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THE STABLE RANK AND CONNECTED STABLE
RANK FOR CERTAIN NON SELF-ADJOINT BANACH

ALGEBRAS

TAKAHIRO SUDO

Abstract. We consider the stable rank and connected stable rank for certain

non self-adjoint Banach algebras such as the triangular matrix algebras of all

(finite or infinite) triangular matrices over a unital Banach algebra and certain

nest algebras. Also, the stable rank estimate for certain crossed products of unital

Banach algebras by isometries is obtained.

1. Introduction

The (left or right, topological) stable rank for Banach algebras is introduced and

studied by Rieffel [5]. Especially, it is shown (by [5] and Herman-Vaserstein [4]) that

the (left and right) stable rank for C∗-algebras is the same as the Bass stable rank

for rings. Also, the left stable rank is the same as the right stable rank for Banach ∗-
algebras with involutions ([5]). The (left or right) connected stable rank for Banach

algebras is also introduced and studied by Rieffel [5]. Among many things, Rieffel [5]

obtained the stable rank formula for matrix algebras over a C∗-algebra in terms of

the stable rank of the C∗-algebra in coefficient, and also the stable rank formula

for the crossed product of a C∗-algebra by an action of the group of integers. In

[6], Rieffel obtained the connected stable rank formula for matrix algebras over a

C∗-algebra as well.

On the other hand, remarkably, it is recently shown by Davidson, Levene, Mar-

coux, and Radjavi [1] that there exist non self-adjoint Banach algebras which have

left stable rank infinity and right stable rank two, so that without involutions, the

left and right stable ranks differ in general. Such algebras are provided from nest

algebras.

Inspired by the papers [5] (and [6]) and [1], in this paper we consider the (left

or right) stable rank and connected stable rank for certain non self-adjoint Banach
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algebras as follows. In Section 1, we compute the stable rank of the triangular

matrix algebras of all (finite, or infinite and bounded) triangular matrices over unital

Banach algebras in terms of the Banach algebras in coefficient, and in Section 2, we

compute the connected stable rank for those triangular matrix algebras in terms of

the Banach algebras in coefficient. In Section 3, we consider certain cases of nest

algebras (in fact, those triangular matrix algebras in Sections 1 and 2 may be also

viewed as nest algebras). In Section 4, we further consider the stable rank estimate

for (non self-adjoint) crossed products of unital Banach algebras by isometries.

Notation. Let A be a unital Banach algebra. Denote by lsr(A) the left (topological)

stable rank of A (a positive integer or ∞). By definition, lsr(A) ≤ n if and only if

Ln(A) is dense in An, where (aj) ∈ Ln(A) if
∑n

j=1 bjaj = 1 for some (bj) ∈ An. If

no such n, then lsr(A) = ∞. Similarly, the right stable rank rsr(A) of A is defined

by just replacing Ln(A) with Rn(A) of (aj) ∈ An such that
∑n

j=1 ajbj = 1 for some

(bj) ∈ An.

Denote by lcsr(A) the left connected stable rank of A. By definition, lcsr(A) ≤ n

if and only if GLm(A)0 acts transitively on Lm(A) for any m ≥ n, where GLm(A)0
means the connected component with the identity matrix of the group GLm(A) of all

m×m invertible matrices over A, which is equivalent to say that Lm(A) is connected

for any m ≥ n. Similarly, the right connected stable rank rcsr(A) of A is defined by

just replacing Lm(A) with Rm(A).

2. Stable rank

Let A be a unital Banach algebra. Define and denote by

T2(A) =

{
x =

(
a c

0 b

)∣∣∣∣∣ a, b, c ∈ A

}
the Banach algebra (or the triangular matrix algebra) of all triangular 2×2 matrices

over A.

Proposition 2.1. Let A be a unital Banach algebra. If we have lsr(A) = 1, then

lsr(T2(A)) = 1.

Similarly, if rsr(A) = 1, then rsr(T2(A)) = 1.

