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Pareto Optimum in a Cooperative Dynkin’s Stopping Problem

Yoshio Ohtsubo

Abstract. We consider two-person cooperative stopping gameof Dynkin’s type and
find $e$-Pareto optimal pairs of stopping times by three methods. The first is the so-called
scalarization and the corresponding optimal value process is characterized by a recursive
relation. In the second we find an $e$-Pareto optimal pair nearest to a goal, which two
players desire but may not be able to achieve. We select thirdly a Pareto optimal pair
which dominates a conservative value for each player. The set of such Paret $0$ optimal pairs
is called core. We finally apply them to a Markov model and give simple examples.
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1. Introduction.
Let $(\Omega,\mathcal{F}, P)$ be a probability space and $(\mathcal{F}_{n})_{n\in N}$ an increasing family of $sub-\sigma- fields$

of $\mathcal{F}$, where $N=\{0,1,2, \ldots\}$ is a time space. Let $\mathcal{W}$ denote the family of all sequences
of random variables $X=(X_{n})_{n\in N}$ defined on $(\Omega, \mathcal{F}, P)$ and adapted to $(\mathcal{F}_{n})$ such that
random variable $\sup_{n}X_{n}^{+}$ is integrable and sequence (X;) is uniformly integrable, where
$x^{+}=\max(0, x)$ and $x^{-}=(-x)^{+}$ . For each $n\in N$ , we also denote by $\Lambda_{n}$ the class of pairs

of $(\mathcal{F}_{n})$-stopping times $(\tau,\sigma)$ such that $n\leqq\tau\wedge\sigma<\infty a$ . $s$ . , where $\tau\wedge\sigma=\min(\tau, \sigma)$ .
For six random sequences $X^{i},$ $Y^{i}$ and $W^{i}(i=1,2)$ in $\mathcal{W}$ , we consider the following

cooperative stopping game with a finite constraint. There are two players and the first and
the second players choose stopping times $\tau_{1}$ and $\tau_{2}$ , respectively, such that $(\tau_{1}, \tau_{2})$ is in $\Lambda_{0}$ .
Then the ith player $(i=1,2)$ gets the reward

$J_{i}(\tau_{1}, \tau_{2})=X_{\tau}^{i}I_{\langle\tau_{i}<\tau_{j})}+Y_{\tau_{f}}^{i}I_{\langle\tau_{j}<\tau_{j})}+W_{\tau_{i}}^{1}I_{(\tau_{i}=\tau_{j})}$ , $j=1,2,$ $j\neq i$ ,

where $I_{A}$ is the indicator function of a set $A$ in $\mathcal{F}$ . The aim of the ith player is to
maximize the expected gain $E[J_{i}(\tau_{1}, \tau_{2})]$ with respect to $\tau_{1}$ , cooperating with another player,
if necessary. However, the stopping time chosen by one of them generally depends upon
one decided by another, even if they cooperate. Thus we shall use the concept of Pareto
optimality as in the usual cooperative game or the multiobjective problem.

1AMS subject classifications. $90D15,60G45,90E05$
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Before giving the definition of Pareto optimality, we define partial orders in the two-
dimensional Euclidean space as follows: for two vectors $x=(x_{1}, x_{2})$ and $y=(y_{1}, y_{2})$ ,

$x>y$ if $x_{i}>y_{i},i=1,2$ ; $x\geqq y$ if $x_{i}\geqq y_{i},i=1,2$ ; $x=y$ if $x_{i}=y_{i},i=1,2$ ; $x\geq y$

if $x\geqq y$ and $x\neq y$ . We also define a conditional expected reward for each player by
$G_{\mathfrak{n}}^{1}(\tau,\sigma)=E[J_{i}(\tau, \sigma)|\mathcal{F}_{n}],$ $i=1,2$ , and a vector by $G_{\mathfrak{n}}^{*}(\tau,\sigma)=(G_{n}^{1}(\tau,\sigma),G_{n}^{2}(\tau,\sigma))$ and
let $e=(1,1)$ . For the sake of simplicity, without further comments we assume that all
inequalities and equalities between random variables hold in the sense of “almost surely”.

For $n\in Nand$ a nonnegative real number $\epsilon$ , we say that a pair $(\tau_{e}, \sigma_{\epsilon})$ in $\Lambda_{\mathfrak{n}}$ is e-weak
(resp. e-strong) Pareto optimal at $n$ if there is no pair $(\tau,\sigma)$ in $\Lambda_{n}$ such that

$G_{n}^{*}(\tau,\sigma)>G_{n}^{*}(\tau_{\epsilon},\sigma_{e})+\epsilon e$ (resp. $G_{\mathfrak{n}}^{*}(\tau,\sigma)\geq G_{n}^{*}(\tau_{\epsilon},$ $\sigma_{e})+\epsilon e$).

We shall simply call a O-weak (resp. O-strong) Pareto optimal pair a weak (resp. strong)
Pareto optimal one.

In \S 2 we consider an optimal stopping problem with the reward

$J(\tau,\sigma)=X_{\tau}I_{(\tau<\sigma)}+Y_{\sigma}I_{(\sigma<\tau)}+W_{\tau}I_{(\tau=\sigma)}$

to maximize the expected gain $E[J(\tau,\sigma)]$ with respect to pair $(\tau,\sigma)$ in $\Lambda_{0}$ , and we give
fundamental results for the problem. These play an important role though this paper. We
also define shadow optimal value process, which is optimal value process for one player,
and obtain a martingale property. The shadow optimal value processes are used to select
a Pareto optimal pair in \S \S 4 and 5. We find Pareto optimal pairs by a method of the so-
called scalarization in \S 3, and introduce a concept of goal programming and find a Pareto
optimal pair nearest to a given goal in \S 4. We in \S 5 investigate core which is a set of Pareto
optimal pairs dominating a conservative value for each player, and in \S 6 consider a Markov
model as a special case.

The $two-person$ zero-sum stopping game with a discrete time space was first introduced
by Dynkin [6], who proved that the game has a value and constructed $\epsilon$-saddle point, and
it was developed by Neveu [16] and Elbakidze [7]. Continuous time analogue of such a
game problem was studied by Lepeltier and Maingueneau [11], Morimoto [13], Stettner
[22] and many others. Ohtsubo [17] also investigated a zero-sum stopping game with a
finite constraint, that is, in the game pairs of any stopping times $\tau,$

$\sigma$ satisfy $\tau\wedge\sigma<\infty a$ .
$s$ . , and he developed the problem in [18,19,21].

Such a stopping game was extended to a nonzero-sum case and studied in many literature
(for example, Bensoussan and Friedman [2], Morimoto [14], Nagai [15], Ohtsubo [20] and
Cattiaux and Lepeltier [3]), in order to find $\epsilon$-Nash equilibrium point. A non-Dynkin’s
type of nonzero-sum stopping game was considered in Mamer [12] for discrete time and in
Huang and Li [10] for continuous one.

All these are noncooperative game. In the present paper we deal with a cooperative
Dynkin’s stopping game and find $\epsilon$-Pareto optimal pairs. On the other hand the cooper-
ative game is anologous to multiobjective optimal stopping problem in the sense of using
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the concept of Pateto optimality. Hisano [9] formulated a multiobjective stopping problem
and found an optimal stopping time, and Gugerli [8] investigated such a problem for the
class of randomized stopping times.

2. Shadow optimum and fundamental lemmas.
In this section we give fundamental results, in order to obtain properties of shadow

optimum and to use these results in the remaining sections. We first define shadow optimum
$\alpha^{i}$ for the reward $J_{i}(\tau,\sigma)$ as follows:

$\alpha_{n}^{i}=es,s\sup_{\langle\tau\sigma)\in\Lambda_{\mathfrak{n}}}G_{n}^{i}(\tau, \sigma),$
$n\in N,$ $i=1,2$ .

