shall call Lκ1 and Lκ2 are equivalent if there
exist a bijection Φκ2,κ1 : Cirκ1(CHn(−c)) → Cirκ2(CHn(−c)) and a positive
constant Cκ1,κ2 with Lκ1 = Cκ1,κ2 · Lκ2 ◦ Φκ2,κ1 . Since Cirκ(CHn(−c)) \
(Mκ ∪ {[γκ,1]}) is the set of congruency classes of unbounded circles of
geodesic curvature κ, Lemma 1 guarantees that the length spectrum Lκ

is essentially equivalent to L√
c if

√
c

2 < κ <
√

c. As a direct consequence

of this, defining a bijection Φκ2,κ1 : Cirκ1(CHn(−c)) → Cirκ2(CHn(−c)) for√
c

2 < κ1, κ2 <
√

c by

Φκ2,κ1([γκ1,τ ]) =











Φ−1
κ2

◦ Φκ1([γκ1,τ ]), 0 ≤ τ < ν(κ1),

[

γ
κ2,1− 1−ν(κ2)

1−ν(κ1)
(1−τ)

]

, ν(κ1) ≤ τ ≤ 1,

we get the following:
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Proposition 1. On a complex hyperbolic space CHn(−c),

1) the length spectrum Lκ (
√

c
2 < κ ≤ √

c) are equivalent each other,
2) when κ >

√
c, the length spectrum Lκ is not equivalent to any Lκ′.

On a complex projective space CP n(c) of holomorphic sectional curva-
ture c, for any positive κ the length spectrum Lκ is equivalent only to Lκ′ ,

where κ′ (6= κ) is the unique positive number with κ′2

(4κ′2+c)3
= κ2

(4κ2+c)3 .

Following Lemma 1 we set

Fµ =



























{

[γκ,0] | κ >

√
c

2

}

, if µ = 0,

{

[γκ,τ ] | 3
√

3cκτ(4κ2 − c)−3/2 = µ, 0 < τ < 1
}

, if 0 < µ < 1,

{

[γκ,1] | κ >
√

c
}

, if µ = 1.

This gives a natural foliation of the moduli space

BCir(CHn(−c)) = {[γκ,τ ] | κ > κ(τ), 0 ≤ τ ≤ 1}

of bounded circles on a complex hyperbolic space.

τ = 0

τ = µ

τ = 1

κ = κ(µ)

κ =
√

c
2

κ =
√

c κ = Kµ

Fµ

Figure (Foliation of the moduli space of bounded circles on
�

Hn(−c))

We now compare the length spectrum of circles on a complex hyperbolic
space with that on a complex projective space CP n(c). We define a map of
duality

Ψ : Cir√c(CHn(−c)) \ {[γ√c,1]} −→ Cir√
2c
4

(CPn(c)) \ {[γ√
2c
4

,1
]}

by Ψ([γ√c,τ ]) = [γ√
2c
4

,τ
]. Here we use the same notation [γκ,τ ] for repre-

senting the congruency class of circles on CP n(c) with geodesic curvature
κ and complex torsion τ .
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Fact 2. (cf. [5] and [6]) On a complex projective space CP n(c) of holo-
morphic sectional curvature c, a circle γ of geodesic curvature

√
2c/4 and

complex torsion τ (0 < |τ | < 1) satisfies the following properties:

1) Let A, B, and D (A < B < D) denotes the solutions for the cubic
equation

λ3 − 3

2
λ +

√
2

2
cκτ = 0.

The circle γ is closed if and only if one of the ratios A/B, B/D, D/A
is rational. Its prime period is

length(γ) =
4π√

c
· L.C.M.

( 1

B − A
,

1

D − A

)

.

2) The circle γ is closed if and only if the complex torsion τ is of the
form

τ = τ(p, q) = q(9p2 − q2)(3p2 + q2)−3/2

for some mutually prime positive integers p, q with p > q. In this case
its prime period is

length(γ) =



















4

3
√

c
π
√

2(3p2 + q2), if pq is even,

2

3
√

c
π
√

2(3p2 + q2), if pq is odd.

By the same argument as in the proof of Lemma 1 we obtain the fol-
lowing:

Lemma 2. The map of duality Ψ satisfies

L([γ√c,τ ]) =
1√
2
· L ◦ Ψ([γ√c,τ ])

for every τ (0 ≤ τ < 1).