Proof. Let x ∈ T2(A) as above. Since lsr(A) = 1, the elements a and b are approx-

imated closely by a′ and b′ in A such that (a′)−1a′ = 1 and (b′)−1b′ = 1 for some

(a′)−1 and (b′)−1 in A. Then(
(a′)−1 0

0 (b′)−1

)(
a′ c

0 b′

)
=

(
1 (a′)−1c

0 1

)
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Furthermore, (
1 −(a′)−1c

0 1

)(
1 (a′)−1c

0 1

)
=

(
1 0

0 1

)
Therefore, we obtain lsr(T2(A)) = 1.

By considering the right invertible elements that approximate a and b and the

multiplications by the corresponding such matrices from the right, we obtain the

second claim. �

Let A be a unital Banach algebra. Define and denote by

Tn(A) =

x =


a11 a12 · · · a1n

0 a22
. . .

...
...

. . . . . . an−1,n

0 · · · 0 ann


∣∣∣∣∣∣∣∣∣∣
aij ∈ A (1 ≤ i ≤ j ≤ n)


the Banach algebra (or the triangular matrix algebra) of all triangular n×n matrices

over A.

Proposition 2.2. Let A be a unital Banch algebra. If we have lsr(A) = 1, then

lsr(Tn(A)) = 1.

Similarly, if rsr(A) = 1, then rsr(Tn(A)) = 1.

Proof. Let x ∈ Tn(A) as above. Since lsr(A) = 1, the diagonal elements aii are

approximated closely by a′ii in A such that biia
′
ii = 1 for some bii in A (1 ≤ i ≤ n).

Denote by x′ the matirx obtained by replacing aii with a′ii. Thenb11 0
. . .

0 bnn

x′ =

1 ∗ b11a1n
. . . ∗

0 1


Furthermore, it is deduced from a finite number of multiplications by the invert-

ible elementary matrices as given in the proof above that the resulting matrix ex-

tracted by these operations is the identity matrix in Tn(A). Therefore, we obtain

lsr(Tn(A)) = 1.

By considering the right invertible elements that approximate aii and the multi-

plications by the corresponding such matrices from the right, we obtain the second

claim. �

As shown in [5, Lemma 3.4], the following analogue holds:

Lemma 2.3. Let A be a unital Banach algebra. If the diagonal sum t ⊕ 1n in

Tn+1(A) for some t ∈ A can be approximated by an element of L1(Tn+1(A)) within ε

with 0 < ε < 1, then t can be approximated by an element of L1(A) within ε, where

1n is the n× n identity matrix.
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Proof. Let (
a B

0tn D

)
∈ Tn+1(A)

be an element of L1(Tn+1(A)) that approximates t⊕ 1n within ε, where a ∈ A, D ∈
Tn(A), and B = (bj) ∈ An (a row vector), and 0tn is the transpose of 0n = (0, . . . , 0)

(a row vector). Then ∥D − 1n∥ ≤ ε. Hence In − (In − D) = D is invertible and

D−1 =
∑

(1n −D)n so that ∥D−1∥ ≤ (1− ε)−1. Furthermore,(
1 −BD−1

0 1n

)(
a B

0tn D

)
=

(
a 0n
0tn D

)
It follows that a is in L1(A) and approximates t within ε.

Also, if the first matrix is in L1(Tn+1(A)), then we have a is in L1(A) by considering

the matrix multiplication. �

Combining the above lemma and proposition, we obtain

Theorem 2.4. Let A be a unital Banch algebra. Then lsr(A) = 1 if and only if

lsr(Tn(A)) = 1.

Similarly, rsr(A) = 1 if and only if rsr(Tn(A)) = 1.

Moreover,

Theorem 2.5. Let A be a unital Banach algebra. Then

lsr(Tm(A)) = lsr(A).

Similarly, we obtain rsr(Tm(A)) = rsr(A).

Proof. Now suppose that lsr(Tm(A)) = s finite. Then any element (Ak)
s
k=1 ∈

(Tm(A))
s with

Aj =

ak11 ∗
. . .