In multiobjective programming, the shadow optima are also called “ideal solution”. If there
exists a pair $(\tau^{*},\sigma^{*})$ in $\Lambda_{n}$ such that $\alpha_{n}^{i}=G_{n}|(\tau^{*},\sigma^{*})$ for every $i=1,2$ , then the pair is not
only Pareto optimal at $n$ but also best optimal in the sense that $G_{n}^{i}(\tau^{*}, \sigma^{*})$ $\geqq G_{n}^{i}(\tau, \sigma)$

for al $(\tau, \sigma)$ in $\Lambda_{n}$ and every $i=1,2$ . However such a case seldom occurs. The shadow
optima are useful to select a Pareto optimal pair.

Now, to obtain constructive property of the shadow optima, we generally consider an
optimal stopping problem so as to maximize the expected reward $G_{n}(\tau, \sigma)=E[J(\tau,\sigma)|\mathcal{F}_{n}]$

with respect to $(\tau,\sigma)$ in $\Lambda_{n}$ , where

$J(\tau,\sigma)=X_{\tau}I_{\langle\tau<\sigma)}+Y_{\sigma}I_{\langle\sigma<\tau)}+W_{\tau}I_{\langle\tau=\sigma)}$

for $X,$ $Y$ and $W$ in $\mathcal{W}$ . The optimal value process $\beta=(\beta_{n})_{n\in N}$ is defined by

$\beta_{n}=ess\sup G_{n}(\tau, \sigma),$ $n\in N$ .
$(\tau,\sigma)\in\Lambda_{n}$

For $n\in N$and $e\geqq 0$ , we say that a pair $(\tau_{\epsilon}, \sigma_{\epsilon})$ in $\Lambda_{n}$ is $(e, \beta)$-optimal at $n$ if $\beta_{n}\leqq G_{n}(\tau_{\epsilon}, \sigma_{\epsilon})$

$+e$ .
LEMMA 2.1. (i) The process $\beta=(\beta_{n})$ satisfies the recursive relation:

$\beta_{n}=\max(X_{n}, Y_{n}, W_{n},E[\beta_{n+1}|\mathcal{F}_{n}]),$ $n\in N$ . (1)

(ii) $\beta$ is the smallest supermartingale dominating the process $(\max(X_{n}, Y_{n}, W_{n}))_{n\in N}$ .
(iii) $\lim\sup_{n}\beta_{n}=\lim\inf_{n}\max(X_{n}, Y_{n}, W_{n})$ .

PROOF. The lemma is easily proved as in the classical optimal stopping problem (cf.
Chow, Robbins and Siegmund [4] or Neveu [16]). $\square $

From this lemma it is easy to see that the process $\beta$ coincides with an optimal value
process $\hat{\beta}=(\hat{\beta}_{n})$ in an optimal stopping problem with a reward $\hat{Z}_{n}=\max(X_{n}, Y_{n}, W_{n})$ of
time $n,$

$i$ . $e$ .
$\hat{\beta}_{n}=ess\sup_{n\leq\tau<\infty}$

$E[\hat{Z}_{\tau}|\mathcal{F}_{n}]$ .

–137–



Hence $\beta=\hat{\beta}$ is constructive by the method of the backward induction as in [4].
For each $n\in N$and $e\geqq 0$ , define stopping times $\tau_{n}^{\epsilon}\equiv\tau_{n}^{\epsilon}(\beta)$ and $\sigma_{n}^{\epsilon}\equiv\sigma_{n}^{\epsilon}(\beta)$ by

$\tau_{n}^{e}=\inf\{k\geqq n|\beta_{k}\leqq\max(Xk, W_{k})+\epsilon\}$

$\sigma_{n}^{\epsilon}=\inf\{k\geqq n|X_{k}+\epsilon<\beta_{k}\leqq\max(Y_{k}, W_{k})+\epsilon\}$

where $\inf(\phi)=+\infty$ .

LEMMA 2.2. Let $n\in Nbe$ arbitrary.
(i) For each $e>0$ , the pair $(\tau_{n}^{\epsilon}, \sigma_{\mathfrak{n}}^{e})$ is $(\epsilon, \beta)$ -optimal at $n$ .
(ii) The stopping time $\tau_{\mathfrak{n}}^{0}\wedge\sigma_{\mathfrak{n}}^{0}$ is $a$ . $s$ . finite, the pair $(\tau_{n}^{0},\sigma_{\mathfrak{n}}^{0})$ is $(0,\beta)$ -optimal at $n$ .
PROOF. When $e$ is positive, it follows from Lemma 2.1 (iii) that the stopping time

$\tau_{n}^{\epsilon}\wedge\sigma_{n}^{e}$ is $a$ . $s$ . finite. Thus, for $\epsilon\geqq 0$ , it suffices to show that inequality $\beta_{n}\leqq G_{n}(\tau_{n}^{\epsilon},\sigma_{n}^{e})+\epsilon$

holds for each $n\in N$ . From Lemma 2.1 (i) and the optional sampling theorem, we have
$\beta_{n}=E[\beta_{\tau_{\dot{\mathfrak{n}}}\wedge\sigma_{\dot{\mathfrak{n}}}}|\mathcal{F}_{n}]$ . Furthermore, since $\beta_{k}\leqq X_{k}+e$ on $\{\tau_{n}^{\epsilon}=k<\sigma_{\mathfrak{n}}^{\epsilon}\},$ $\beta_{k}\leqq Y_{k}+e$

on $\{\sigma_{n}^{\epsilon}=k<\tau_{\mathfrak{n}}^{\epsilon}\}$ and $\beta_{k}\leqq W_{k}+e$ on $\{\tau_{n}^{e}=\sigma_{n}^{e}=k\}$ , we have the desired inequality

$\beta_{n}\leqq G_{n}(\tau_{n}^{e},\sigma_{n}^{e})+\epsilon$ . $\square $

REMARK 2.1. In the above thorem, it remains true even if the pair $(\tau_{\mathfrak{n}}^{\epsilon}, \sigma_{\mathfrak{n}}^{\epsilon})$ is replaced
by pairs $(\hat{\tau}_{n}^{e},\hat{\sigma}_{n}^{\epsilon})$ or $(\hat{\tau}_{\mathfrak{n}}^{\epsilon}, \sigma_{n}^{\epsilon})$ , where

$\hat{\tau}_{\mathfrak{n}}^{\epsilon}=\inf\{k\geqq n|Y_{k}+e<\beta_{k}\leqq\max(X_{k}, W_{k})+e\}$

$\hat{\sigma}_{\mathfrak{n}}^{\epsilon}=\inf\{k\geqq n|\beta_{k}\leqq\max(Y_{k}, W_{k})+e\}$ .
However other pair $(\tau_{n}^{\epsilon},\hat{\sigma}_{n}^{e})$ is not necessarily $(e, \beta)$-optimal.

3. Scalarization and Pareto optima.
In this section we find Pareto optimal pairs by the method of the well-known scalariza-

tion.
Let $S$ denote the set of vectors $\lambda=(\lambda_{1}, \lambda_{2})$ in $R^{2}$ satisfying $\lambda\geq 0$ and $\lambda_{1}+\lambda_{2}=1$ , and

$S_{0}$ the set of $\lambda$ in $S$ such that $\lambda>0$ . For given $X^{i},$ $Y^{i},$ $W^{i}$ in $\mathcal{W}$ and $\lambda$ in $S$ , we define
sequences of random variables by

$X_{\mathfrak{n}}(\lambda)=\lambda_{1}X_{n}^{1}+\lambda_{2}Y_{n}^{2},$ $Y_{n}(\lambda)=\lambda_{1}Y_{n}^{1}+\lambda_{2}X_{n}^{2},$ $W_{n}(\lambda)=\lambda_{1}W_{n}^{1}+\lambda_{2}W_{n}^{2}$ ,

random variables by,

$J(\tau, \sigma;\lambda)=\lambda_{1}J_{1}(\tau, \sigma)+\lambda_{2}J_{2}(\tau,\sigma),$ $G_{n}(\tau, \sigma;\lambda)=E[J(\tau,\sigma;\lambda)|\mathcal{F}_{n}]$ ,

and a maximum value process by

$V_{n}(\lambda)=es,s\sup_{\langle\tau\sigma)\in\Lambda_{n}}G_{n}(\tau,\sigma;\lambda),$
$n\in N$ .
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Then we have relations

$J(\tau, \sigma;\lambda)=X_{\tau}(\lambda)I_{(\tau<\sigma)}+Y_{\sigma}(\lambda)I_{(\sigma<\tau)}+W_{\tau}(\lambda)I_{(\tau=\sigma)}$ ,
$G_{n}(\tau,\sigma;\lambda)=\lambda_{1}G_{n}^{1}(\tau, \sigma)+\lambda_{2}G_{n}^{2}(\tau,\sigma)$ .