§3. The length spectrum of circles of geodesic curvature κ

We study in this section the length spectrum of circles with a given
geodesic curvature. The multiplicity of the length spectrum Lκ at λ shows
the number of congruency classes of circles with geodesic curvature κ and
length λ. So our problems mentioned in the introduction can be put into
the problems on the multiplicity of Lκ.
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Put LSpecκ(CHn(−c)) = L(Cirκ(CHn(−c))) ∩ R. As a direct conse-
quence of Lemma 2, Facts 1 and 2 we have

LSpec√c(CHn(−c))

=

{

4π√
3c

}

⋃

{

4

3
√

c
π
√

3p2 + q2

∣

∣

∣

∣

∣

p > q, pq is even,
p and q are mutually prime

}

⋃

{

2

3
√

c
π
√

3p2 + q2

∣

∣

∣

∣

∣

p > q, pq is odd,
p and q are mutually prime

}

=

{

4π√
3c

,
4π

3
√

c

√
7,

4π

3
√

c

√
13,

4π

3
√

c

√
19,

4π

3
√

c

√
21,

4π

3
√

c

√
31,

4π

3
√

c

√
37,

4π

3
√

c

√
39,

4π

3
√

c

√
43,

28π

3
√

c
,

4π

3
√

c

√
57,

4π

3
√

c

√
61,

4π

3
√

c

√
67,

4π

3
√

c

√
73,

4π

3
√

c

√
78,

4π

3
√

c

√
79,

4π

3
√

c

√
91,

4π

3
√

c

√
93,

4π

3
√

c

√
97,

4π

3
√

c

√
109,

4π

3
√

c

√
111, · · ·

}

.

This shows that we can not distinguish two congruency classes of circles of
geodesic curvature

√
c on a complex hyperbolic space only by their length

spectrum. For example, 4π
3
√

c

√
91 is the smallest double length spectrum

for circles of geodesic curvature
√

c. This spectrum is the length of circles
of complex torsion τ(11, 1) = 135

91
√

91
and τ(5, 4) = 836

91
√

91
with the geodesic

curvature
√

c. The second double length spectrum is 4π
3
√

c

√
133, which is the

length of circles of complex torsion τ(6, 5) and τ(13,5). The multiplicity of
the length spectrum L√

c at 4π
3
√

c

√
13741 is at least 3. This spectrum is the

length of circles of complex torsion τ(129,71), τ(131,59) and τ(135,17).
Moreover, by a classical number theory, we find that the number of con-
gruency classes of circles of geodesic curvature

√
c with length λ is not

uniformly bounded with respect to λ; lim supλ→∞ ](L−1√
c
(λ)) = ∞ (see for

example Chapter II of [11] or Theorem 278 (p. 242) of [13]). On the order
of growth, we also obtain

lim
λ→∞

(log λ)−α](L−1√
c
(λ)) = 0 for every α > 0.

We now consider for general κ. When κ ≤
√

c
2 , since every circle of

geodesic curvature κ is open, it is clear that LSpecκ(CHn(−c)) is an empty
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set. For κ >
√

c
2 , since the map of normalization Φκ is injective and its

image is
{

[γ√c,µ]

∣

∣

∣

∣

0 ≤ µ <
3
√

3cκν(κ)

(4κ2 − c)3/2

}

,

we obtain the following by recalling the definition of ν: When
√

c
2 < κ ≤ √

c,

LSpecκ(CHn(−c))

=

{

4π√
4κ2 − c

}

⋃

{

4π

√

3p2 + q2

3(4κ2 − c)

∣

∣

∣

∣

∣

p > q, pq is even,
p and q are mutually prime

}

⋃

{

2π

√

3p2 + q2

3(4κ2 − c)

∣

∣

∣

∣

∣

p > q, pq is odd,
p and q are mutually prime

}

,

and when κ >
√

c,

LSpecκ(CHn(−c))

=

{

4π√
4κ2 − c

,
2π√

κ2 − c

}

⋃

{

4π

√

3p2 + q2

3(4κ2 − c)

∣

∣

∣

∣

∣

p > δκq, pq is even,
p and q are mutually prime

}

⋃

{

2π

√

3p2 + q2

3(4κ2 − c)

∣

∣

∣

∣

∣

p > δκq, pq is odd,
p and q are mutually prime

}

,

where δκ (> 1) denotes the number with 3
√

3cκ
(4κ2−c)3/2 = 9δ2

κ−1

(3δ2
κ+1)3/2 . We can

therefore conclude the following, which includes Theorem 1:

Proposition 2. When 0 ≤ κ ≤
√

c
2 , the length spectrum of circles

LSpecκ(CHn(−c)) of geodesic curvature κ is an empty set. When κ >
√

c
2 ,

the following properties hold:

1) The length spectrum LSpecκ(CHn(−c)) is a discrete subset of R.
2) The bottom of the set LSpecκ(CHn(−c)) is 4π√

4κ2−c
, which is the length

of totally real circles of geodesic curvature κ, and is simple.
3) The multiplicity of the length spectrum Lκ is not uniformly bounded

with respect to λ; lim supλ→∞ ](L−1
κ (λ)) = ∞.