0 akmm


with akij ∈ A is approximated closely by an element (Bk)

s
k=1 ∈ (Tm(A))

s such

that
∑s

k=1CkBk = 1m for some (Ck)
s
k=1 ∈ (Tm(A))

s. It follows that any ele-

ment (ak11)
s
k=1 ∈ As is approximated closely by an element (bk11)

s
k=1 ∈ As such that∑

k=1 c
k
11b

k
11 = 1 for some (ck11)

s
k=1 ∈ As. Hence, lsr(A) ≤ lsr(Tm(A)).

To show the reverse inequality we use induction on m. Suppose that lsr(A) = s

finite and lsr(Tm(A)) ≤ s. Take an element (Ak)
s
k=1 ∈ Tm+1(A)

s such that

Ak =

(
ak11 bk
0tn Dk

)
, ak11 ∈ A, Dk ∈ Tm(A)
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and bk ∈ Am (a row vector). By the assumptions, (ak11)
s
k=1 ∈ As and (Dk)

s
k=1 ∈

Tm(A)
s are approximated closely by elements (ck11)

s
k=1 ∈ As and (Ek)

s
k=1 ∈ Tm(A)

s

respectively, such that
∑s

k=1 d
k
11c

k
11 = 1 and

∑s
k=1 FkEk = 1m for some (dk11)

s
k=1 ∈ As

and (Fk)
s
k=1 ∈ Tm(A)

s. Furthermore, let(
ck11 bk
0tm Ek

)
= A′

k, and
s∑

k=1

(
dk11 0m
0tm Fk

)
A′

k =

(
1

∑s
k=1 d

k
11bk

0tm 1m

)
It follows that (A′

k)
s
k=1 ∈ Ls(Tm+1). Therefore, lsr(Tm+1(A)) ≤ s. Therefore, we can

conclude that lsr(Tm+1(A)) ≤ lsr(A).

Now let lsr(A) = ∞. If lsr(Tm(A)) is finite, the first part of this proof implies

that lsr(A) is finite. This is a contradiction. Thus, lsr(Tm(A)) = ∞.

Now let lsr(Tm(A)) = ∞. If lsr(A) is finite, the second part of this proof implies

that lsr(Tm(A)) is finite. This is a contradiction. Thus, lsr(A) = ∞.

Similarly, we can obtain the same for the right stable rank by exchanging left and

right multiplications. �

Define T∞(A) to be the inductive limit of Tm(A) under the canonical inclusions

Tm(A) ⊂ Tm+1(A) by x 7→ x⊕ 0 (diagonal sum) for x ∈ Tm(A).

Theorem 2.6. Let A be a unital Banach algebra. Then

lsr(T∞(A)) = lsr(A).

Similarly, we obtain rsr(T∞(A)) = rsr(A).

Proof. Since T∞(A) = lim−→Tn(A), it follows by the same way as [5, Theorem 5.1]

that

lsr(T∞(A)) ≤ lim lsr(Tm(A)) = lsr(A).

Moreover, we can show that if lsr(A) ≥ n, then lsr(T∞(A)) ≥ n by observing the

matrix equation:
b · · · ∗

. . .
...

0
. . .



a · · · ∗

. . .
...

0
. . .

 =


ba · · · ∗

. . .
...

0
. . .


Hence we obtain lsr(A) ≤ lsr(T∞(A)).

The same also holds when lsr(·) is replaced by rsr(·). �

Remark 2.7. In fact, by the same way as [5, Theorem 5.1] we obtain

lsr(lim−→An) ≤ lim inf lsr(An) and rsr(lim−→An) ≤ lim inf rsr(An)

for lim−→An an inductive limit of Banach algebras An.
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As for tensor products A⊗B of Banach algebras A and B, on them one can take

Banach tensor product norms such as restrictions from C∗-tensor product norms and

the (so called) γ norm defined by the infimum of
∑

∥aj∥∥bj∥ for
∑

aj ⊗ bj ∈ A⊗B,

and more suitable weaker norms (see, for instance, [8]).