We also define stopping times for the process $V(\lambda)=(V_{n}(\lambda))$ as follows:

$\tau_{n}^{e}\equiv\tau_{n}^{\epsilon}(\lambda)=\inf\{k\geqq n|V_{k}(\lambda)\leqq\max(X_{k}(\lambda), W_{k}(\lambda))+e\}$

$\sigma_{n}^{\epsilon}\equiv\sigma_{n}^{\epsilon}(\lambda)=\inf\{k\geqq n|X_{k}(\lambda)+e<V_{k}(\lambda)\leqq\max(Y_{k}(\lambda), W_{k}(\lambda))+\epsilon\}$

for $n\in N$and $e\geqq 0$ . The following theorems are immediate results of Lemmas 2.1 and 2.2.

THEOREM 3.1. Let $\lambda$ in $S$ be arbitrary.
(i) The process $V(\lambda)=(V_{n}(\lambda))$ satisfies the recursive relation:

$V_{n}(\lambda)=\max(X_{n}(\lambda), Y_{n}(\lambda),$ $W_{n}(\lambda),$ $E[V_{n+1}(\lambda)|\mathcal{F}_{n}])$ , $n\in N$ . (2)

(ii) $V(\lambda)$ is the smallest supermartingale dominating the process $Z(\lambda)=(Z_{n}(\lambda))$ , where
$Z_{n}(\lambda)=\max(X_{n}(\lambda), Y_{n}(\lambda),$ $W_{n}(\lambda))$ .

THEOREM 3.2. Let $n\in Nand\lambda\in S$ be arbitrary.
(i) For each $e>0$ , the pair $(\tau_{n}^{\epsilon}, \sigma_{n}^{\epsilon})$ is $(e, V(\lambda))$ -optimal at $n$ in the sense that $ V_{n}(\lambda)\leqq$

$G_{n}(\tau_{n}^{\epsilon}, \sigma_{n}^{\epsilon};\lambda)+e$ .
(ii) If the stopping time $\tau_{n}^{0}\wedge\sigma_{n}^{0}$ is $a$ . $s$ . finite, the pair $(\tau_{n}^{0}, \sigma_{n}^{0})$ is $(0, V(\lambda))$ -optimal at $n$ .

The general lemma below is a well-known result in multiobjective problem.

LEMMA 3.1. Let $n\in N,$ $e\geqq 0$ and $\lambda\in S$ be arbitrary. If a pair $(\tau_{\epsilon}, \sigma_{\epsilon})$ in $\Lambda_{\mathfrak{n}}$ satisfies
inequality $V_{n}(\lambda)\leqq G_{n}(\tau_{\epsilon}, \sigma_{\epsilon};\lambda)+e$ , then the pair $(\tau_{\epsilon}, \sigma_{\epsilon})$ is e-weak Pareto optimal at $n$ .
Furthermore when $\lambda$ is in $S_{0}$ , the pair $(\tau_{\epsilon}, \sigma_{\epsilon})$ is e-strong Pareto optimal at $n$ .

PROOF. We suppose that the pair $(\tau_{\epsilon}, \sigma_{\epsilon})$ is not $\epsilon$-weak Pareto optimal. There then
exists a pair $(\tau, \sigma)$ in $\Lambda_{n}$ such that $G_{n}^{*}(\tau,\sigma)>G_{n}^{*}(\tau_{\epsilon}, \sigma_{\epsilon})+\epsilon e$ , that is, $G_{n}:(\tau,\sigma)>G_{n}^{i}(\tau_{e}, \sigma_{\epsilon})+$

$e$ for every $i=1,2$ . Thus we have

$G_{n}(\tau, \sigma;\lambda)=\lambda_{1}G_{n}^{1}(\tau,\sigma)+\lambda_{2}G_{n}^{2}(\tau, \sigma)$

$>\lambda_{1}G_{n}^{1}(\tau_{\epsilon}, \sigma_{\epsilon})+\lambda_{2}G_{n}^{2}(\tau_{\epsilon}, \sigma_{\epsilon})+e$

$=G_{n}(\tau_{e}, \sigma_{\epsilon}; \lambda)+e$ ,

so that $V_{n}(\lambda)>G_{n}(\tau_{\epsilon},\sigma_{\epsilon}; \lambda)+e$ , which is a contradiction. Hence the pair $(\tau_{\epsilon}, \sigma_{\epsilon})$ is $e$-weak
Pareto optimal. Similarly, the statement for $\lambda>0$ is proved. $\square $
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For each $n\in N$ , let a subset $\mathcal{G}_{n}$ in $R^{2}$ denote the set of all vectors $G_{n}^{*}(\tau,\sigma)$ satisfying
$(\tau, \sigma)\in\Lambda_{n}$ . Then the set $\mathcal{G}_{n}$ is not in general convex in our problem. If $\mathcal{G}_{n}$ is a convex
set, we can discuss the converse of Lemma 3.1, that is, if a pair $(\tau_{\epsilon}, \sigma_{\epsilon})$ is $e$-weak Pareto

optimal at $n$ there is a vector $\lambda$ in $S$ such that $V_{n}(\lambda)\leqq G_{n}(\tau_{\epsilon}, \sigma_{\epsilon};\lambda)+e$ (cf. Aubin [1]).

Theorem 3.2 and Lemma 3.1 immediately imply the folowing theorem.

THEOREM 3.3. Let $n\in Nand\lambda\in S$ be arbitrary.
(i) For each $\epsilon>0$ , the pair $(\tau_{n}^{\epsilon},\sigma_{n}^{e})$ is e-weak Pareto optimal at $n$ ; if in addition $\lambda$ is in

$S_{0}$ then the pair $(\tau_{\mathfrak{n}}^{e},\sigma_{\mathfrak{n}}^{\epsilon})$ is e-strong Pareto optimal at $n$ .
(ii) If the stopping time $\tau_{\mathfrak{n}}^{0}\wedge\sigma_{n}^{0}$ is $a$ . $s$ . finite, the pair $(\tau_{\mathfrak{n}}^{0},\sigma_{\mathfrak{n}}^{0})$ is weak Pareto optimal at

$n$ ; if in addition $\lambda$ is in $S_{0}$ then the pair $(\tau_{n}^{0},\sigma_{n}^{0})$ is strong Pareto optimal at $n$ .

4. Pareto optimum nearest to a goal.
In order that each player selects a convincible Pareto optimal pair, we introduce in this

section a concept of goal programming in multiobjective problem (cf. Cohon [5]).
Let two processes $M^{i}=(M_{n}^{1}),i=1,2$ , be in $\mathcal{W}$ , and we define a vector $pro$cess $M=(M_{n})$

by $M_{\mathfrak{n}}=(M_{n}^{1}, M_{\mathfrak{n}}^{2})$ . This $M_{n}^{i}$ is a goal (target value) for the ith player when he starts the
game at time $n$ , but it may be impossible that he achieves the goal. For $n\in N,$ $(\tau,\sigma)\in\Lambda_{n}$

and $\mu=(\mu_{1}, \mu_{2})\geq 0$ , a distance from $M_{n}$ is defined by

$D_{n}^{p}(\tau,\sigma)=\Vert M_{n}-G_{n}^{*}(\tau,\sigma)\Vert_{(\mu,p)}$ ,

where $||x||_{(\mu,p)}=(\Sigma_{=1}^{2}\mu_{i}|x_{i}|^{p})^{1/p}$ for $x=(x_{1},x_{2})$ and $ 1\leqq p<\infty$ , and $||x||_{\langle\mu,\infty)}=$

$\max_{i=1,2}(\mu_{i}|x_{i}|)$ for $ p=\infty$ , which are called Minkowski’s norm, and a minimum value
process $D^{p}=(D_{\mathfrak{n}}^{p})$ for the distance is defined by

$D_{n}^{p}\equiv D_{\mathfrak{n}}^{p}(\mu, M)=ess\inf D_{\mathfrak{n}}^{p}(\tau,\sigma)$ .
$(\tau,\sigma)EA_{\mathfrak{n}}$

For each $n\in N,$ $\mu\geq 0,1\leqq p\leqq\infty$ and $e\geqq 0$ , we say that a pair $(\tau_{e},\sigma_{\epsilon})$ in $\Lambda_{n}$ is $(e;p)-$

optimal at $n$ if $ D_{n}^{p}\geqq D_{\mathfrak{n}}^{p}(\tau_{\epsilon}, \sigma_{\epsilon})-\epsilon$ .

