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On the Semigroup Approach to a Class of
Space-Dependent Porous Medium Systems

R. Kajikiya, S. Oharu and D. Tebbs

The main goal of this paper is to treat the nonlinear system of porous medium
equations,

( %t—ul(a:,t) = A¢1(z,u1(z, 1)) + fi(z, u2(z, t), ur(z, t))

& (T, t) = Ada(x, (2, ) + folz, w2, t), us(z, 1))
(PMS) 3 |
u(, t)|on = u2(-,t)lon =0 , £ >0

[ wi(z,0) = uf , ux(z,0) =ud whereu},u) € L®(Q),

coupled in the reaction terms f;(z, u2(z, t), u1(z, t)) and fo(z, u1(z,t), u2(z,t)). Here
Q is a bounded open domain in R"”, and its boundary 09 is sufficiently smooth.
We use the symbol A to represent a strongly elliptic operator such as the Laplace
operator A on a given domain in L!(Q2), defined in 2.9. In order to handle this
system, we proceed in a number of stages.

Firstly, we consider the following single equation

Su(a,t) = Ad(z,u(z, ) + f(z, u(z,1))
(PME) u(:,t)laa = 0
u(z,0) = uo(z) , uo € L}(Q).

The functions ¢ and f are assumed to be continuous on Q x R, and to satisfy certain
natural assumptions which will be detailed in 2.6. Under those conditions we shall
show that the theory of nonlinear semigroups can be applied to prove the existence
of unique solutions in a generalized sense to (PME). This is done by first considering
the semilinear equation —Av+Gv = w for w € L', G being the composition operator
defined by g(-,v) = f(-,¢ 1(v)), under appropriate conditions on g. Existence of
solutions v to this simpler equation allows the range condition (RC) from nonlinear
semigroup theory to be proven. Hence, by showing that the nonlinear operator
A = A + F is dissipative, the result is obtained. '




Next, LP- estimates and a comparison theorem for the problem (PME) are es-
tablished. These are of importance both in a physical sense and in the final section,
when we finally extend the results for the single equation to the case of a pair of
equations given in (PMS). Employing an iteration scheme and proving its conver-
gence using our estimations for (PME), we show that the conditions of the semigroup
generation theorem are again satisfied, and hence unique solutions in the sense of
distributions to (PMS) are constructed.

1 Background

This section deals with some results and notations that we shall use.

Let X be a real Banach space with norm | -|. The term F(z), where z € X,
shall be used to represent the duality mapping from X into the power set of the dual
space X* of X. When z € X and z* € X*, we write (z,z*) for the value of the
functional z* at the point z. An operator A with domain D(A) in a Banach space
X is said to be dissipative if, for x;,z, € D(A) and y; € Az, ¥y, € Az,

[y1 — Y2, 21 — 22} < 0.

Here the lower semi-inner product |-, -); is defined [22, z1]; = inf{(2, z*) | z € F(z1)},
21,22 € X. We also define the upper semi-inner product |-, -|s to be the supremum of
the same set for z;, 2, € X. An operator is said to be accretive if [y, —ys, 1 —Z2)s > 0
for all z;,z, € D(A) and y; € Azy,y2 € Az,. It is known that an operator A is
dissipative if and only if —A is accretive. '

1.1 Lemma. Let w be a real number. Given an operator A, the following are
equivalent:
(i) [(y1 — wz1) — (Y2 — wz2),Z1 — z2)i < 0 for z; € D(A),y; € Az, 1 =1,2.

(11) [yl - Y2, Ty — $2],‘ S w ”.'131 - $2"2 for x; € D(A),y, (S A.’L’i, 1= 1,2

(iii) (1 = M) = (22 = Ay)ll = (1 = M) ||lz1 — 22|
for A>0,z; € D(A) and y; € Az;, i =1,2.
(JV) “ [(1 + )\w):rl - )\yl] — [(1 + /\w):cg - Ayz] “ _>_ ”1131 - ZL’Q”

for A\ >0, z; € D(A), and y; € Az;, 1 =1,2. :
In other words the operator A — wl is dissipative, and so A is said to be w-quasi

dissipative.