Corollary 2.8. Let A and B be unital Banach algebras. Then

lsr(Tm(A)⊗ Tn(B)) = lsr(A⊗B),

where each of m and n is finite or infinite. Also,

lsr(⊗∞A) ≤ lsr(⊗∞Tm(A)) ≤ lim inf lsr(⊗kA).

If we have lim inf lsr(⊗kA) = lsr(⊗∞A), then

lsr(⊗∞Tm(A)) = lsr(⊗∞A).

Furthermore, lsr(·) can be replaced with rsr(·).

Proof. Note that Tm(A) ∼= Tm(C)⊗ A. Thus,

lsr(Tm(A)⊗ Tn(B)) = lsr(Tm(C)⊗ A⊗ Tn(B))

= lsr(Tm(A⊗ Tn(B)))

= lsr(Tn(C)⊗ A⊗B) = lsr(A⊗B).

Note that ⊗∞Tm(A) is an inductive limit of finite tensor products ⊗kTm(A) for

k ≥ 1 under the canonical inclusions ⊗kTm(A) ⊂ ⊗k+1Tm(A) by x 7→ x ⊗ 1m for

x ∈ ⊗kTm(A). Then

lsr(⊗∞Tm(A)) ≤ lim inf lsr(⊗kTm(A)) = lim inf lsr(⊗kA)

where we are using the equality shown above. Moreover, we can show that lsr(⊗∞A) ≤
lsr(⊗∞Tm(A)) by observing the matrix equation as given above. �

Let A be a unital Banach algebra. Define T b(A) to be the Banach algebra of all

upper triangular (∞×∞) matrices over A which are bounded as operators. In fact,

T b(A) ∼= T b(C) ⊗ A when A is a complex Banach algebra. If A is real, T b(C) is

replaced by T b(R).

Proposition 2.9. Let A be a unital Banach algebra. Then lsr(T b(A)) = ∞.

Also, rsr(T b(A)) = ∞

Proof. Note that since A is unital, T b(C) is a subalgebra of T b(A). There exists

two orthogonal isometries of T b(A)∗ with orthogonal ranges, where T b(A)∗ just con-

sists of all lower triangular matrices over A that are bounded. For instance, define

an isometry A by Aen = e3n and another B by Ben = e2n , where en is the n-

th standard unit vector. Then A∗, B∗ ∈ T b(A) are co-isometries with orthogonal
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ranges. Since {A,BA,B2A, . . . , Bn−1A} are n + 1 isometries of T b(A)∗, it follows

that rsr(T b(A)∗) ≥ n + 1. Indeed, this follows from that such an tuple can not be

in Rn+1(T
b(A)∗) (cf. [1]). Therefore, rsr(T b(A)∗) = ∞, which is equivalent to that

lsr(T b(A)) = ∞.

Also, it is shown by [1] that T b(C) has left and right stable ranks ∞. Therefore,

it follows that T b(A) has left and right stable ranks ∞. �

3. Connected stable rank

Theorem 3.1. Let A be a unital Banach algebra. Then

lcsr(Tm(A)) = lcsr(A).

Similarly, we obtain rcsr(Tm(A)) = rcsr(A).

Proof. Suppose first that m = 2. Let (A1, . . . , An) ∈ Ln(T2(A)), where

Aj =

(
aj bj
0 cj

)
aj, bj, cj ∈ A (1 ≤ j ≤ n).

Then there exists (B1, . . . , Bn) ∈ T2(A)
n, where

Bj =

(
a′j b′j
0 c′j

)
a′j, b

′
j, c

′
j ∈ A (1 ≤ j ≤ n)

such that
∑n

j=1BjAj = 12 the 2× 2 identity matrix. It follows that

n∑
j=1

a′jaj = 1,
n∑

j=1

(a′jbj + b′jcj) = 0,
n∑

j=1

c′jcj = 1.

For 0 ≤ ε ≤ 1, let

Aε
j =

(
aj εbj
0 cj

)
, Bε

j =

(
a′j εb′j
0 c′j

)
.