LEMMA 4.1. Suppose that $M\geqq\alpha,$ $i$ . $e$ . $M_{n}^{i}\geqq\alpha_{\mathfrak{n}}^{:}$ for each $n\in Nand$ every $i=1,2$ ,

and let $n\in Nande\geqq 0$ be arbitrary.

(i) Let $\mu$ be in $S$ (resp. $S_{0}$ ). If a pair $(\tau_{\epsilon},\sigma_{\epsilon})$ is $(e;1)$ -optimal at $n$ , then the pair $(\tau_{\epsilon},\sigma_{\epsilon})$

is e-weak (resp. e-strong) Pareto optimal at $n$ .
(ii) Let $\mu=(1,1)$ . If a pair $(\tau_{\epsilon}, \sigma_{\epsilon})$ is $(e;\infty)$ -optimal at $n$ , then the pair $(\tau_{e}, \sigma_{\epsilon})$ is e-weak

Pareto optimal at $n$ .
(iii) $ Let\mu$ be in $S$ (resp. $S_{0}$ ) and $ 1<p<\infty$ . If a pair $(\tau_{0}, \sigma_{0})$ is $(0;p)$ -optimal at $n$ , then

the pair $(\tau_{0}, \sigma_{0})$ is weak (resp. strong) Pareto optimal at $n$ .

PROOF. We shall prove only statement (ii). Other statements are similarly proved. We
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suppose that the pair $(\tau_{\epsilon}, \sigma_{\epsilon})$ is not $e$-weak Pareto optimal, so that there is a pair $(\tau, \sigma)$ in
$\Lambda_{n}$ satisfying $G_{n}^{*}(\tau, \sigma)>G_{n}^{*}(\tau_{\epsilon}, \sigma_{\epsilon})+ee$ . Thus we have

$D_{n}^{\infty}(\tau, \sigma)=\max\{M_{n}^{i}-G_{n}^{i}(\tau,\sigma)\}i=1,2$

$<\max\{M_{n}^{i}-G_{n}^{i}(\tau_{\epsilon}, \sigma_{\epsilon})-\epsilon\}i=1,2$

$=D_{n}^{\infty}(\tau_{\epsilon}, \sigma_{\epsilon})-e$ .

Hence $D_{n}^{\infty}<D_{n}^{\infty}(\tau_{\epsilon}, \sigma_{\epsilon})-e$ , which is contrary to $(e;\infty)$-optimality of $(\tau_{\epsilon}, \sigma_{\epsilon})$ . $\square $

We shall consider a case $p=1$ in the remaining part of this section, characterize the
minimum value process $D^{1}=(D_{n}^{1})$ and select $e$-Pareto optimal pair by using the process
$D^{1}$ . For $\mu\geq 0,$ $k\geqq n$ and $M^{i}(i=1,2)$ in $\mathcal{W}$ such that $ M\geqq\alpha$ , we define sequences of
random variables by

$\hat{X}_{k}(n)=\mu_{1}(M_{n}^{1}-X_{k}^{1})+\mu_{2}(M_{n}^{2}-Y_{k}^{2})=\mu_{1}M_{n}^{1}+\mu_{2}M_{n}^{2}-X_{k}(\mu)$ ,
$\hat{Y}_{k}(n)=\mu_{1}(M_{n}^{1}-Y_{k}^{1})+\mu_{2}(M_{n}^{2}-X_{k}^{2})=\mu_{1}M_{n}^{1}+\mu_{2}M_{n}^{2}-Y_{k}(\mu)$ ,
$\hat{W}_{k}(n)=\mu_{1}(M_{n}^{1}-W_{k}^{1})+\mu_{2}(M_{n}^{2}-W_{k}^{2})=\mu_{1}M_{n}^{1}+\mu_{2}M_{n}^{2}-W_{k}(\mu)$ ,

where $X_{k}(\mu),$ $Y_{k}(\mu)$ and $W_{k}(\mu)$ are given in \S 3 by replacing $\lambda$ by $\mu$ , as well as $G_{n}(\tau, \sigma;\mu)$

and $V_{n}(\mu)$ below. It then follows that for $(\tau, \sigma)\in\Lambda_{n}$ ,

$D_{n}^{1}(\tau,\sigma)=E[\hat{X}_{\tau}(n)I_{(\tau<\sigma)}+\hat{Y}_{\sigma}(n)I_{\langle\sigma<\tau)}+\hat{W}_{\tau}(n)I_{\langle\tau=\sigma)}|\mathcal{F}_{n}]$

$=\mu_{1}M_{n}^{1}+\mu_{2}M_{n}^{2}-\mu_{1}G_{n}^{1}(\tau, \sigma)-\mu_{2}G_{n}^{2}(\tau,\sigma)$

$=\mu_{1}M_{n}^{1}+\mu_{2}M_{n}^{2}-G_{n}(\tau,\sigma;\mu)$ . (3)

THEOREM 4.1. Suppose that $M^{i}(i=1,2)$ in $\mathcal{W}$ are martingales and $ M\geqq\alpha$ , and let
$\mu\geq 0$ .

(i) The process $D^{1}=(D_{n}^{1})$ satisfies the recursive relation:

$D_{n}^{1}=\min(\hat{X}_{n}(n),\hat{Y}_{n}(n),\hat{W}_{n}(n),$ $E[D_{n+1}^{1}|\mathcal{F}_{n}]$ )
$,$

$n\in N$ . (4)

(ii) $D^{1}$ is the largest submartingale dominated by the process $\hat{Z}=(\hat{Z}_{n})$ , where $\hat{Z}_{n}=$

$\min(\hat{X}_{n}(n),\hat{Y}_{n}(n),\hat{W}_{n}(n))$ .
PROOF. From (3) we have

$D_{n}^{1}=\mu_{1}M_{n}^{1}+\mu_{2}M_{n}^{2}-es,s\sup_{\langle\tau\sigma)\in\Lambda_{\mathfrak{n}}}G_{n}(\tau,\sigma;\mu)=\mu_{1}M_{n}^{1}+\mu_{2}M_{n}^{2}-V_{n}(\mu)$ .

Since $M^{i}$ are martingales, we also have

$E[D_{n+1}^{1}|\mathcal{F}_{n}]=\mu_{1}M_{n}^{1}+\mu_{2}M_{n}^{2}-E[V_{n+1}(\mu)|\mathcal{F}_{n}]$ .

–141–



Thus the relation (4) is equivalent to

$V_{n}(\mu)=\max(X_{n}(\mu), Y_{n}(\mu),$ $W_{n}(\mu),$ $E[V_{n+1}(\mu)|\mathcal{F}_{n}])$ .

Hence the proof of this theorem is reduced to that of Theorem 3.1 or Lemma 2.1. $\square $

REMARK 4.1. If the shadow optima $\alpha^{i}(i=1,2)$ are martingales, we may be take
$\alpha^{i}$ as $M^{i}$ . Also constant processes $M^{i}=E[\sup_{n\in N}\{\max(X_{n}^{i}, Y_{n}^{1}, W_{n}^{i})\}^{+}],$ $i=1,2$ , satisfy
conditions in Theorem 4.1.

We define stopping times $\tau_{n}^{\epsilon}\equiv\tau_{n}^{\epsilon}(\mu, M)$ and $\sigma_{\mathfrak{n}}^{\epsilon}\equiv\sigma_{n}^{\epsilon}(\mu,M)$ for the process $D^{1}$ by

$\tau_{\mathfrak{n}}^{\epsilon}=\inf\{k\geqq n|D_{k}^{1}\geqq\min(\hat{X}_{k}(k),\hat{W}_{k}(k))-e\}$ ,

$\sigma_{\mathfrak{n}}^{e}=\inf\{k\geqq n|\hat{X}_{k}(k)-e>D_{k}^{1}\geqq\min(\hat{Y}_{k}(k),\hat{W}_{k}(k))-e\}$ .