4) The growth order of the multiplicity is smaller than the logarithmic
order; limλ→∞(log λ)−α](L−1

κ (λ)) = 0 for every α > 0.
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We now concern the second length spectrum. On a complex projec-
tive space, the first length spectrum in LSpecκ(CPn(c)) is the length of
holomorphic circles and the second is the length of totally real circles. On
a complex hyperbolic space CHn(−c), the situation is not the same. For
example, when κ =

√
c, the second length spectrum is 4π

3
√

c

√
7, which is the

length of circles of complex torsion τ(3, 1) = 10
7
√

7
. Here we compare 2π√

κ2−c
,

the length of a holomorphic circle, and 4π
√

7
3(4κ2−c)

, which corresponds to

the length of a circle of complex torsion (4κ2−c)3/2

3
√

3cκ
τ(3, 1). The former is

smaller than the latter if and only if κ > 5
√

c
4 . Since δκ is monotone increas-

ing with respect to κ, and δ 5
√

c
4

= 3, we get that 0 < (4κ2−c)3/2

3
√

3cκ
τ(3, 1) < 1

if
√

c
2 < κ < 5

√
c

4 (that is, the latter is the length of a circle of this complex
torsion). Therefore we find the following:

Proposition 3.

1) The second length spectrum in LSpecκ(CHn(−c)) is simple for any κ.

2) If κ ≥ 5
√

c
4 the second length spectrum is 2π√

κ2−c
, the length of holomor-

phic circles. If
√

c
2 <κ<5

√
c

4 , the second length spectrum is 4π
√

7
3(4κ2−c)

,

which is the length of circles of complex torsion 10(4κ2−c)3/2

21
√

21cκ
.

The third spectrum also has a nice property. Put rn =
√

c
8(3n−1)(3n +

1). This satisfies (9n2 − 1)2(4r2
n − c)3 − 27c2(3n2 + 1)3r2

n = 0, which means
that it is the unique positive number with δrn = n. It is monotone increasing
with respect to n.

Proposition 4.

1) The third length spectrum in LSpecκ(CHn(−c)) is simple for any κ.

2) If
√

c
2 < κ < r2 (= 7

√
10c

20 ), the third length spectrum is 4π
√

13
3(4κ2−c)

,

which is the length of circles of complex torsion (4κ2−c)3/2

3
√

3cκ
τ(3, 1) =

10(4κ2−c)3/2

21
√

21cκ
. If r2 ≤ κ < r3 (= 5

√
c

4 ), the third length spectrum is
2π√
κ2−c

, the length of holomorphic circles.

3) When r2m−1 ≤ κ < r2m+1, m = 2, 3, · · ·, the third length spectrum

is 4π
√

3m2+3m+1
3(4κ2−c)

, the length of circles of complex torsion (4κ2−c)3/2

3
√

3cκ
×

τ(2m + 1, 1) = 9m2+9m+2
6
√

3cκ
×
(

4κ2−c
3m2+3m+1

)3/2
.
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Proof. We get the second assertion by direct calculation. Since δκ is
monotone increasing with respect to κ, we have δκ ≥ 2m−1 for κ ≥ r2m−1.
We therefore study the length spectrum

4π
√

3(4κ2 − c)

√

3p2 + q2 for p > (2m − 1)q, pq = even,

and
2π

√

3(4κ2 − c)

√

3p2 + q2 for p > (2m − 1)q, pq = odd.

When q ≥ 2, we have p > 2(2m−1) > 2m+1, hence 3p2+q2 > 3(2m+1)2+1.
When q = 1, we have p ≥ 2m. Since 4{3(2m)2 + 1} > 3(2m + 1)2 + 1, we

find that 2π√
3(4κ2−c)

√

3(2m + 1)2 + 1 is the smallest spectrum in these.

The simpleness does not holds for the forth spectrum in general. By a
similar argument as in the proof of Proposition 4, we get the following.

Proposition 5.

1) The forth length spectrum 16π
3
√

c
of circles in LSpec√73c/8(CHn(−c)) is

double.
2) Except for the case κ =

√
73c
8 , the forth length spectrum of circles in

LSpecκ(CHn(−c)) is simple.