We shall consider generalized solutions of abstract equations of the form
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in the Banach space X, where u/(¢) represents the derivative of the function u(-) :
[0,00) — X, in some appropriate sense. The set D is understood to be the class of
admissible initial data. -

The generalized notion of solutions (Integral solutions) we shall deal with is
defined as follows: :

1.2 Definition. Let A be an operator on a Banach space X. For w a real number,
u(t) : [0,7] — D(A) is an integral. solution of type w to equation (1.3) if

(1) ©(0) = v and u(t) is continuous on [0 ],

~ (ii) for every s,t € [0, 7] with s <t and every zo € D(A) Yo € Az,
t
&2 [u(t) — zol|? — €7 u(s) — zol|? < / &7 [y, u(r) — mu]dr

Equivalent to (ii) above is the following slightly clearer condition:
(i)’ For every s,t € [0, 7] with s < ¢ and every zo € D(A) and yp € Az,

flu(t) — ;1;0”2 — Jlu(s) - $o||2 <2 /t[yo,u(r) — Zolsdr + 2w /t llu(t) — zol| dr-

Notice that if u(t) is an integral solution of type w;, then u(t) is an integral solution
of type w; to the same problem, whenever w; < ws.

The notion of integral solution relies heavily upon the quasidissipativity of the
operators A under consideration. The uniform limit function u(-) € € ([0, 7]; X) of
step functions us(-) on [0, 7] defined : : .

un(0) =vx € D, up(t) = uf for t € (t~',tfl and k=1,:-+, Ny

gives an integral solution of type w, under the assumption that A is w quasidissipative
and the sequences (u}) satisfy a certain consistency condition.

Given a quasidissipative operator A of type w in X, the class of integral solutlons
~ of type w to the associated evolution equation (1.3) specifies an appropriate class of
continuous functions on [0, 00) such that all the limits of solutions to the discrete
schemes mentioned above are contained in the class and, as stated in Benilans
uniqueness thoerem, each such function is uniquely determined in the class by the
initial value v.

The following generation theorem for nonlinear semigroups shall be of use in later
sections. For a more in-depth discussion of these concepts we refer to [6] and [7].

1.3 Theorem. If A — wl is a dissipative operator satisfying

(RC) R(I — M\A) D D(A)



for all sufficiently small A\ > 0, then A generates a semigroup {S(t)} on D(A),
defined

(1.5) S(t)x = }\ixrtl)(l — MA)"t g for x € D(A)

such that S(t)v : [0,00) — D(A) is the unique integral solution of type w to the
equation

. u’(t) =A'U,(t)
. (1.6) { u(0) =v e D(A).

Moreover, the following inequalities are satisfied

A.DS@)z - St)y| < et |z—y| forz,y € D(A) andt >0
(1.8)[|S(t)z — S(s)z|| < e*°t+?)|||Az| |.|t — s| for z € D(A) and 0 < s,t < o0,

where wy = max{0,w}. If, in addition, A is closed and S(t)v is strongly differentiable
at some tg, then S'(to)v € AS(to)v.

Define the operator ® by [®v](-) = ¢(-,v(-)), v € X, for appropriate functions
¢ : QxR — R, and similarly Fv = f(-,v(")). '

1.4 Definition. We shall say that a function u(t) : [0,7] — L! is an integrated
solution to the problem (PME) on [0, 7] if, for all ¢, 0 <t < 7 we have:

(1.9) wt)=vo+A | 6, u(s))ds + | 5 u(s))ds

1.5 Lemma. Let A be defined A® + F. Any integral solution on [0, 7] to (PME)
generated as in equation (1.5) in the statement of Theorem 1.3 is an integrated
solution to (PME).

Proof. Let u(-) = S(-)up : [0,7] — D(A) be a semigroup solution of the form in -
the statement of Theorem 1.3. Given A > 0 let u)(t) be defined

(1.10) ur() = (I = A) Fuo =ul | teo0,7]
where k = [t/A]. Then u,(t) converges to S(t)up uniformly with respect to ¢, and

/N , 2 N
ur(t) —uo = Y ul — (I - A4 =MD aud +1D_ Fud,
i=1 i=1 i=1

for t € [0, 7]. The sums converge to integrals, and the closedness of A implies that,

t
/ ®S(s)uods € D(A), and
0

t t
(1.11) S(t)up = uo—i-A/ &S (s)ugds +/ FS(s)ugds , t €[0,7]..
0 0



1.6 Remark. The natural partial ordering of the space L*({2) is defined
wy < wy iff wy(z) < wo(x) for almost all z € Q.

This ordering has the propety that w; < w, implies that |[wi||, < [jwl|,, and in fact
LP(Q) is a Banach lattice under this ordering (see [5]).

