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On two—parameter discrete time
optimal starting—stopping problems

Teruo Tanaka

Abstract

We discuss the finiteness of an optimal stopping point and an e—optimal
stopping point for the discrete time two—parameter optimal stopping problem.

We also formulate the two-parameter optimal starting—stopping problem for
the discrete time case. Further, several problems with the constraints on a start-
ing time and a stopping time are studied, and several nested Bellman equations,
named by Sun [11], are investigated.
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1 Introduction

In this paper we study a stochastic control problem with not only a stopping time but
also a starting time for two—parameter stochastic processes, which may be termed the
two—parameter optimal starting-stopping problem.

The two—parameter optimal stopping problem has been studied by several authors..
Haggstrom (3], Krengel and Sucheston [4], Lawler and Vanderbei [5] and Mandel-
baum and Vanderbei [7] formulated the optimal stopping problems for the stochastic
processes indexed by a partially ordered set and solved them through the dynamic
programming approach. That is to say, by introducing the Snell envelopes, which
are well-known in the one—parameter optimal stopping problems, and the concept of a
stopping point, a strategy and a tactic, they gave a construction of an optimal solution.
Mandelbaum [6] formulated the optimal stopping problem for the multi—parameter
stochastic processes and developed not only the well-known dynamic programming
approach but also the theory of the dynamic allocation index.

In particular, Mandelbaum and Vanderbei [7] showed that if a partially ordered
set is a two-dimensional non-negative lattice, the two—parameter optimal stopping
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problem is equivalent to the control problem of finding the tactic maximizing the
given expected reward function under the conditionally independent property (F3) in
section 2.

Further Haggstrom [3] gave one sufficient condition for a reward process to guaran-
tee that an optimal stopping point be finite. In contrast to the one-parameter optimal
stopping problem, the finiteness of an optimal stopping point and an e—optimal stop-
ping point for the two—parameter optimal stopping problem remains open.

The first aim in this paper is to argue them.

Recently Sun [11] introduced the optimal starting-stopping problem for the one-
parameter continuous time stochastic process described by a stochastic differential
equation and gave a characterization of the optimal value function in terms of the
nested variational inequality. The discussion of the one—parameter starting—stopping
problem for the general stochastic process in both discrete time and continuous time
case is given in Tanaka [13].

The second aim in this paper is to formulate optimal starting-stopping problems
for two—parameter processes both with and without time constraint conditions and to
discuss their optimal values. In the discrete time case, two—parameter optimal stopping
problems with time constraints have been studied by Arenas [1] and Mandelbaum and
Vanderbei [7].

In section 2 we give notations and definition, make preparations for optimal stop-
ping problems for two—parameter processes and show some properties of an optimal
stopping rules and the finiteness of an optimal stopping point and an e—optimal stop-
ping point under a certain assumption. In section 3 and 4 we give a precise formulation
of two—parameter starting-stopping problem in the discrete time case. Further, we in-
vestigate several version of our problem with constraints on a starting time and a
stopping time. In section 5 we study the monotone condition for the two—parameter
stopping problem.

2 Preliminaries

Throughout this paper we consider the stochastic processes indexed by N°. Let T =
N2. The index set T is extended to its one—point compactification T U {oo} endowed
with the following partial order : for all z = (s,?), 2/ = (s',¢') € T,

2<z ifandonlyif s<s, t<¢,
z<z ifandonlyif s<s',t<t,
z2< oo forall z€T.

Let (2, F, P) be a complete probability space with the complete two—parameter filtra-
tion {F,, z € T} satisfying the conditions
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(F1)if z < 2/, then F, C F,,

(F2) F = o(U,F,),

(F3) F, and F, are conditionally independent given Fx, for all z,w € T,
where the notation w A z denotes the coordinatewise minimum.

A stopping point is the random variable T' taking values in T U {00} such that for
al ze T, {T<:z}eF,.

A strategy starting at z € T is the family of stopping points {o¢,t > 0} satisfying
the conditions :

Og = 2,
Oip1 = 0+ €1 or ¢+ eg,
. O¢41 is measurable with respect to F,,,
where e; = (1,0) and e; = (0,1).