3) If
√

c
2 < κ ≤

√
73c
8 or if r2 (= 7

√
10c

20 ) ≤ κ < r3 (= 5
√

c
4 ), the forth length

spectrum is 4π
√

19
3(4κ2−c)

, which is the length of circles of complex

torsion (4κ2−c)3/2

3
√

3cκ
τ(5, 1) = 28(4κ2−c)3/2

57
√

57cκ
.

4) If
√

73c
8 ≤ κ < r2, the forth length spectrum is 2π√

κ2−c
, the length of

holomorphic circles.
5) When r2m−1 ≤ κ < r2m+1, m = 2, 3, · · ·, the forth length spectrum

is 4π
√

3m2+9m+7
3(4κ2−c)

, the length of circles of complex torsion (4κ2−c)3/2

3
√

3cκ
×

τ(2m + 3, 1) = 9m2+27m+7
6
√

3cκ
×
(

4κ2−c
3m2+9m+7

)3/2
.

Remark. For positive constants τ1, τ2 with 0 ≤ τ1 < τ2 ≤ ν(κ) we put

Cir(τ1,τ2)
κ (CHn(−c)) = {[γκ,τ ] | τ1 < τ < τ2}.
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As we have

L(Cirκ(CPn(c))) ∩ R

=
⋃

{

4π

√

3p2 + q2

3(4κ2 − c)

∣

∣

∣

∣

∣

β2q < p < β1q, pq is even,
p and q are mutually prime

}

⋃

{

2π

√

3p2 + q2

3(4κ2 − c)

∣

∣

∣

∣

∣

β2q < p < β1q, pq is odd,
p and q are mutually prime

}

,

where βi (i = 1, 2) denote the positive numbers with 3
√

3cκτi

(4κ2−c)3/2 =
9β2

i
−1

(3β2
i
+1)3/2 ,

we obtain that the set {L([γκ,τ ]) | [γκ,τ ] ∈ Cir
(τ1,τ2)
κ (CHn(−c))}\{∞} is not

bounded and that the multiplicity of L|
Cir

(τ1,τ2)
κ ( � Hn (−c))

is not uniformly

finite.

Summarizing up we obtain the following on the length spectrum of
circles on non-flat complex space forms with geodesic curvature κ.

Table for length spectrum of circles of geodesic curvature κ

CHn(−c) CP n(c)

∅, if 0 ≤ κ
√

c/2,

LSpecκ discrete, unbounded, discrete, unbounded

if κ >
√

c/2

multiplicity
lim sup

λ→∞
](L−1

κ (λ)) = ∞, lim sup
λ→∞

](L−1
κ (λ)) = ∞

if κ >
√

c/2

1st length
spectrum

4π√
4κ2−c

, simple, if κ >
√

c/2 2π√
κ2+c

, simple,

(length spectrum of (length spectrum of

totally real circles) holomorphic circles)

2nd length
spectrum

simple, simple,

4π
√

7
3(4κ2−c)

, 4π√
4κ2+c

if
√

c/2 < κ < 5
√

c/4

(length spectrum of circles (length spectrum of

with τ = 10(4κ2−c)3/2

21
√

21cκ
), totally real circles)

2π√
κ2−c

, if κ ≥ 5
√

c/4

(length spectrum of

holomorphic circles)
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§4. The full length spectrum

In this section we study the full length spectrum L of circles on a
complex hyperbolic space CHn(−c) of holomorphic sectional curvature −c.
Since the lengths of holomorphic circles and totally real circles of geodesic
curvature κ are 2π√

κ2−c
and 4π√

4κ2−c
respectively, we see that both the length

spectrum LSpec1(CHn(−c)) of all holomorphic circles and the length spec-
trum LSpec0(CHn(−c)) of all totally real circles coincide with the half line
(0,∞). Therefore the multiplicity of L at λ ∈ (0,∞) is at least 2. This
asserts that we can not distinguish any congruency classes of circles only
by their length spectrum. This is a quite different point from the case
of a complex projective space. On a complex projective space CP n(c) of
holomorphic sectional curvature c, the full length spectrum is simple at

λ ∈ ( 2√
c
π, 4

3

√

5
cπ], which means that we can determine the congruency

class only by the length spectrum if it is contained in this interval.
In order to investigate the length spectrum of circles with complex

torsion 0 < |τ | < 1, we make use of the natural foliation of the moduli
space of bounded circles. For given µ (> 0) we denote by Kµ the positive

solution for the equation (4κ2 − c)3/2µ − 3
√

3cκ = 0. In case µ > 1, we see
that Kµ = κ( 1

µ) by using the notation in section 2. Clearly we find that

Kµ >
√

c/2 and that 0 < (4κ2−c)3/2µ

3
√

3cκ
< 1 when

√
c/2 < κ < Kµ. When

µ = τ(p, q) = q(9p2 − q2)(3p2 + q2)−3/2, we can solve this equation and get

K2
τ(p,q) = c(3p+q)2

8q(3p−q) , hence 3p2+q2

3(4K2
τ(p,q)

−c)
= 2q(3p−q)

9c . By Lemmas 1 and 2 we

obtain that

LSpec(CHn(−c)) = (0,∞) ∪
⋃

{

Iτ(p,q)

∣

∣

∣

∣

p > q, p and q are mutually
prime positive integers

}

.