Then
∑n

j=1B
ε
jA

ε
j = 12, so that (Aε

j) ∈ Ln(T2(A)) which gives a path between

(A1
j) = (Aj) and (A0

j) a diagonal matrix. Therefore, Ln(T2(A)) is connected if and

only if Ln(A) is connected. Hence lcsr(A) = lcsr(T2(A)).

Next suppose that m = 3. Let (A1, . . . , An) ∈ Ln(T3(A)), where

Ak =

ak11 ak12 ak13
0 ak22 ak23
0 0 ak33

 akij ∈ A (1 ≤ i ≤ j ≤ 3, 1 ≤ k ≤ n).
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Then there exists (B1, . . . , Bn) ∈ T2(A)
n, where

Bk =

bk11 bk12 bk13
0 bk22 bk23
0 0 bk33

 bkij ∈ A (1 ≤ i ≤ j ≤ 3, 1 ≤ k ≤ n).

such that
∑n

j=1BjAj = 13 the 3× 3 identity matrix. It follows that

n∑
k=1

bk11a
k
11 = 1,

n∑
k=1

(bk11a
k
12 + bk12a

k
22) = 0,

n∑
k=1

(bk11a
k
13 + bk12a

k
23 + bk13a

k
33) = 0,

n∑
k=1

bk22a
k
22 = 1,

n∑
k=1

(bk22a
k
23 + bk23a

k
33) = 0,

n∑
k=1

bk33a
k
33 = 1.

For 0 ≤ ε ≤ 1, let

Aε
k =

ak11 εak12 εak13
0 ak22 εak23
0 0 ak33

 , Bε
k =

bk11 εbk12 εbk13
0 bk22 εbk23
0 0 bk33

 .

Then
∑n

k=1B
ε
kA

ε
k is 13 plus ε

∑n
k=1(b

k
11a

k
13+εbk12a

k
23+bk13a

k
33) for the (1, 3)-component

so that the sum is invertible. Hence (Aε
k) ∈ Ln(T3(A)) which gives a path between

(A1
k) = (Ak) and (A0

k) a diagonal matrix. Therefore, Ln(T3(A)) is connected if and

only if Ln(A) is connected. Hence lcsr(A) = lcsr(T3(A)).

Moreover, lcsr(A) = lcsr(Tm(A)) can be shown by the same argument using the

matrix perturbation.

The same also holds when lcsr(·) is replaced by rcsr(·). �

Theorem 3.2. Let A be a unital Banach algebra. Then

lcsr(T∞(A)) = lcsr(A).

Similarly, we obtain rcsr(T∞(A)) = rcsr(A).

Proof. Since T∞(A) = lim−→Tn(A), it follows by the same way as [5, Theorem 5.1]

that

lcsr(T∞(A)) ≤ lim lcsr(Tm(A)) = lcsr(A).

Moreover, we can show that if lcsr(A) ≥ n, then lcsr(T∞(A)) ≥ n by observing the

matrix equation:
b · · · ∗

. . .
...

0
. . .



a · · · ∗

. . .
...

0
. . .

 =


ba · · · ∗

. . .
...

0
. . .


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Hence we obtain lcsr(A) ≤ lcsr(T∞(A)).

The same also holds when lcsr(·) is replaced by rcsr(·). �

Remark 3.3. In fact, by the same way as [5, Theorem 5.1] we obtain

lcsr(lim−→An) ≤ lim inf lcsr(An) and rcsr(lim−→An) ≤ lim inf rcsr(An)

for lim−→An an inductive limit of Banach algebras An.

Corollary 3.4. Let A and B be unital Banach algebras. Then

lcsr(Tm(A)⊗ Tn(B)) = lcsr(A⊗B),

where each of m and n is finite or infinite. Also,

lcsr(⊗∞A) ≤ lcsr(⊗∞Tm(A)) ≤ lim inf lcsr(⊗kA).