A tactic starting at z is the pair (0¢,7) of a strategy at z and a stopping time 7
with respect to F,,, that is, {r <t} € F,, Vt > 0, where F,, = {A € FlAN{o: <
z} € F,,Vz}.

Let {X(z),z € T} be a real-valued F,-adapted two—parameter stochastic process
on (2, F, P) such that E[sup,c1 X(2)*] < co. We use the convention that X (co) =
limsup,_, X(2).

Let 3, denote the set of all the tactics starting at z with P(t < o0) = 1 and
E[X(0,)7] < 0o, and E, the set of all tactics starting at z with E[X(0,)~] < oo.

Denote by C, the set of all stopping points T" such that P(2 < T < o0) = 1
and E[X(T)~] < oo, C, the set of all stopping points such that P(z < T) = 1 and
E[X(T)™] < oo.

The two—parameter optimal stopping problem is to find 7* € Cy(resp.Cy) such that

E[X(T*)] = reo (Srligp - )E[X (1)),

which is equivalent to find (o}, 7*) € Zo(resp.Zy) such that

E[X(o7.)] = sup E[X (0,)],
(o1, T)ET0(XESP. o)

because of the assumption (F3) ( see Lemma 2.1).
We define the Snell envelopes by, for z € T,

f(z) = esssup E[X(T)|F.],
TeC,
f(z) = esssup E[X(T)|F.]

T€C,
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LEMMA 2.1 We have, for z € T,
f(z) = ess sup_ E[X(0,)|F.)
(o4, 7)EZ;
f(z) = ess sup E[X(o,)|F.].

(d’( 07)621

Lemma 2.1 is immediately obtained by the assumption (F3).
At first we state the fundamental results which are able to obtain by the classical
methods. :

THEOREM 2.1 {f(2)} satisfies the following properties :
(1) {f(2)} satisfies the stochastic dynamic programming equation

f(z) = max{X(z), max E[f(z + &)| F.]}

(i) BLf(2)] = sub(eumyep, FIX (0]

(ii) {f(2)} is the smallest supermartingale dominating {X (2)}

(iv) limsup,_, ., X(2) < limsup,_,, f(2)

(v) for all S € Cy, f(S) = esssuppec, E[X(T)|Fs),
where Cs = {T € Co|S < T}.

If Co, Cs and f(S) are changed by Co, Cs and f(S), respectively, then the last
assertion (v) also holds true.

DEFINITION 2.1 We call the tactics with the following relations f-admissible

E[f(0¢+1)|Fa] = f(oe) on {t<r}, (1)
7 =inf{t : X(0¢) = f(0e)}- (2)

We also call tactics with the relations (1) and (2) in which the Snell envelope f 15
changed by f f-admissible.

ProPoSITION 2.1 (i)Let the tactic (0., 7) be f-admissible such that P(T < o0) = 1.
Then (o¢, T) is optimal in the class Xo.

(ii) Let the tactic (o¢, 7) be f-admissible. If limsup,_  X(z) = limsup,_, f(z),
then (o¢,7) is optimal in the class Zo.

ProrosiTION 2.2 If for any w, sup,s,, E[sup,s, X (p)|F.] < sup,>, X(p), then

f(2) = f(2) Vz a.s..



Proof. Since f(z) < f(z), it is sufficient to prove that E[f(z)] = E[f(z)]. By the

same line as in Theorem 2.1

E[f(2)] = sup_ E[X(o,)]

(G'I,T)ei;

f(2) = max{X(z), max E[f(z + e.)| F.]}

Therefore we can define an f-admissible such that admissible tactic (&, 1) by means of
the above dynamic programming equation. By our assumption, limsup, f(z) < X(o0).
By Proposition 2.1 (ii), then we have

E[f(z)] = E[X(&)]

sup E[X (&)
sup E[X (&)

sup sup E[X (o,)]
{o4} 7<eo

E[f(2)].

- IA

IA

()

ProroSITION 2.3 We assume that limsup, . X(z) = limsup,_ f(z) and X(2)
converges to —oo as z — oo with respect to the one—point compactification topology.
Let (o¢,T) be an f-admissible tactic. Then o, < 0o a.s..