Here

Iτ(p,q) =



















(

4π
3

√

2q(3p−q)
c ,∞

)

, if pq is even,

(

2π
3

√

2q(3p−q)
c ,∞

)

, if pq is odd.

For example we have

Iτ(2,1) =

(

4

3

√

10

c
π,∞

)

, Iτ(3,1) =

(

8

3
√

c
π,∞

)

, Iτ(5,1) =

(

4

3

√

7

c
π,∞

)

.

Proposition 6. The multiplicity of length spectrum L of circles on
CHn(−c) is finite at each point λ ∈ R, and is monotone increasing with
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respect to λ. There are no circles γ of complex torsion 0 < |τ | < 1 with
length(γ) ≤ 8

3
√

c
π.

Proof. First we show that the multiplicity of L is finite at each point
λ ∈ (0,∞). As we have q(3p− q) ≥ 3p− q > 2p for p > q ≥ 1, we find that

if λ ∈ Iτ(p,q) then q < p < 9cλ2

16π2 . Thus we obtain that the number of pairs
(p, q) of mutually prime positive numbers with p > q and with λ ∈ Iτ(p,q)

is finite for each λ. This leads us to that the multiplicity of L is finite at
λ. The monotonous property of the multiplicity follows directly from the
shape of Iτ(p,q).

In order to show the last assertion we are enough to prove that Iτ(p,q) ⊂
( 8
3
√

c
π,∞). Since q(3p − q) > 2p ≥ 2, we have 8

3
√

c
< 4π

3

√

2q(3p−q)
c , hence

Iτ(p,q) ⊂ ( 8
3
√

c
π,∞) when pq = even. If pq = odd and q ≥ 3 we have

q(3p − q) ≥ 3(3p − q) > 6p > 24, and if pq = odd, q = 1 and p ≥ 5 we have

q(3p− q) = 3p− 1 > 8. Therefore in these cases we get 8
3
√

c
< 2π

3

√

2q(3p−q)
c ,

hence Iτ(p,q) ⊂ ( 8
3
√

c
π,∞), and obtain the assertion.

By a similar argument we find that the multiplicity of L at λ ∈ ( 8
3
√

c
π,

4
3

√

7
cπ] is 3, at λ ∈ (4

3

√

7
cπ, 4

3

√

10
c π] is 4, and is greater than 5 at λ >

4
3

√

10
c π. Let mL: [0,∞) → Z denote the multiplicity function defined by

mL(λ) = ]L−1(λ). By the expression of LSpec(CHn(−c)) we find that this
function is monotone increasing and left continuous. We can estimate mL

as mL(4π
3

√

λ
c ) < λ(λ− 1) + 2 by recalling the proof of the first assertion of

Proposition 6. On the other hand, since 4π
3

√

λ
c ∈ Iτ(p,1) provided p < λ

6 ,

we obtain that mL(4π
3

√

λ
c ) > [λ6 ] + 2, where [α] denotes the integer part of

a number α. The set

{ρ ∈ R | lim
λ↓ρ

mL(λ) − mL(ρ) > 0}

=

{

8π

3
√

c
,

4π

3
√

c

√
7,

4π

3
√

c

√
10,

4π

3
√

c

√
14,

16π

3
√

c
,
4π√

c

√
2,

4π

3
√

c

√
19,

4π

3
√

c

√
22,

20π

3
√

c
,
4π√

c

√
3,

8π

3
√

c

√
7,

4π

3
√

c

√
31, · · ·

}

of discontinuous points of mL is discrete and unbounded. Moreover the
jumping step limλ↓ρ mL(λ)−mL(ρ) is not uniformly bounded with respect
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to ρ. The first two steps jumping point is 4π
3
√

c

√
10 and the second is 8π

3
√

c

√
7;

Iτ(2,1) = Iτ(7,1) =
(

4π
3
√

c

√
10,∞

)

and Iτ(3,2) = Iτ(19,1) =
(

8π
3
√

c

√
7,∞

)

.