1.7 Definition. For a real number 7, [n]* denotes n for n > 0 and 0 for n < 0. We
then write [f]T to represent the nonnegative part of a function f, defined

+\_ ) flz) :f(x)=0
7] (‘“)“{ 0 @ <o

2 Semilinear Elliptic Equations

From now on, 2 denotes a given bounded open subset of R™ with sufficiently smooth
boundary of2. -

2.1 Assumptions. We assume that the function f(z,7): 2 x R — R satisfies the
following:

(i) m < m implies f(z,m) < f(z,m) for z €
(ii)) f(z,0)=0 forallz € Q;

(iii) for any fixed n € R, the function f(z,n) is measurable with respect to z, and
f(-,m) belongs to L%(f2). Moreover, f is continuous with repect to n for fixed
z € Q.

2.2 Definition. We define operators A and F', and their domains, by

D(A) = {w € WH(Q) | Aw € L}(Q)} and A = A, |
D(F)={w e LYQ) | f(-,w(-)) € L}(Q)} and [Fw|(z) = f(z,w(zx)), T Q.

2.3 Lemma. The following results hold:

(i) The linear operator A is densely defined, closed and m-dissipative in L*.
| (i) For1 < p < oo we have ||(I — M) wl|, < [Jwll, forw € LP(Q)
(iii) There exists an o > 0 such that a||wl||; < ||Awl|; for w € D(A).

Note that part (iii) relies on the boundedness of the domain. Although this
important estimate is central to a number of parts of the proof of existence of
solutions given below, it is not a trivial task to extend the results to the case of
unbounded domains.



2.4 Proposition. F is m-accretive in L'(?) and D(F) = L}(Q).

Proof. Firstly, we show that R(I + AF) = L'(Q). Let w € L'(Q) and A > 0.
For any fixed x, we denote by f.(n) the number f(z,n). Then (1 + A\f;)"!is a
contraction on R, since f;(-) is a strictly non-decreasing normalized function, by
2.1(ii). Let u(z) = (1 + Afz)"'w(z). Then, given c € R, we have

{zeQ|u(z)>c}={re|wz)>c+f(z,c)}.

Since w(z) and f(zx,c) are both measurable over Q, the set on the right hand side

is measurable, and it follows that u(x) is a measurable function. We also know that

[u(z)| < |w(z)| for almost every z € , since (1+Af;)"! is a contraction on R and f
is normalized, and so u(-) € L*(R?). Thereby u € D(F), (I + AF)u = w, and hence
R(I + M\F) = LY(Q). The relations (I + A\F)u; = w;, i = 1,2, imply

lui(z) — uz(z)| < fwi(z) — wa(z)| a.e. z €,
and thereby

lur — uall; < JJwi — well;,

proving accretivity and hence m-accretivity of F. It remains to show that D(F') =
L'(Q). It is sufficient to prove that

Ce°(Q) € D(F) = {w e L'(Q) | f(-,w(")) € L' (D},

since C§°(R?) is dense in L!. So, given w € C°(2), there exists a sequence {w;} of
finite-valued step functions converging uniformly to w such that |w;(z)| < |w(z)| for
all z € Q. Then f(z,w;(z)) is measurable and belongs to L2. For, if we write w; =
3 7-10i;XE;; Where a;; € R and U, E;; = Q then f(z,wi(z)) = 3°7_, f(=, 4:5)XE,
and each f(z,a:;)Xg,; is L?. Hence f(z,w;(z)) — f(z,w(z)) for all z € Q, and
the functions f(-,w;(-)) are all L? and bounded in L? by f(z, =+ |lw||.,). Thus the

'Lebesque Dominated Convergence Theorem gives f(z,w(z)) € L*() C L}(). O

2.5 Theorem. Under the assumptions of 2.1, for any w € L(Q) there exists a
unique u € D(A) N D(F) such that

(2.1) A+ Fu=w
Let u; be such that —Au,- + Fu; = w;, for i = 1,2. Then

(2.2) |Fuy — Fug|l;, < [lwi —well; and
(2.3) lAus — Auell; < 2|jwi — well,



Proof. We show firstly that (2.2) holds, and thereby that (2.3) is also true. Assume
that (—A + F)u; = w;, so that —A(uy — ug) + Fuy — Fuy = w; — wa. Multiplying
both sides by sgn(u; — us) gives, by the fact that (—A(u; — u2),sgn(u; — u2)) > 0,
that

(Fuy — Fuy,sgn(u; — ug)) < (wy — wa, sgn(u; — ug)) -
We note also that, by the monontonicity and normalization of f,

|Fur — Fug|l; = (Fuy — Fug,sgn(u; — u2))
< (wy — wa, sgn(u; — uz)) < |lwy —w2ll;,

proving (2.2). Applying (2.2) to —A(u; — ug) + Fu; — Fuy = wy — w; implies (2.3).