If we have lim inf lcsr(⊗kA) = lcsr(⊗∞A), then

lcsr(⊗∞Tm(A)) = lcsr(⊗∞A).

Furthermore, lcsr(·) can be replaced with rcsr(·).

Proof. The proof is the same as that for the stable rank case in the previous section.

�

Theorem 3.5. Let A be a unital Banach algebra. Then

lcsr(T b(A)) = lcsr(l∞(A))

where l∞(A) is the unital Banach algebra of all bounded sequences over A. Moreover,

we obtain

lcsr(l∞(A)) = lcsr(A).

Furthermore, lcsr(·) can be replaced with rcsr(·).

Proof. Let (Aj) ∈ T b(A)n with Aj = Dj+Nj, whereDj is the diagonal part of Aj and

Nj = Aj −Dj. If (Aj) ∈ Ln(T
b(A)), then

∑n
j=1BjAj = 1∞ for some (Bj) ∈ T b(A)n.

Set Bj = D′
j + N ′

j as above. Then
∑n

j=1D
′
jDj = 1∞ and

∑n
j=1(D

′
jNj + BjNj +

N ′
jNj) = 0∞. Therefore, the equation

n∑
j=1

(D′
j + εN ′

j)(Dj + εNj) =
n∑

j=1

(D′
jDj + ε(D′

jNj +N ′
jDj + εN ′

jNj))

implies that Ln(T
b(A)) is connected if and only if Ln(l

∞(A)) is connected, where

the subalgebra of all diagonal matrices D of T b(A) is identified with l∞(A) by D =

(D(k))∞k=1 ∈ l∞(A), where D(k) is the (k, k)-component of D.

On the other hand, note that

Ln(l
∞(A)) = Π∞Ln(A)
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where the right hand side means the infinite product space of Ln(A). Indeed, let

(Dj)
n
j=1 ∈ Ln(l

∞(A)) with each Dj = (Dj(k))
∞
k=1 such that

∑n
j=1 D

′
jDj = 1∞ for

some D′
j = (D′

j(k))
∞
k=1 ∈ l∞(A), if and only if

∑n
j=1D

′
j(k)Dj(k) = 1 for every k ≥ 1.

Furthermore, it follows from a fact of general topology that Π∞Ln(A) is connected

if and only if Ln(A) is connected. �

4. Nest algebras

Now recall nest algebras from [1]. A nest N on a Hilbert space H is a chain of

closed subspaces of H such that {0}, H ∈ N, and the nest is closed under taking

intersections and closed linear spans of its elements.

For each N ∈ N, let N+ = inf{M ∈ N : M > N}. If N+ ̸= N , then N+ ⊖ N is

called an atom of N.

If H is spanned by atoms of N, then N is called atomic. If N has no atoms, then

N is called continuous.

The nest algebra T(N) of a nest N is defined to be the algebra of all bounded op-

erators on a Hilbert space such that every subspace of N is invariant under elements

of T(N):

T(N) = {T ∈ B(H) : T (N) ⊂ N for any N ∈ N}.

Theorem 4.1. Let N be an atomic nest with finite dimensional atoms and T(N)

its nest algebra. Then

lcsr(T(N)) = lcsr(l∞(C)) = 1.

Furthermore, lcsr(·) can be replaced with rcsr(·).

Proof. Let A ∈ T(N). By the assumption, it has the following block decomposition:

A =


A1 N12 N13 · · ·

A2 N23 · · ·
A3 · · ·

. . .


where each Ai ∈ Mni

(C) for some ni ≥ 1 which corresponds to the i-th finite

dimensional atom, and set D = A1 ⊕ A2 ⊕ · · · the diagonal part of A, and set

Ni = Ni,i+1+Ni,i+2+ · · · the i-th nilpotent part of A, and N = A−D the nilpotent

part of A. Let B ∈ T(N) with the same block decomposition:

B =


B1 N ′

12 N ′
13 · · ·

B2 N ′
23 · · ·

B3 · · ·
. . .