The jumping step at 4π
√

30
c is at least 3; Iτ(61,3) = Iτ(23,9) = Iτ(17,15) =

(

4π
√

30
c ,∞

)

. In general, we can find a higher steps jumping point by

putting q = 3, p = 1 + Πmj, qi = 3mi and pi = mi + p−1
mi

, where mj are
mutually distinct positive prime numbers; Iτ(p,q) = Iτ(pi,qi).

The fact that the multiplicity of L at λ ∈
(

8
3
√

c
π, 4

3

√

7
cπ
]

is 3 guarantees

that there are no circles γ of complex torsion 0 < τ < τ(3, 1) = 10
7
√

7
with

length(γ) ≤ 4
3

√

7
cπ. More generally, we have the following:

Proposition 7. For each λ (> 4), we have no circle γ on CHn(−c)

with length(γ) ≤ 4π
3

√

λ
c and of complex torsion 0 < |τ | < 20

λ
√

λ+21
.

Proof. We shall show that the complex torsion of a circle γ with

length (γ) = 4 π
3

√

λ
c is not smaller than 20

λ
√

λ +21
. If the congruency

class containing γ lies in the leaf Fτ(p, q) (p q = even) of the natural

foliation, its geodesic curvature κ satisfies
√

3 p2 + q2

3 (4κ2 − c)
= 1

3

√

λ
c , hence κ =

1
2

√

c{1 + 3
λ(3p2 + q2)}. Therefore the complex torsion is

µ(p, q) =
(4κ2 − c)3/2

3
√

3cκ
τ(p, q) =

2q(9p2 − q2)

λ
√

λ + 3(3p2 + q2)
.

Since this constant is monotone increasing with respect q (1 ≤ q < p) for
each p and is monotone increasing with respect to p for each q, we have
that µ(p, q) ≥ µ(p, 1) ≥ µ(2, 1) = 70

λ
√

λ+39
when pq = even. Similarly if the

congruency class containing γ lies in the leaf Fτ(p,q) (pq = odd), its geodesic

curvature κ satisfies
√

3p2+q2

3(4κ2−c)
= 2

3

√

λ
c and the complex torsion is

µ(p, q) =
(4κ2 − c)3/2

3
√

3cκ
τ(p, q) =

q(9p2 − q2)

2λ
√

4λ + 3(3p2 + q2)
.

We also find that µ(p, q) ≥ µ(3, 1) = 20
λ
√

λ+21
when pq = odd. Since λ > 4

we have µ(3, 1) < µ(2, 1) and get the conclusion.
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This proposition tells us that circles with small complex torsions have long
prime periods.

Remark. By the proof of Proposition 7 we find the following: If a

circle γ has prime period 4π
3

√

λ
c and is not neither holomorphic nor totally

real then it has either

1) complex torsion µ(p, q) and geodesic curvature 1
2

√

c{1 + 3(3p2+q2)
λ } for

some mutually prime positive numbers p, q with pq = even, p > q and
with 2q(9p2 − q2) < λ

√

λ + 3(3p2 + q2), or

2) complex torsion µ(p, q) and geodesic curvature 1
2

√

c{1 + 3(3p2+q2)
4λ }

for some p, q with pq = odd, p > q and with q(9p2 − q2) <

2λ
√

4λ + 3(3p2 + q2).

Table for full length spectrum of circle

CHn(−c) CP n(c)

LSpec (0,∞) (0,∞)

finite at each λ, finite at each λ,

monotone increasing,

polynomial growth,

multiplicity mL left continuous,

mL(λ) ≥ 2, mL(λ) ≥ 1,

mL(λ) = 2 if and only mL(λ) = 1 if and only

if 0 < λ ≤ 8π
3
√

c
if 2√

c
< λ ≤ 4

3

√

5
cπ

§5. The restricted length spectrum of circles

In order to get more information on the distribution of length spectrum,
we shall study another restricted length spectrum, the length spectrum of
circles of complex torsion τ on a complex hyperbolic space CHn(−c). Let
Cirτ (CHn(−c)) denote the moduli space of circles of complex torsion τ ,
and Lτ the restriction of L onto this space. We set LSpecτ (CHn(−c)) =
L(Cirτ (CHn(−c)))∩R. By Lemmas 1, 2 and Fact 2, we find for 0 < τ < 1
that

LSpecτ (CHn(−c))

=
⋃

{

4π

√

3p2 + q2

3(4K2
τ(p,q)/τ − c)

∣

∣

∣

∣

∣

p > q, pq is even,
p and q are mutually prime

}

⋃

{

2π

√

3p2 + q2

3(4K2
τ(p,q)/τ − c)

∣

∣

∣

∣

∣

p > q, pq is odd,
p and q are mutually prime

}

.
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We first study set theoretical properties of LSpecτ (CHn(−c)).