Proof. Suppose that P(r = o0) > 0. By Proposition 2.1 and Proposition 2.2, we
have

sgp E[X(&)] = E[X(o,)]
/{ ey X()dP + /{ 1oy X(00)aP

X(o,)dP + limsup X (2)dP
Joreuy X(o)dP+ [ msup X(2)
< —o0. (3)

On the other hand,
—oo < E[X(0)] < sup E[X(&)]-

This contradicts (3), therefore we have P(r < o0) = 1. O

Next we discuss the e—optimality. Let ¢ be a positive number.
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The stopping point T™ is called e-optimal if it satisfies

EX@T)> s EXT)]--< (4)
T€Co(resp.Co)

Since we assume the condition (F3), the problem (4) is equivalent to find (o7, 7)) €
Yo(resp.Xo) such that

E[X(0}.)] 2> sup E[X(0,)] — .
(o4,7)E Eo(IeSp.Eo )

THEOREM 2.2 We assume that limsup,_ o, X(z) = limsup,_,, f(2). Let (0r,7) € &
be an f-admissible tactic. We define 7} by

77 = inf{t : X(o¢) > f(oe) — €}.

Then 17 is e~optimal and
P(r} <o0) =1

Proof. By the assumption we have

ess sup BX (0y)| %] = fle) on {r=oo}. (5)

where 7 is an ¥, —stopping time. In fact, let A = {esssup E[X (0y)|F.] < F(oe)},
suppose that P(A) > 0 for some ¢. Then

E[X(0.)|Fs) < f(0e) as. on ANn{t< T}

From the fact that {f(o,a¢)} is a one—parameter martingale, the limit lim,,co f(0rae)
exists and is finite on {7 = oo}. Moreover we get limi_ o f(0ra) = f(0,), and

E[f(0:)|Fs] = f(orac)- Therefore we have on AN {t < 7}

fo) > BiX(a)IFu]
= ‘_El[f(af)lfﬂ]
= f(as).
This proves (5).
By the definition of the admissible tactic (o, 7), we get 7. < 7 and {r. = 00} C

{7 = oo}. Since that {f(0,.¢)} is a martingale, the limit lim¢_ o f(0ra¢) exists and
is finite on {7, = oo}. Then we have

flo) > X(o)) + ¢ on {7 = oo},
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and then B
lim f(o;) > limsup X(o¢) +¢  on {7.= oo}. (6)
It follows from (5) and (6) that P(7. = oo) = 0. Finally, by the martingale property
of {f(0,.a¢)} and Theorem 2.1 we have
E[X(o7.)] 2 E[f(o7)]—¢

= E[f(00)] —
= BHO]-«
= sup E[X(0,)] —e.

0'1,7)

3 Starting—stopping problem

In this section we use the definitions and notation introduced in the previous section.
At first we shall formulate the two-parameter starting-stopping problem.
Let {f(z),z € T} and {g(2),2 € T} be F,~adapted integrable stochastic pro-
cesses such that Efsup, f(2)*] < co and Efsup, g(z)*] < co. f(oo) ( resp. g(oo) ) is
interpreted as limsup f(z) ( resp. limsup g(z) ).

The two-parameter starting-stopping problem is to find the stopping points S*
and T with S* < T such that

E[f(S*) + 9(T™)) = sup E[f(S) + g9(T)).

In the starting—stopping problem, it is effective to consider the path in the time space
connecting a starting time (point) and a stopping time (point). In the one—parameter
case, it is obviously that for all stopping times S and T with S < T there exists a
path connecting S and T'. As for the two-parameter case, the concept of the strategy
is essential to the two—parameter optimal stopping problem.

PROPOSITION 3.1 For all stopping points S and T with S < T, there ezists the trip-

licate (0., 70,71) of a strategy and two stopping times with respect to Fo with o< n
such that

S=0, and T=o0, as.

This result is due to Walsh [15].
From this proposition, it should be noted that the following relation holds :

sup E[f(0s,)+g(c,)] = sup E[f(S) + 9(T)]

T¢,70,71
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where (o¢, 79, 71) in the left—-hand term is the triplicate of a strategy and two stopping
times with respect to F,, with 7o < 73 and S and T in the right-hand term is the pair

of stopping points with S < T..
Therefore we consider the following criterion : find (o}, 7§, 71) such that

Blf(o};) +9(o3)] = sup E{f(on) +9(on)).

o4,70,71)

We define the nested Snell envelope {X(z)} and {Y (2)} by
Y(z) = ess sup E[g(o,)|F.],

0’(,1’)62;

X(z) = ess sup_ E[f(,) +Y(0,)|F.).