Using Lemma 4.1 and Theorem 4.1 and making argument analogous to Theorem 3.3 or
Lemma 2.2, we have another main theorem in this section.

THEOREM 4.2. Suppose that $M^{i}(i=1,2)$ in $\mathcal{W}$ are martingales and $ M\geqq\alpha$ , and let
$n\in Nand\mu\in S$ be arbitrary.

(i) For each $e>0$ , the pair $(\tau_{\mathfrak{n}}^{\epsilon}, \sigma_{n}^{e})$ is e-weak Pareto optimal at $n$ ; if in addition $\mu$ is in
$S_{0}$ then the pair $(\tau_{\mathfrak{n}}^{e}, \sigma_{\mathfrak{n}}^{\epsilon})$ is e-strong Pareto optimal at $n$ .

(ii) If the stopping time $\tau_{n}^{0}\wedge\sigma_{n}^{0}$ is $a$ . $s$ . finite, the pair $(\tau_{n}^{0}, \sigma_{n}^{0})$ is weak Pareto optimal at
$n$ ; if in addition $\mu$ is in $S_{0}$ then the pair $(\tau_{n}^{0}, \sigma_{\mathfrak{n}}^{0})$ is strong Pareto optimal at $n$ .

5. Core.
In this section, we introduce a core which is a subset of Pareto optimal pairs. For given

$Z^{i}=(Z_{n}^{i}),i=1,2$ , in $\mathcal{W}$ and $e\geqq 0$ , we define e-core $C_{\mathfrak{n}}^{\epsilon}(Z)$ at time $n$ by the class of all
pairs $(\tau_{\epsilon},\sigma_{e})$ in $\Lambda_{n}$ such that $(\tau_{\epsilon},\sigma_{\epsilon})$ is $e$-weak Pareto optimal at $n$ and inequality

$G_{n}^{*}(\tau_{\epsilon},\sigma_{e})\geqq Z_{n}-\epsilon e$ (5)

holds, where $Z_{n}=(Z_{n}^{1}, Z_{n}^{2})$ . This $Z^{i}$ is one called threat functional and is interpreted as a
minimum value which the ith player is able to compromise with. By the definition of core,
if a pair $(\tau_{\mathfrak{n}}^{e},\sigma_{\mathfrak{n}}^{\epsilon})$ in Theorems 3.3 or 4.2 satisfies inequality (5), then the pair $(\tau_{n}^{\epsilon}, \sigma_{n}^{\epsilon})$ is an
element of $e$-core $C_{n}^{\epsilon}(Z)$ .

In general $e$-core $C_{n}^{\epsilon}(Z)$ may be empty, even if $e$ is positive and $Z_{n}^{1}\leqq\alpha_{\mathfrak{n}}^{1}(i=1,2)$ . For

example, when $X_{n}^{i}=W_{n}^{i}=a,$ $Y_{n}^{1}=b$ and $Z_{n}^{1}=c(i=1,2, n\in N)$ for constants $a,$
$b$ and $c$

satisfying $a<c<b$ , we have $\mathcal{G}_{n}=\{(a, b), (b, a), (a, a)\},$ $n\in N$ , and vectors $(a, b)$ and $(b, a)$

correspond weak (and strong) Pareto optimal pairs. However, since there is no pair $(\tau_{\epsilon}, \sigma_{\epsilon})$

satisfying (5) for sufficiently small $e,$ $e$-core $C_{n}^{\epsilon}(Z)$ is empty.
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In this section we first give necessary and sufficient conditions for $e$-core $C_{n}^{\epsilon}(Z)(e>0)$

to be nonempty. To end this, for given other processes $M^{i}(i=1,2)$ in $\mathcal{W}$ and a pair $(\tau, \sigma)$

in $\Lambda_{n}$ , we define random variables by, if these exist,

$\gamma_{n}^{i}(\tau, \sigma)=\frac{M_{n}^{i}-G_{n}^{i}(\tau,\sigma)}{M_{n}^{i}-Z_{n}^{i}}$ $i=1,2$ ,

$\gamma_{n}(\tau, \sigma)=\max(\gamma_{n}^{1}(\tau, \sigma),$ $\gamma_{n}^{2}(\tau, \sigma))$ ,

and a minimum value process $\gamma^{*}=(\gamma_{n}^{*})$ by

$\gamma_{n}^{*}\equiv\gamma_{n}^{*}(M, Z)=ess\inf_{\langle\tau,\sigma)\in\Lambda_{n}}\gamma_{n}(\tau, \sigma)$
.

Here $M^{i}$ may be goals as in \S 4. The following assumption is natural in our problem.

ASSUMPTION 5.1. $M\geqq\alpha\geqq Z$ and $M>Z$ .

If Assumption 5.1 is satisfied, $\gamma_{n}^{*}$ is nonnegative, but it is not necessarily less than or
equal to 1. Indeed, in the above example, letting $M_{n}^{i}=b,$ $i=1,2,$ $n\in N$ , we have $\gamma_{n}^{*}=$

$(b-a)/(b-c)>1,$ $n\in N$ .
ASSUMPTION 5.2. Processes $M^{i}-Z^{i}(i=1,2)$ are bounded from above, that is, there

is a constant $L$ such that $M_{n}^{1}-Z_{n}^{i}\leqq L$ for all $i=1,2$ and all $n\in N$ .
THEOREM 5.1. Suppose Assumptions 5.1 and 5.2 are satisfied. For each $n\in N$ , the

following conditions are equivalent:
(a) For each $e>0$ , e-core $C_{n}^{\epsilon}(Z)$ is nonempty.
(b) For each $e>0$ , there exists a pair $(\tau_{\epsilon}, \sigma_{\epsilon})$ in $\Lambda_{n}$ satisfying inequality (5).

(c) $\gamma_{n}^{*}\leqq 1$ .
Furthermore, if one of conditions (a),(b) and (c) is satisfied, a pair $(\hat{\tau}_{\epsilon},\hat{\sigma}_{\epsilon})$ in $\Lambda_{n}$ such that
$\gamma_{n}^{*}$ $\geqq\gamma_{n}(\hat{\tau}_{\epsilon},\hat{\sigma}_{\epsilon})-e/L$ is an element of $C_{n}^{\epsilon}(Z)$ for each $n\in Nand$ every $\epsilon>0$ .

PROOF. By the definition of $e$-core $C_{n}^{\epsilon}(Z)$ , the implication $(a)\Rightarrow(b)$ is immediate.
$(b)\Rightarrow(c)$ . From inequality (5), we have $\gamma_{n}^{i}(\tau_{\epsilon}, \sigma_{\epsilon})$ $\leqq 1+e(M_{n}^{1}-Z_{n}^{i})^{-1}$ for every $i=1,2$ ,
so that

$\gamma_{n}^{*}\leqq\gamma_{n}(\tau_{\epsilon}, \sigma_{\epsilon})\leqq 1+e\max(M_{n}^{1}-Z_{n}^{i})^{-1}i=1,2$

Letting as $e\downarrow 0$ , we have the desired inequality $\gamma_{n}^{*}\leqq 1$ .