Theorem 4. For every τ (0 < τ < 1), the length spectrum of circles
LSpecτ (CHn(−c)) of complex torsion τ is a discrete unbounded subset of
the real line.

Proof. First we show that LSpecτ (CHn(−c)) is unbounded. We set
Kn = Kτ(n+1,n)/τ , which satisfies that 3

√
3cτKn(4K2

n−c)−3/2 = τ(n+1, n).
Since limn→∞ τ(n + 1, n) = 1 we find limn→∞ Kn = κ(τ). Hence we have

L([γKn,τ ]) =

√

3c

4K2
n − c

× L([γ√c,τ (n+1,n)]) = 4π

√

3(n + 1)2 + n2

3(4K2
n − c)

−→ ∞,

and get that the set LSpecτ (CHn(−c)) is not bounded.

Next we show that LSpecτ (CHn(−c)) is discrete. For given κ (>
√

c
2 )

we put µ(κ) = 3
√

3cκτ(4κ2 − c)−3/2. If we suppose LSpecτ (CHn(−c))
has an accumulation point ξ ∈ R, then there exists a sequence {κn}∞n=1 of
positive numbers with

L([γκn,τ ]) < ∞, ξ = lim
n→∞

L([γκn,τ ]).

By Lemmas 1 and 2, we find that µ(κn) is expressed as µ(κn) = qn(9p2
n −

q2
n)(3p2

n + q2
n)−3/2 by mutually prime positive integers pn, qn (pn > qn).

When the set {κn | n = 1, 2, · · ·} is unbounded, by taking a subse-
quence, we may suppose limn→∞ κn = ∞. In this case we can conclude
that limn→∞

pn

qn
= ∞ and

lim
n→∞

pn

κ2
nqn

= lim
n→∞

µ(κn)(pn

qn
)

µ(κn)κ2
n

=
8

3cτ
(< ∞).

We therefore get

L([γκn,τ ]) =

√

3c

(4κ2
n − c)

× L([γ√c,µ(κn)]) ≥ 2π

√

3p2
n + q2

n

3(4κ2
n − c)

−→ ∞.

This contradicts to the assumption ξ < ∞.

When {κn | n = 1, 2, · · ·} is a bounded set we see that
{
√

3c
4κ2

n−c

∣

∣

∣
n =

1, 2, · · ·
}

is bounded from below. Hence we find the set {L([γ√
2c
4

,µ(κn)
]) |

n = 1, 2, · · ·} is also bounded. Since the set
{

(p, q)

∣

∣

∣

∣

p and q are mutually prime positive
numbers, p > q,

√

3p2 + q2 ≤ L

}
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is a finite set for each L, we find the set {κn | n = 1, 2, · · ·} is also a finite
set, which is a contradiction. Thus we obtain that LSpecτ (CHn(−c))) is a
discrete set.

Remark. Put Cirτ
(κ1,κ2)

(CHn(−c)) = {[γκ,τ ] | κ1 < κ < κ2} for κ1 and

κ2 with κ(τ) ≤ κ1 < κ2 < ∞. We find that the set L(Cirτ
(κ1,κ2)

(CHn(−c)))∩
R is also unbounded, because

L(Cirτ
(κ1,κ2)

(CHn(−c))) =

{

√

3c

4κ2 − c
×L([γ√

c, 3
√

3cτκ

(4κ2−c)3/2

])

∣

∣

∣

∣

∣

κ1 < κ < κ2

}

,

{

L([γ√
c, 3

√
3cτκ

(4κ2−c)3/2

])
∣

∣

∣
κ1 < κ < κ2

}

= {L([γ√c,µ]) | τ2 < µ < τ1}.

We now study the structure of LSpecτ (CHn(−c)).

Proposition 8. For every τ (0 < τ < 1), the bottom of the length

spectrum LSpecτ (CHn(−c)) is 4
√

7π/
√

3(4K2
τ(3,1)/τ − c). This spectrum is

simple for Lτ .

Proof. We put K0 = Kτ(3,1)/τ , which satisfies 100
73τ2 (4K2

0−c)3 = 27c2K2
0 .

Clearly by Lemma 1 we see that the length of a circle of geodesic curvature

K0 and complex torsion τ is 4
√

7π/
√

3(4K2
τ(3,1)/τ − c). We shall show for

mutually prime positive numbers p, q with p > q that

4π

√

3p2 + q2

3(4K2
τ(p,q)/τ − c)

> 4π

√

7

3(4K2
τ(3,1)/τ − c)

if pq = even,

2π

√

3p2 + q2

3(4K2
τ(p,q)/τ − c)

> 4π

√

7

3(4K2
τ(3,1)/τ − c)

if pq = odd and (p, q) 6= (3, 1).