0¢,7)ET

The process X(z) is well-defined. In fact, Y(z) is F,-adapted and g(z) < Y(2) <
sup,, g(w)*. For any (o¢, 7) € I, E[Y(0,)"] < E[g(0,)”] < 0o. Then by the standard

argument, we get the following nested equation.
THEOREM 3.1 We have for any z € T,
Y(z) = max{g(z), max E[Y (2 + e)| .]},
X(2) = max{f(2) +Y(2), max E[X (z + &;)| .]}.
This theorem gives the construction of an optimal tactic.
THEOREM 3.2 Let {A,, A}, A%} and {B,, B}, B?} be the partitions of Q defined by
A, = {X(2)=f()+Y(2)},

A; = {X(2) = E[X(z + e1)| F]}\ 4

A = {X(2) = E[X(z + e2)| F.]} \ (4: U 4)),
B, = {¥(2)=4(2)},

B, = {¥(z) = E[Y(z +e1)|F.]}\ B,

B! = {Y(2) = E[Y(z + )| F.]}\ (B. UBy).
And let (o, 7) and (&,7n) be tactics defined by

g0 = 0,
Oeq1 = O¢te on Ai',
r = f{t|X(er) = f(oe) + Y(00)},
o = or,
§ev1 = &t on Bi N Ay,

n = inf{t]Y (&) = 9(&)}-
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Then the tactic (o}, 75,7]) defined by

- Ot t S T
at o ét—'r t Z T;
Ty = T,
T = T+4+7

is optimal if 7§ < 00 and 77 < oo.

Theorem 3.2 is obtained by Theorem 2.1 (v) and the following lemma. In order
that 77 < oo and 77 < oo, it is sufficient that X and Y satisfy the cond1t10ns in
Proposition 2.3.

LEMMA 3.1 For any (o:,7) € Lo and (&, 1) € .., the pair (,,7) defined by

é _ O t<r71
£ Et—‘r tZT,
T = 7471

1s a tactic.

THEOREM 3.3

E[X(0)] = sup E[f(on)+g(on)].

(o1,m0,m1)

Proof. By Theorem 2.1, we get

E[X(0)] = sup E[f(a,) + Y (0;)] = Lim E[f(07.) + Y (074)]

a‘;‘r

for some {(o7,7")} C £, and by Theorem 2.1 (v)
E[Y (07»)] = lim E[g(&m)]
for some {(£&",7™)} C T,n,. Hence we have
E[X(0)] = limlim E[f(07x) + g(&m)]-

This completes the proof. | o
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REMARK 3.1 (i) We can also discuss the discounted criterion

n—1

E[3_ a'f(oe) + amg(on)]. (7)

t=7y

In the case of the running reward type, it is known that the one-parameter optimal
starting problem ends in the usual one—parameter optimal stopping problem ( see [11]).
However the concept of the strategy obstructs this transformation of the two—parameter
starting problem ( the stopping time i = oo in (7)) to the two—parameter stopping
problem. Hence it is significant to study the two—parameter optimal stopping problem
containing the starting problem.

(ii) We set
Y(z) = ess sup E[g(o,)|F.],
("h")ezl
X(z) = ess sup E[f(o,)+Y(0,)|F.)
(’h')ezl

Using the same argument, we can obtain the same results as those of Theorem 3.1, 3.2
and 3.3. In this case, since the tactic defined in Theorem 3.2 is optimal in ¥, it is
possible to omit the assumption on the finiteness 753 < 0o and 77 < oo.