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Then

BA =
∞∑
i=1

BiAi + (B1N12 +N ′
12A2) + · · ·

where the first term diagonal part of BA and other terms are in the nilpotent part of

BA. Thus, if BA = 1∞, then
∑∞

i=1BiAi = 1∞. Therefore, the same argument using

deformation implies that lcsr(T(N)) = lcsr(l∞(Mni
(C))), where l∞(Mni

(C)) means

the unital Banach algebra of bounded sequences of matrices inMni
(C). Furthermore,

it follows that

lcsr(l∞(Mni
(C))) = lcsr(l∞(C)) = lcsr(C) = 1,

which is shown in the previous section. �

Theorem 4.2. Let N be a non-atomic nest with an infinite dimensional atom and

T(N) its nest algebra. Then

lcsr(T(N)) = ∞.

It follows from this that

Bsr(T(N)) = ∞ = lsr(T(N)).

Similarly, we obtain rcsr(T(N)) = ∞ so that rsr(T(N)) = ∞ = Bsr(T(N)).

Proof. It follows from the assumption that T(N) contains a unital copy of the C∗-

algebra B(H) of all bounded operators on an infinite dimensional Hilbert space H.

In particular, T(N) contains a unital copy of Cuntz algebra On for any n ≥ 2.

Therefore, lcsr(T(N)) = ∞ by Elhage Hassan [3, Proposition 1.4] (and see also [7]).

On the other hand, it is shown in [5] that

lcsr(A) ≤ Bsr(A) + 1 ≤ lsr(A) + 1

for any Banach algebra A. Since these estimates are applicable to B(H) and ex-

tendible to estimate the stable ranks of T(N), the second claim also follows �

Remark 4.3. This settles a question of [1, Q.3] partly since the Bass stable rank

is determined in that case.

As shown by Davidson and Ji [2] (an item added later), the possible values of the

left and right stable ranks for any next algebra have been completely determined

to answer questions [1, Q.1 and Q.2]. Their results do not contradict to our results

obtained and do not imply our results on Bass stable rank and connected stable

rank in those theorems.
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5. Crossed products

Following a method of [5] to estimate the stable rank of a crossed product of a unital

C∗-algebra by an action of Z of integers, we obtain the following:

Theorem 5.1. Let A be a unital Banach algebra. Let A o N denote and define a

(non self-adjoint) crossed product that is the unital Banach algebra generated by A

and a proper isometry s, where we assume that sA = As (a covariance property) so

that the elements of the form a0 + a1s + · · · + aks
k for some k ≥ 0 and aj ∈ A are

dense in AoN. Then

lsr(AoN) ≤ lsr(A) + 1.

Furthermore, lsr(·) can be replaced with rsr(·).

Proof. Let B = A o N. Let m ≥ lsr(A) + 1. Let (bi) ∈ Bm and U its open

neighbourhood.

For x = aks
k + ak+1s

k+1 + · · · + als
l for some 0 ≤ k ≤ l and aj ∈ A, define the

length of x to be L(x) = l − k + 1. For (bi) ∈ Bm where each bi has the form as x,

let L(bi) =
∑

i L(bi). Denote by ELm(D) the set of m×m elementary matrices over

D, where D is a dense subalgebra of B generated by such elements x. Also consider

the following operation by (sni): (bi) 7→ (snibi) for some ni ≥ 0. This operation

may not preserve Lm(B) since s∗ ̸∈ B in general. However, its reverse operation as

well as the matrix multilication by ELm(D) do preserve Lm(B). As for the reverse

operation, indeed, if (snibi) ∈ Lm(B) so that
∑m

i=1 ti(s
nibi) = 1 for some (ti) ∈ Bm,

then (bi) ∈ Lm(B) because
∑m

i=1(tis
ni)bi = 1. Define the size of (bi) to be the least

among L((b′′i )) where b′′i is obtained by iterating finitely the matrix multiplication

by elements of ELm(D) or the operation by (sni) to an element (b′i) ∈ U (which

may be taken to be arbitrary near to (bi)).