Given µ (> 0) we define a function fµ: [
√

c/2,∞) −→ R by fµ(x) =
µ2(4x − c)3 − 27c2x. Clearly fµ(K2

µ) = 0, and fµ(x) > 0 if and only if
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x > K2
µ. When pq = even we have

fτ(p,q)/τ

(

1

4
{1

7
(3p2 + q2)(4K2

0 − c) + c}
)

=
1

73τ2
q2(9p2 − q2)2(4K2

0 − c)3 − 27

4
c2{1

7
(3p2 + q2)(4K2

0 − c) + c}

=
27c2

2800

{

{7q2(9p2 − q2)2 − 100(3p2 + q2)}K2
0 + 25(3p2 + q2 − 7)c

}

>
27c2

700
{7(8p2)2 − 400p2}K2

0

> 0,

because p > q > 0. This guarantees that 4K2
τ(p,q)/τ < 1

7(3p2 + q2)(4K2
0 −

c) + c in this case. When pq = odd and (p, q) 6= (3, 1) we have

fτ(p,q)/τ

(

1

4
{ 1

28
(3p2 + q2)(4K2

0 − c) + c}
)

=
1

43 × 73τ2
q2(9p2 − q2)2(4K2

0 − c)3

− 27

4
c2{ 1

28
(3p2 + q2)(4K2

0 − c) + c}

=
27c2

44800
{7q2(9p2 − q2)2 − 1600(3p2 + q2)}K2

0

+
27c3

448
(3p2 + q2 − 28)

> 0.

Hence we have 4K2
τ(p,q)/τ < 1

28(3p2 + q2)(4K2
0 − c)+ c in this case. Thus we

obtain the desirable inequalities, we get the assertion.

Remark. When τ = τ(3, 1), the bottom is 4π
3

√

7
c . Since we can roughly

estimate Kµ as

c

4
(
3

µ
+ 1) < K2

µ <
c

4
(

3√
µ

+ 1) if µ > 1,

c

4
(

3√
µ

+ 1) < K2
µ <

c

4
(
3

µ
+ 1) if µ < 1,

we obtain the following rough estimates on the bottom of the length spec-
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trum LSpecτ (CHn(−c)): When τ > τ(3, 1) = 10
7
√

7

4π

3
√

c
×
(

100

7τ2

)
1
4

< 4π

√

7

3(4K2
τ(3,1)/τ − c)

<
4π

3
√

c
×
(

10
√

7

τ

)
1
4

,

and when τ < τ(3, 1),

4π

3
√

c
×
(

10
√

7

τ

)
1
4

< 4π

√

7

3(4K2
τ(3,1)/τ − c)

<
4π

3
√

c
×
(

100

7τ2

)
1
4

.

By the proof of Proposition 7, we can rewrite the bottom of the length

spectrum LSpecτ (CHn(−c)) as 4π
3

√

λ
c with λ which satisfies τ2(λ3+21λ2)−

400 = 0. By applying the same argument as in the proof of Proposition 8,
we find that the second and third length spectrum in LSpecτ (CHn(−c))

(0 < τ < 1) are 4π
√

19/3(4K2
τ(5,1)/τ − c) and 4π

√

13/3(4K2
τ(2,1)/τ − c),

which are simple.
In the last stage we shall pose the following questions:

1) Are there non-simple spectrum in LSpecτ (CHn(−c))?
2) If such spectrum exist, how are their multiplicity? Is it true that the

multiplicity of Lτ (0 < τ < 1) is not uniformly bounded?

The multiplicity of Lτ at 4π
3

√

λ
c equals to the cardinality of the following

set of mutually prime positive numbers:
{

(p, q)

∣

∣

∣

∣

∣

p > q, pq = even,
2q(9p2 − q2)

λ
√

λ + 3(3p2 + q2)
= τ

}

⋃

{

(p, q)

∣

∣

∣

∣

∣

p > q, pq = odd,
q(9p2 − q2)

2λ
√

4λ + 3(3p2 + q2)
= τ

}

.

Thus our problems are reduced to a problem on numbers.

Table for length spectrum of cirlces of complex torsion τ

CHn(−c) CP n(c)

length spectrum of

holomorphic circles LSpec1 (0,∞) (0, 2π√
c
]

length spectrum of totally

real circles LSpec0 (0,∞) (0, 4π√
c
)

LSpecτ , (0 < τ < 1) unbounded
discrete

unbounded
discrete
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