4 Constrained problems and Markov cases

In this section we state the Snell envelopes for the problems with time constraints, and
the nested Bellman equation for bi-Markov cases. Let N be a fixed positive integer
we are interested in the tactics with the following conditions :

(Pl) {at}tsN; T S N
(P2) {oe}ter, N<T
(P3) {ohter, W<N<mn
(P4) {otkeTrs, n—7 2N
(PS5) {otlter, m—T <N

Denote by A(;) the set of all tactics satisfying the condition (Pi).
In the case of (P1) and (P2), our problem is to find a tactic (o7,7*) € A(;) such
that

E[f(o7.)] = sup E[f(s,)]-

(o1, 7)EA;)



In the case of (P3),(P4) and (P5), our problem is to find a tactic with starting time
(07,73, 717) € Ag) such that

E[f(o7;) +9(o7)]=  sup  E[f(ox)+ g(on)].
(o¢,70,11)€EA(y

Case (P1)
Put

Y(,N-t) = f@it,N-1%) for t=0,1,---, N,
Yt,N—-—s—-t) = max{f(t, N —s— t),E%E[Y((t, N —s—t) + €)|Fe,n-s=-0)]}-

for t=0,1,---,N—-s, s=0,1,---,N
Krengel and Sucheston [4] obtained the following theorem.
THEOREM 4.1 We have fort=0,1,---,N—-s, s=0,1,---,N,

Y(t,N—s—t)=ess sup E[f(0:)|F(t,N-s-t)),
{o1,7)EAV(t,N—s—t)

where A1(t, N — s —t) = {(0¢,7) € Z(g,n—s—s)|7 < 5}.

Case (P2)
The Snell envelopes of this case are

Y(z) = ess sup E[f(o,)|F.], z€T with |[z|> N,
(04,7)EZ,

X(z) = ess sup E[Y(o0,)|F.] z€T with |z|<N
(o1, 7)EA(2) .

where A%(z) = {(0¢,7) € .|t = N —|2]}.
By Theorem 2.1, we have

E[X(0)] = e E[f(o-)].

Furthermore, an optimal tactic is constructed as follows : Put

0og=0, 0¢41=0;+¢; on Af,' for t=0,1,---,N—1
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bo=on, & =&+e; on B, n=inf{t|lY (&)= g(&)}
where A and B! are the partitions of 2 defined the similar way as Theorem 3.2. Then

> Ot tSN *
"“{&_N t>N 0 T =N

is optimal for the case (P2) if 7* < oo.

Case (P3)
The Snell envelopes of this case are

W(z) = ess sup E[g(o,)|F.],

(61 17)621

Y(z) = ess sup E[W(c,)|F.],
(o1,7)EA%(2)

X(z) = ess sup E[f(0,) + Y (o)l F.)
(chf)eAl(z)
By Theorem 2.1, we have

E[X(0)]= sup )E[f(ar)+Y(0f)],

(o1,7)EAY(O
and an optimal tactic of this problem is as follows :
00=0, o1 =0¢+e; on A., 7=inf{t|X(s¢) = f(oe) + Y (o)}
Similarly, we get
E[Y(o,)]= sup E[W(&)]

(f’r")eAz("f)
and the tactic (&;,n) defined by

fo=0,;, &y1=& +e; on Az,, n = inf{t|]Y (&) = g9(&)}
is optimal. Then the tactic
£?={a‘ ST, w=r
§e—r 2T
is optimal for the problem

E[X(0)] = N E(f(o7) + W(o,)].
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Finally, put
ap =&y, a1 =o+e on By, B=inf{t|W(a)=g(a)}.

Then the tactic with starting time

- __ 6: tSN * *
at_{at—N t>N "’ =T T =N+p

is optimal for the case (P3) if 75 < oo and 77 < oo.

Case (P4)
The Snell envelopes of this case are

W(z) = ess sup Efg(o,)|F.],
(0’1,7)623

Y(2) = ess sup  E[W(,)F)
(o1,7)EA?(2)

X(z) = ess sup_ Elf(e,)+ Y(0,)|F).

(o4, 7)EZ,

At first we put

Jg = 0, Oi41 =0+ ¢€; on Ai,', T = inf{th(O’t) = f(O't) + Y(O’t)}.