Now assume that (ci) ∈ Dm attains the size of (bi). Suppose that each ci is

nonzero so that L(ci) ≥ m ≥ 2. We may assume that L(cm) is the maximum

among L(ci) if necessary applying a permutation matrix of ELm(D) to (ci). For

each i, let akis
ki be the lowest term of ci. Now if necessary, by replacing cm with

spcm for some p ≥ 0, we assume that km is the maximum among ki. Let a′kj ∈ A

such that skm−kjakj = a′kjs
km−kj for 1 ≤ j ≤ m − 1. Since m − 1 ≥ lsr(A), the

element (a′k1 , . . . , a
′
km−1

) can be approximated closely by (a′′k1 , . . . , a
′′
km−1

) such that∑m−1
j=1 dja

′′
kj

= akm for some dj ∈ A. Let (c∼i ) be obtained from replacing akj with

a∼kj such that skm−kja∼kj = a′′kjs
km−kj for 1 ≤ j ≤ m − 1. We consider the following
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operation: 
1 0

. . .
...

1 0

−d1s
km−k1 · · · −dm−1s

km−sm−1 1




c∼1
...

c∼m−1

cm

 =


c∼1
...

c∼m−1

c∼m


It follows that

L(c∼1 , . . . , c
∼
m−1, cm) > L(c∼1 , . . . , c

∼
m−1, c

∼
m),

which is a contradiction. Therefore, if (c1, . . . , cm−1, cm) attains the size, then ci = 0

for some i. We may assume that c1 = 0, and replace it by ε1. Then
1 0

−ε−1c2 1
...

. . .

−ε−1cm 1



ε1

c2
...

cm

 =


ε1

0
...

0


It follows that (ε1, c2, . . . , cm−1, cm) ∈ Lm(B). Thus, (c1, . . . , cm−1, cm) ∈ Lm(B).

An element close to (bi) obtained by applying the reverse operations by ELm(B) or

the reverse operaionts by (sni) to (cm) is also in Lm(B) and in U , as desired. �

Corollary 5.2. Under the same assumptions as above, we obtain

lcsr(AoN) ≤ lsr(A) + 1.

Similarly, we obtain rcsr(AoN) ≤ rsr(A) + 1.

Proof. Indeed, the proof of the theorem above implies that GLm(B)0 acts transi-

tively on Lm(B) for any m ≥ lsr(A) + 1. Hence the estimate holds. �

Acknowledgements. The author would like to thank the referee for reading the

manuscript carefully and making several valuable suggestions for improvement.

References

[1] K. R. Davidson, R. H. Levene, L. W. Marcoux, and H. Radjavi, On the topological

stable rank of non-selfadjoint operator algebras, Math. Ann., 341 (2008), 239–

253.

[2] K. R. Davidson and Y. Q. Ji, Topological stable rank of nest algebras, Proc.

London Math. Soc. (3), 98 (2009), 652–678.

[3] N. Elhage Hassan, Rangs stables de certaines extensions, J. London Math. Soc.

(2), 52 (1995), 605–624.

[4] R. H. Herman and L. N. Vaserstein, The stable range of C∗-algebras, Invent.

Math., 77 (1984), 553–555.

— 33 —



[5] M. A. Rieffel, Dimension and stable rank in the K-theory of C∗-algebras, Proc.

London Math. Soc., 46 (1983), 301–333.

[6] M. A. Rieffel, The homotopy groups of the unitary groups of non-commutative

tori, J. Operator Theory, 17 (1987), 237–254.

[7] T. Sudo, The connected stable rank for Banach ∗-algebras involving isometries,

Asian-European J. Math., 3 (2010), 185–191.

[8] N. E. Wegge-Olsen, K-theory and C∗-algebras, Oxford Univ. Press, 1993.

(Takahiro Sudo) Department of Mathematical Sciences, Faculty of Science, University of the

Ryukyus, Nishihara, Okinawa 903–0213, Japan

E-mail address: sudo@math.u-ryukyu.ac.jp

Received February 10, 2010

Revised June 1, 2010

— 34 —