$(c)\Rightarrow(a)$ . By the definition of $\gamma_{n}^{*}$ , there is a pair $(\hat{\tau}_{\epsilon},\hat{\sigma}_{\epsilon})$ in $\Lambda_{n}$ such that $\gamma_{n}^{*}\geqq\gamma_{n}(\hat{\tau}_{\epsilon},\hat{\sigma}_{\epsilon})-$

$e/L$ . Thus since $\gamma_{n}^{*}\leqq 1$ , we have

$G_{n}^{i}(\hat{\tau}_{\epsilon},\hat{\sigma}_{\epsilon})\geqq Z_{n}^{i}-e(M_{n}^{i}-Z_{n}^{i})/L\geqq Z_{n}^{i}-e,$ $i=1,2$ ,
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which implies that the pair $(\hat{\tau}_{\epsilon},\hat{\sigma}_{\epsilon})$ satisfies inequality (5). Next assume that this pair
$(\hat{\tau}_{\epsilon},\hat{\sigma}_{\epsilon})$ is not $e$-weak Pareto optimal at $n$ , that is, there exists a pair $(\tau, \sigma)$ in $\Lambda_{n}$ satisfying
$G_{n}^{i}(\tau, \sigma)>G_{n}^{1}(\hat{\tau}_{\epsilon},\hat{\sigma}_{\epsilon})+e$ for every $i=1,2$ . Then we have

$\gamma_{n}^{i}(\tau, \sigma)<\gamma_{n}^{i}(\hat{\tau}_{\epsilon},\hat{\sigma}_{\epsilon})-e/L\leqq\gamma_{n}(\hat{\tau}_{\epsilon},\hat{\sigma}_{\epsilon})-e/L$ , $i=1,2$ ,

so that
$\gamma_{n}(\tau,\sigma)<\gamma_{n}(\hat{\tau}_{\epsilon},\hat{\sigma}_{\epsilon})-e/L\leqq\gamma_{n}^{*}$ ,

which is contrary to the fact that in general $\gamma_{n}(\tau, \sigma)\geqq\gamma_{n}^{*}$ . Hence the pair $(\hat{\tau}_{e},\hat{\sigma}_{e})$ is $e$-weak
Pareto optimal at $n$ , and it is in $C_{n}^{e}(Z)$ . Therefore $e$-core $C_{n}^{\epsilon}(Z)$ is nonempty.

The proof of the second statement is given in that of the implication $(c)\Rightarrow(a)$ . $\square $

In the following theorem, we give a characterization of an element in $C_{n}^{0}(Z)$ .
THEOREM 5.2. Suppose that Assumption 5.1 is satisfied and that $\gamma_{n}^{*}\leqq 1$ for every

$n\in N$ . For each $n\in N$ , a pair $(\tau^{*}, \sigma^{*})$ in $\Lambda_{n}$ satisfies $\gamma_{n}^{*}=\gamma_{n}(\tau^{*},\sigma^{*})$ if and only if
$G_{n}^{i}(\tau^{*}, \sigma^{*})\geqq(1-\gamma_{n}^{*})M_{n}^{i}+\gamma_{n}^{*}Z_{n}^{1},$ $i=1,2$ , (6)

where the equality holds for at least one $i$ . Furtherrreore, such a pair $(\tau^{*},\sigma^{*})$ is in $C_{n}^{0}(Z)$ .

PROOF. If $\gamma_{n}^{*}=\gamma_{n}(\tau^{*}, \sigma^{*})$ , we have

$\gamma_{n}^{*}\geqq\gamma_{n}^{*}(\tau^{*},\sigma^{*})$ , $i=1,2$ ,

where at least one $i$ have equality (as well as in the inequality below), and hence

$G_{n}^{:}(\tau^{*}, \sigma^{*})\geqq M_{n}^{1}-\gamma_{n}^{*}(M_{n}^{1}-Z_{n}^{1})=(1-\gamma_{n}^{*})M_{n}^{1}+\gamma_{\mathfrak{n}}^{*}Z_{n}^{\dot{*}},$ $i=1,2$ .

Conservely, if a pair $(\tau^{*}, \sigma^{*})$ satisfies (6), it is clear that $\gamma_{n}^{*}=\gamma_{n}(\tau^{*}, \sigma^{*})$ . Next, by argument
analogous to the proof of Theorem 5.1 it is easy to see without Assumption 5.2 that the
pair $(\tau^{*}, \sigma^{*})$ is in $C_{n}^{0}(Z)$ . $\square $

Now the threat functionals $Z^{i}$ are important when we consider core. Hence $Z^{i}$ must be
significant and we hope that $Z^{i}$ are able to analyze. We shall take minimax or maximin
value processes for each player in a zero-sum stopping game as one of threat functionals.
These value processes $\overline{V}^{i}$ and $V^{i}-(i=1,2)$ in our problem are defined by

$\overline{V}_{n}^{i}=ess$ $infess\sup G_{n}^{i}(\tau_{1}, \tau_{2}),$ $V_{n}^{i}-=ess\sup ess\inf G_{n}^{1}(\tau_{1}, \tau_{2}),$ $j=1,2,$ $j\neq i$ .
$\tau_{f,\langle\tau_{1,72)\in\Lambda_{\mathfrak{n}}}}\tau$

.
$\tau_{i1^{\tau_{1},72)\in\Lambda_{\mathfrak{n}}}}\tau_{j}$

Such a zero-sum stopping game with a finite constraint was investigated in [17,18,19,21].
The processes $\overline{V}^{i}$ and $V^{i}-$ are also called conservative value for the ith player. We shall
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recall results for $\overline{V}^{i}$ and $V^{i}-$ , and give sufficient conditions for $e$-core $C_{n}^{\epsilon}(Z)$ to be nonempty,
when threat functionals $Z^{t}$ are $\overline{V}^{i}$ or $ V^{i}-\cdot$

The following assumptions are necessary when we consider the zero-sum stopping game.

ASSUMPTION 5.3. Random variables $\sup_{n}(Y_{n}^{i})^{-}(i=1,2)$ are integrable, and inequali-
ties $X_{n}^{i}\leqq W_{n}^{1}\leqq Y_{n}^{1}$ are satisfied for each $n\in Nand$ every $i=1,2$ .

ASSUMPTION 5.4. $\lim\sup_{n}X_{n}^{i}\geqq\lim\inf_{n}Y_{n}^{i}$ .

PROPOSITION 5.1. Suppose Assumption 5.3 is satisfied. Then
(i) For each $n\in Nand$ every $i=1,2$ , inequalities $\overline{V}_{n}^{i}$ $\leqq V_{n}^{1}-$ hold, and both $\overline{V}^{i}$ and $V^{i}-$

satisfy the recursive relation:

$V_{n}=med(X_{n}^{i}, Y^{i}, E[V_{n+1}|\mathcal{F}_{n}]),$ $n\in N$ , (7)

where med $(a, b, c)$ is median for real numbers $a,$
$b$ and $c$ .

(ii) For each $n\in Nand$ every $e>0$ , stopping times $\hat{\tau}_{n}^{\epsilon}$ and $\hat{\sigma}_{n}^{e}$ defined by

$\hat{\tau}_{n}^{\epsilon}=\inf\{k\geqq n|\overline{V}_{k}^{1}\leqq X_{k}^{1}+e\}$ , $\hat{\sigma}_{n}^{e}=\inf\{k\geqq n|\overline{V}_{k}^{2}\leqq X_{k}^{2}+e\}$

are $a$ . $s$ . finite and satisfy inequalities

$\overline{V}_{n}^{1}\leqq G_{n}^{1}(\hat{\tau}_{n}^{\epsilon}, \sigma)+e$ , $\overline{V}_{n}^{2}\leqq G_{n}^{2}(\tau,\hat{\sigma}_{n}^{\epsilon})+e$ , (8)

for all stopping times $\tau$ and $\sigma$ .
(iii) If Assumption 5.4 is satisfied for some $i$ , then $\overline{V}^{i}=V^{i}-$ ( $=V^{i}$ , say) for the $i$ and $V^{i}$

is the unique process satisfying the recursive relation (7).

We can find the proof of this proposition in Proposition 2.1 of [17] for statement (i), in
p.597 of [17] or Lemma 3.3 of [19] for (ii), and in Theorem 2 of [21] (or [18]) for (iii).

COROLLARY 5.1. Suppose Assumption 5.3 is satisfied. For each $n\in Nand$ every $e>0$ ,
e-core $C_{n}^{\epsilon}(Z)$ is nonempty, if one of the following conditions is satisfied:

(a) Assumptions 5.1 and 5.2 for $Z^{i}=\overline{V}^{i}(i=1,2)$ hold.
(b) Assumptions 5.1, 5.2 for $Z^{i}=V^{i}-(i=1,2)$ and Assumption 5.4 for every $i=1,2$

hold.