Then (o, 7) is optimal for the problem
E[X(0)] = sup E[f(o,)+Y(o:)].

o1,7)ELo

Next we put

bo=0., &u=&+e; on B,
Then the tactic

* __ Oy tST * __
€t_{€t-‘r tZT’ T’—T+N

is optimal for the problem

E[X(0)] = W3R E[f(07) + W(0or4n)]-

Finally, put

ap =&, Q41 =ay+e; on C;,’ B = inf{t|W (o) = g(cs)}-
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Then the tactic with starting time

. & t<n . . .

is optimal for the case (P4) if 75 < oo and 77 < oo.

Case (P5)
The Snell envelopes of this case are

Y(z) = ess sup Efg(o,)| 7],
(o1,7)EAL(2) .

X(z) = ess sup E[f(o,)+Y(0,)|F.]

(o0, 7)EE,
We put
00=0, o1 =0c+¢ on A,, T=inf{t|X(ce) = f(oe) +Y(0:)}
§o=0r, &+1 =& +e on Bé., n = inf{¢|Y (&) = g9(&)}-

Then the tactic with starting time
t < .
a:_{g:—f _1‘, =1 TT=n+r

t>T

is optimal for the case (P5) if 7§ < oo and 77 < oo.

We end this section by stating the Markov case of our problem.

Let X' = (@, F, Fi, X'(t), P!) be a time homogeneous Markov chain with the
state space F*, which is assumed to be mutually independent. We define a bi-Markov
process introduced in Mazziotto [8] , that is, the family of a two—parameter process
taking values in E = E' x E?

X(2) = (X'(s), X*(t)) z=(s,t) €T

on the probability space (@ = Q! x Q% F = F! ® F2, P, = P! ® P2,(z,y) € E)
endowed with the smallest two—parameter filtration {F,,z € T} containing {F! ®
F2 (s,t) € T}

Let T* be a transition operator of X*, then,

T'f(z,9) = Eenlf(Xao)h
T f(z,9) = E@ynlf(Xeon)
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The Markov version of our problem is to find a tactic (o}, 75, 77) such that

Ey)[f(X(07;)) + 9(X(07.))] = sup Eizy)[f(X(0)) +9(X(a7,))];

01,70,71

where the functions f and g are measurable functions on E such that E, ,)[sup, f(X(2))*] <
oo and E(, y)[sup, 9(X(2))*] < co. Let f(X(o0)) = limsup f(X(z)) and g(X(o0)) =
limsup g(X (2)).

We consider the following two—parameter stopping problems :

S(z,y) = N Ezplg(X(o:))],
S(z,y) = o Ez9(X(0-))],
H(z,y) = (af:lgzoE(z.y)Lf(X(av))+S(X(or))],
H(z,y) = P OE(z,y)[f(X(af))+3(X(af))]-

Then we have the following results, whose proofs are omitted.

PROPOSITION 4.1 We have for any (z,y) € E
H(z,y)= sup Equ[f(X(0n))+9(X(0n))]-

(ot,7,m .
Moreover if it is satisfies that limsup, S(X(z)) = limsup, ¢(X(2)) andlimsup, H(X(2)) =
limsup,{f(X(2)) + S(X(2))}, then we have for any (z,y) € E
S(m’ y) = S(x, y)’
H(z,y) = H(z,y).
ProProsITION 4.2 If f and g are bounded, the functions S and H are the smallest
solutions of the nested Bellman equation :

S = max{g, Er;zla,’:Q(T"S},
H = max{f+S, x'_r=1?:12cT‘H}.
REMARK 4.1 (i) The Bellman equation corresponding to the two-parameter optimal
stopping problem is the following type :
H = max{f, EE%T‘H}.
Hence the nested Bellman equation in Proposition 4.2 is the brand-new type.

(i) In the situation where f and g are not necessarily bounded, in order that Propo-

sition 4.2 hold true, we need the boundary condition at co. The details are given in
Tanaka [12].
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5 Monotone case

In this section we discuss the monotone case for the two—parameter stopping problem
studied in section 2 and the starting—stopping problem in section 3. The monotone
case for the one—parameter stopping problem is studied by Chow and Robbins [2].

If a two—parameter stochastic process {X(z)} is such that

A, C A e for 2z, 1,
U,A;, =

where A, = {max;_, ; E[X(z + ¢;)|F.] < X(z)}, we say that we are in the monotone
case.