PROOF. Under condition (a), inequalities (8) imply condition (b) in Theorem 5.1. Hence
$e$-core $C_{n}^{\epsilon}(Z)$ is nonempty. From Proposition 5.1 (iii) and condition (b), we have $\overline{V}^{i}=V^{i}-$

$(i=1,2)$ , to which condition (a) is applied. $\square $

6. Markov model.
In this section we consider a Markov model as a special case, and give simple examples.

Let $(X_{n}, \mathcal{F}_{n}, P_{x})$ be a time-homogeneous Markov process on phase space $(E, \mathcal{B})$ , and let
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$B(E)$ be the class of bounded $\mathcal{B}$-measurable functions on $(E, \mathcal{B})$ . We give six functions
$f_{i},$

$g_{i}$ and $h_{i}(i=1,2)$ in $B(E)$ . For a pair of stopping times $(\tau_{1}, \tau_{2})$ in $\Lambda_{0}$ , the reward
function of the ith player $(i=1,2)$ is

$G_{x}^{1}(\tau_{1},\tau_{2})=E_{x}[f_{i}(X_{\tau:})I_{t^{\tau:<\tau_{J})}}+g_{i}(X_{\tau_{f}})I_{(\tau_{J}<\tau;)}+h_{i}(X_{\tau_{i}})I_{(\tau.=\tau_{j})}],$ $j=1,2,$ $j\neq i,$ $x\in E$ ,

where $E_{x}$ denotes the expectation operator with respect to $P_{x}$ . For $\epsilon\geqq 0$ , we say that a

pair $(\tau_{\epsilon},\sigma_{\epsilon})$ in $\Lambda_{0}$ is e-weak (resp. e-strong) Pareto optimal if, for any $x\in E$ , there is no
pair $(\tau,\sigma)$ in $\Lambda_{0}$ such that

$G_{x}^{*}(\tau,\sigma)>G_{x}^{*}(\tau_{\epsilon}, \sigma_{\epsilon})+ee$ (resp. $G_{x}^{*}(\tau,\sigma)\geq G_{x}^{*}(\tau_{e},\sigma_{\epsilon})+ee$),

where $G_{x}^{*}(\tau,\sigma)=(G_{x}^{1}(\tau,\sigma),$ $G_{x}^{2}(\tau, \sigma))$ . We define the shadow optima as follows:

$\alpha_{i}(x)=ess\sup G_{x}:(\tau,\sigma),$ $i=1,2,$ $x\in E$ ,
$(\tau,\sigma)\in\Lambda_{0}$

and we then have the recursive equation for $\alpha_{i}(i=1,2)$ which corresponds to the rela-
tion(l):

$\alpha_{i}(x)=\max(f_{1}(x),g_{i}(x),$ $h_{i}(x),T\alpha_{i}(x)),$ $x\in E$ ,

where operator $T$ is a semigroup, that is, $Tf(x)=E_{x}[f(X_{1})]$ for $x\in E$ and $f\in B(E)$ .
For given $\lambda,$ $\mu\in S,$ $ 1\leqq p\leqq\infty$ and $M_{i},$ $Z;\in B(E),i=1,2$ , we can similarly define

$f_{\lambda}(x),$ $g_{\lambda}(x),$ $h_{\lambda}(x),$ $G_{x}^{1}(\tau,\sigma;\lambda),$
$V_{\lambda}(x),\hat{f}_{k}(x),\hat{g}_{k}(x),\hat{h}_{k}(x),$ $D_{p}(x)\equiv D_{p}(x;\mu, M),$ $\gamma_{x}(\tau,\sigma)$

and $\gamma^{*}(x)\equiv\gamma^{*}(x;M, Z)$ , which correspond to $X_{n}(\lambda),$ $Y_{n}(\lambda),$ $W_{\mathfrak{n}}(\lambda),$ $G_{n}^{1}(\tau, \sigma;\lambda),$ $V_{n}(\lambda)$ ,
$\hat{X}_{k}(n),\hat{Y}_{k}(n),\hat{W}_{k}(n),$ $D_{n}^{p}\equiv D_{n}^{p}(\mu, M),$ $\gamma_{n}(\tau, \sigma)$ and $\gamma_{n}^{*}\equiv\gamma_{n}^{*}(M, Z)$ , respectively, where
$M=(M_{1},M_{2})$ and $Z=(Z_{1}, Z_{2})$ .

For any $Z=(Z_{1}, Z_{2})$ satisfying $Z_{i}\in B(E)(i=1,2)$ , we next define a core $C_{0}(Z)$ by

the class of all pairs $(\tau, \sigma)$ in $\Lambda_{0}$ such that $(\tau, \sigma)$ is O-weak Pareto optimal and inequality
$G_{x}^{*}(\tau, \sigma)$ $\geqq Z(x)$ holds on $E$ . We also define minimax and maximin values for the ith

player by

$\overline{v}_{i}(x)=$ $inf\sup$ $G_{x}^{1}(\tau_{1}, \tau_{2})$ , $\underline{v}_{i}(x)=$ $\sup\inf$ $G_{x}^{1}(\tau_{1},\tau_{2}),$ $j=1,2,$ $j\neq i$ .
$(\tau_{1},\eta)\in\Lambda_{0}\tau_{j}\tau_{j}$

$(\tau\tau\tau_{J}|_{\tau_{2}})\in\Lambda_{0}$

We then have the following recursive equations and inequalities corresponding to the rela-
tions (2), (4), (7) and (6), respectively,

$V_{\lambda}(x)=\max(f_{\lambda}(x),g_{\lambda}(x),$ $h_{\lambda}(x),$ $TV_{\lambda}(x))$ ,
$D_{1}(x)=\min(\hat{f}_{0}(x),\hat{g}_{0}(x),\hat{h}_{0}(x),TD_{1}(x))$ ,

$v(x)=med(f_{i}(x),g_{i}(x),$ $Tv(x))$ , (9)

$G_{x}^{i}(\tau^{*}, \sigma^{*})\geqq(1-\gamma^{*}(x))M_{i}(x)+\gamma^{*}(x)Z_{i}(x)$ . (10)
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Also we can give Markov versions of Theorems 3.3, 4.2, 5.1 and so on.
We shall next give simple examples for the Markov model.

EXAMPLE 6.1. Let the state space $E$ consist of three states 1, 2 and 3, and the transition
probability matrix $P$ be given as follows:

$P=\left\{\begin{array}{lll}2/3 & 1/3 & 0\\l/2 & l/2 & 0\\l/2 & 1/3 & 1/6\end{array}\right\}$ .

The set of states {1, 2} is then a recurrent class and state 3 is transient. We also give the
functions $f_{i},g_{i}$ and $h_{i}$ by

$f_{1}(1)=2$ , $f_{1}(2)=-2$ , $f_{1}(3)=-3$ ,
$g_{1}(1)=4$ , $g_{1}(2)=0$ , $g_{1}(3)=2$ ,
$h_{1}(1)=2$ , $h_{1}(2)=-1$ , $h_{1}(3)=-1$ ,

$f_{2}(1)=-2$ , $f_{2}(2)=0$ , $f_{2}(3)=-3$ ,
$g_{2}(1)=2$ , $g_{2}(2)=4$ , $g_{2}(3)=6/5$ ,
$h_{2}(1)=-2$ , $h_{2}(2)=0,$ $h_{2}(3)=-2$ ,

and, for $x\in E$ , let a subset $\mathcal{G}(x)$ in $R^{2}$ denote the set of all vectors $G_{x}^{*}(\tau, \sigma)$ satisfy-
ing $(\tau, \sigma)\in\Lambda_{0}$ . It then follows that $\mathcal{G}(1)=\mathcal{G}(2)$ and it is a subset of convex hull
of $S_{1}$ , and $\mathcal{G}(3)$ is a subset of convex hull of $S_{2}$ , where $S_{1}$ is the set of six vectors
$(2, 2)$ , $(-2,4),$ $(4, -2),$ $(2, -2),$ $(-1,0)$ and $(0,0)$ and $S_{2}$ is the union of $S_{1}$ and $\{(-3,6/5)$ ,
$(2, -3)$ , $(-1, -2)$ } (see Figure 1). Note that the covex hull of $S_{1}$ coincides with the closure
of $\mathcal{G}(1)=\mathcal{G}(2)$ .

FIGURE 1
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Since $f_{i}\leqq h;\leqq g_{i}$ on $E$ , the shadow optimum $\alpha(x)=(\alpha_{1}(x), \alpha_{2}(x))$ is minimum solu-

tion to the recursive equations $\alpha_{i}(x)=\max(g;(x),T\alpha;(x)),$ $x\in E$ , so that we have $\alpha(1)=$

$\alpha(2)=\alpha(3)=(4,4)$ . We easily see from Figure 1 that O-weak (and O-strong) Pareto
optimal pairs correspond vectors on segments $AB$ and $BC$ , where $A=(-2,4),$ $B=(2,2)$

and $C=(4, -2)$ . For example, a weak Pareto optimal stopping pair $(\tau_{A},\sigma_{A})$ correspond-

ing the vector $A$ is represented by $\tau_{A}=\inf\{k\geqq 0|X_{k}=2\}$ and $\sigma_{A}=+\infty$ . Also, we
can check that when $\lambda=(\lambda_{1}, \lambda_{2})\in S$ satisfies $2\lambda_{1}<\lambda_{2}$ the pair $(\tau_{A},\sigma_{A})$ coincides with
$(\tau_{0}(\lambda),\sigma_{0}(\lambda))$ , where

$\tau_{0}(\lambda)=\inf\{k\geqq 0|V_{\lambda}(X_{k})=\max(f_{\lambda}(X_{k}), h_{\lambda}(X_{k}))\}$

$\sigma_{0}(\lambda)=\inf\{k\geqq 0|f_{\lambda}(X_{k})<V_{\lambda}(X_{k})=\max(g_{\lambda}(X_{k}), h_{\lambda}(X_{k}))\}$ .

Indeed, we have $f_{\lambda}(x)>\max(g_{\lambda}(x), h_{\lambda}(x))$ and $V_{\lambda}(x)=f_{\lambda}(2)=4-6\lambda_{1},$ $x\in E$ . Similarly,
when a goal $M$ is a constant vector $(c, c)$ with $c>4$ and $\mu=(\mu_{1},1-\mu_{1})$ satisfies $1/3<$

$\mu_{1}<2/3,$ $(0;1)$-optimal pair $(\tau_{0}(\mu, M),$ $\sigma_{0}(\mu, M))$ corresponds to the vector $B$ .
Next let us consider core, when we take the minimax value $\overline{v}$ ; or the maximin $y_{i}$ as

threat functins $Z_{i}$ . Since $f_{:},$ $g_{i}$ and $h_{i}(i=1,2)$ satisfy Assumption 5.3, value functions
$\overline{v}$ ; and $\underline{v}_{i}$ satisfy the recursive equation (9). Also, since Assumption 5.4 for $i=1$ holds,
$i.e$ . $\lim\sup_{n}f_{1}(X_{\mathfrak{n}})=2>\lim\inf_{n}g_{1}(X_{n})=0a$ . $s.$ , it folows from Proposition 5.1(iii)
that $\overline{v}_{1}(x)=\underline{v}_{1}(x)$ ( $\equiv v_{1}(x)$ , say) for all $x\in E$ and it is the unique solution to (9), so that
$v_{1}(1)=2,$ $v_{1}(2)=0$ and $v_{1}(3)=6/5$ . On the other hand, Assumption 5.4 for $i=2$ is not
satisfied, as $\lim\sup_{n}f_{2}(X_{n})=0$ and $\lim\inf_{n}g_{2}(X_{n})=2a$ . $s.$ . Hence $\overline{v}_{2}(x)$ (resp. $\underline{v}_{2}(x)$ )
is the smallest (resp. largest) solution to the equation (9), and we have $\overline{v}_{2}(x)=0,x\in E$ ,
$\underline{v}_{2}(1)=\underline{v}_{2}(2)=2$ and $\underline{v}_{2}(3)=6/5$ . Let $\overline{v}(x)=(\overline{v}_{1}(x),\overline{v}_{2}(x))$ and $y(x)=(\underline{v}_{1}(x), \underline{v}_{2}(x))$ ,
that is, $\overline{v}(1)=(2,0),$ $\underline{v}(1)=(2,2)$ and so on. We first take $\overline{v}$ as a threat function $Z$ .
Then the core $C_{0}(\overline{v})$ is the set of all $(\tau, \sigma)$ for which $G_{x}^{*}(\tau,\sigma)$ is on segment $DB$ if $x=1$ ,
on $DB$ or $BF$ if $x=2$ , and on $DB$ or $BH$ if $x=3$ , where $D=(3,0),$ $F=(0,3)$ and
$H=(6/5,12/5)$ . Also, if $ M=\alpha$ , it is easy to see that $\gamma^{*}(1)=3/4,$ $\gamma^{*}(2)=1/2$ and
$\gamma^{*}(3)=5/8$ . For example, we define a pair $(\tau^{*}, \sigma^{*})$ as follows :
when $X_{0}=1$ ,

$\tau^{*}=\left\{\begin{array}{ll}\tau_{1} & off \Omega_{1}\\+\infty & on \Omega_{1},\end{array}\right.$ $\sigma^{*}=\left\{\begin{array}{ll}\tau_{1} & on \Omega_{1}\\+\infty & off \Omega_{1},\end{array}\right.$

when $X_{0}=2$ ,
$\tau^{*}=\inf\{k\geqq 0|X_{k}=1\}$ , $\sigma^{*}=+\infty$ ,

when $X_{0}=3$ ,

$\tau^{*}=\left\{\begin{array}{ll}\tau_{1} & off \Omega_{2}\\+\infty & on \Omega_{2},\end{array}\right.$ $\sigma^{*}=\left\{\begin{array}{ll}\tau_{1} & on \Omega_{2}\\+\infty & off \Omega_{2},\end{array}\right.$
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where

$\tau_{1}=\inf\{k\geqq\tau_{2}|X_{k}=1\}$ , $\tau_{2}=\inf\{k\geqq 0|X_{k}=2\}$ ,
$\Omega_{1}=\{X_{\tau_{2+1}}=2,X_{\tau_{2}+2}=1\},$ $\Omega_{2}=\{X_{\tau_{2}+1}=X_{\tau_{2}+2}=2, X_{\tau_{2+3}}=1\}$ .

Then we can easily check that $G_{x}^{*}(\tau^{*}, \sigma^{*})=(5/2,1)$ if $x=1,$ $=(2,2)$ if $x=2$ , and
$=(9/4,3/2)$ if $x=3$ . Thus, since inequalities (10) (as a matter of fact, equalities) are
satisfied, Theorem 5.2 implies that $\gamma^{*}(x)=\gamma_{x}(\tau^{*},\sigma^{*}),$ $x\in E$ , and the pair $(\tau^{*}, \sigma^{*})$ is in
$C_{0}(\overline{v})$ . Secondly, let $Z=\underline{v}$ and $ M=\alpha$ . We similarly see that the core $C_{0}(\underline{v})$ is nonempty,
and $\gamma^{*}(1)=1,$ $\gamma^{*}(2)=3/4$ and $\gamma^{*}(3)=5/7$ , though Assumption 5.4 for $i=2$ is not
satisfied.

In the following example, core $C_{0}(\underline{v})$ is empty.

EXAMPLE 6.2. Let $E=\{1,2\}$ and let the transition probability matrix $P=(p_{1j})$ be
$p_{ij}=0$ if $i=j$ and $p_{1j}=1$ if $i\neq j$ . Also let $f_{i},g$; and $h_{i}$ be satisfy $f_{:}(x)=h_{i}(x)=a$ and
$g;(x)=b,$ $x\in E$ , for constants $a$ and $b(a<b)$ . Then we have $\mathcal{G}(x)=\{(a, b), (b, a), (a,a)\}$

and $\underline{v}(x)=(b, b),x\in E$ . Thus, since there is no pair $(\tau, \sigma)$ in $\Lambda_{0}$ such that $G_{x}^{*}(\tau, \sigma)\geqq\underline{v}(x)$

for al $x\in E$ , the core $C_{0}(y)$ is empty.
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