We assume that the process {X(z)} satisfies the conditions made in section 2. Let
N be a positive integer, {Y (z),|2] < N} the Snell envelope for the truncated process
{X(z),|z] < N}, which is introduced in section 4 Case (P1), and {f(z)} the Snell
envelope for {X(z)}, which is introduced in section 2.

PROPOSITION 5.1 Suppose that we are in the monotone case. We define the random
sets by

A = {z||z|<N-], im=?'§E[X(z+ei)|fz]SX(z)}a
B = lLH<N-1 X@)=Y@)}

Then A = B.
Proof. By the same argument as in (2], we have

max B[X (z + &)|F:] < X(z) = maxE[Y(z +e)|F.] < X(2)

which follows A C B. Conversely, let z € B. From the fact that Y is a supermartingale
dominating X, we have

EX(z+e)lF.] < EY(z+e)|F,] < Y(2) < X(2),
which follows B C A. ) O

COROLLARY 5.1 Suppose that we are in the monotone case and, besides the integrable
condition made in section 3, {X(z)} is bounded below by an integrable random variable.
We define the random sets by

!

A = {z] Q%E[X(Z‘Fei)l}-z] < X(2)},

B = {z| X(z) = f(2)}
Then A' = B'.
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Finally we give the monotone condition for the starting—stopping problem. Through-
out the remainder of this paper, we use the notation in section 3.
We assume that

Al c AL,.. for =z, ¢ A2 cC A2, for =z, 1
' and )
U, Al =Q U,A2=90Q

where Al = {max;—; ; E[g(z + &)|F.] < 9(2)} and A2 = {max;=1, E[f(z + ¢;)|F.] <
f(z)}. Noting that Y is a supermartingale, then we have

{z | max Elg(z + e))|F.] < 9(2)} = {2 | 9(2) = Y(2)},
{z | max E[f(z + e)|F.] < f(2)} = {2 | f(2) +Y(2) = X(2)}-

A cknowledgment

The author would like to thank the editor and the referee for their valuable comments.

References

[1] C. Arenas. Optimal stopping for a particular family of stopping points in the
plane. Stochastics, 24(1988),327-333.

[2] Y.S. Chow and H. Robbins. On optimal stopping rules. Z. Wahrsch.verw.Geiete,
2(1963),3349.

[3] G.W. Haggstrom. Optimal stopping and experimental design. Ann.Math.Ststist.,
37(1966),7-27.

[4] U. Krengel and L. Sucheston. Stopping rules and tactics for processes indexed by
a directed set. J.Multivariate Anal., 11(1981),199-229.

[5] G.F. Lawler and R.J. Vanderbei. Markov strategies for optimal control over par-
tially ordered sets. Ann.Probab., 11(1983),642-647.

[6] A. Mandelbaum. Discrete multi-armed bandits and multi-parameter processes.
Probab.Th.Rel Fields, 71(1986),129-147.

— 33 —



[7] A. Mandelbaum and R.J. Vanderbei. Optimal stopping and supermaringales over
partially ordered sets. Z.Wahrsch.verw.Geiete, 57(1981),253-264.

[8] G. Mazziotto. Two parameter optimal stopping and bi-Markov processes.
Z.Wahrsch.verw.Geiete, 69(1985),99-135.

[9] G. Mazziotto and J. Szpirglas. Arret optimal sur le plan. Z. Wahrsch.verw.Geiete,
62(1983),215-233.

[10] A.N. Shiryayev. Optimal stopping rules. Springer-Verlag,Berlin, 1979.

[11] M. Sun. Nested variational inequalities and related optimal starting-stopping
problems. J.Appl.Prob., 29(1992),104-115.

[12] T.Tanaka. Bellman equations for discrete time two-parameter optimal stopping
problems. Preprint., (1992).

[13] T.Tanaka. On one-parameter optimal starting-stopping problems. Preprint.,
(1992).

[14] T.Tanaka. Two parameter optimal stopping problem with switching costs.
Stochastic Process.Appl., 36(1990),153-163.

[15] J.B. Walsh. Optional increasing paths. Lect.note in Math., 863,172-201.

Teruo Tanaka
Department of Mathematics

Faculty of Science ’ , Received Nov. 15 1992
Kyushu University

Fukuoka 812, JAPAN

— 34 —