In order to prove that R(—A + F) = L', we shall show firstly that R(—A + F)
is closed, and then that it is dense in L. To show closedness, first assume that
u, € D(A)N D(F) and that —Au, + Fu, — w in L*(Q). We let w, = —Aup + Fun.
Then by (2.2), (2.3) above and by Lemma 2.3(iii),

|Fup — Fum|l; < |lwn — wmlly
and
o llun — umll; < [|Aun — Aup|l; < 2|jwn — wm”1

Therefore {u,}, {Au,} and {Fu,} are all Cauchy sequences in L'({2) and so, by the
closedness of A and F, there exists u € D(A) N D(F) such that u, — u, Au, — Au
and Fu, — Fu. Thus w = —Au + Fu, which shows that R(—A + F') is closed.

We prove denseness of R(—A + F') in three steps. Firstly, we solve the equation
eu — Au + Fhu = w for w € L', where F), is the Yosida approximation of F'. Then
the equation eu — Au+ Fu = w for w € L™ is solved in the second step, and finally,
we approximate elements of L' by elements of the form of w in step 2, and thus
prove the result.

Step 1: We approximate f by fy for A > 0, where

- A@n) =21 (n—-Q0+2fz)""n) forneR.
Next, we define the operator F by
(24) - [Fwl(@) = filz,w() , €9
for every w € D(F)) = L'(Q?). Now, given 7, and 7; € R,

1@ m) = Aa@m)] =2 (= — L+ M)+ (L4 A fe) M)
< 227 m — .




In other words, fy(z,-) is Lipschitz continuous for any z € 2 and the Lipschitz
constant ( = 2A7!) is independent of z. Thereby F) is Lipschitz continuous for
A > 0. Also, for w € L' we have

[Faw)] (z) = A7 (w(z) - (1 + /\fm)_A1 w(z)) = A7 (I - (T +AF) ™) w(z),

which means that F) is the Yosida approximation for the operator F. Therefore,
given € > 0, A > 0 and w € L!(Q) we solve

(2.5) eu—Au+Fu=w

which, by expanding F) as in the remark above, and rearranging the terms, may be
written

1 A - -1

Labelling the operator on the right hand side 7', we see that T is a strict con-
traction and so (2.5) has a unique fixed point. It will be of use to note here that
if p € [1,00) and w € LP, and A,, F, and T, are the associated operators acting
on the space LP, then T, is a strict contraction on LP. In particular, if we take
L>®() with the norm ||-]|, and w € L*(Q2), then T is a strict contraction from
M={velLQ) | |lv|l,<e|w|,} into itself, and so u € D(A) N L*®(£2) and
Au € L*(Q) by (2.5). ,

Step 2: We find a solution to eu — Au + Fu = w for w € L*(Q2). Fix any
e > 0 and any w € L*®(Q) and denote by u5 the solution to (2.5). By (2.6) and the
remarks mentioned above concerning the set M, we have

(27) sl < Sl 1Sp < o0

We also note that

(2.8) Fus(z) = fz, A+ M o) ui(=) , = en

and that |(1+ Af,) " u5(2)] < lu§lle < 2 llwlly = ¢, say. From this, it follows that
f(z, —c) < Fxui(z) < f(=,0).

Since f(-,+c) € L*(f), we see that {Fju§}aso is bounded in L?. In fact, as we shall
now show, {u§}a>0 and {Fyu$}a>o are both Cauchy sequences in L2(Q2) as A — 0.
For A, u > 0, we have

e(u§ —up) — A(u§ — uy) + Fhu§ — Fuu, = 0.
Hence, taking the inner product in L? of both sides with (uy — u,) gives

(2.9) £l|us — uZH2 + (Fyu§ — Fous,u§ — uZ) <0




since (A(u§ — uS), u§ — u) < 0. We then substitute
u§—ul, = {ui—(I+/\F)‘1u§}+{(1+/\F)‘luf\——(I+,uF)_1uZ}+{(I+uF)_1uZ—uZ}

into the inner product in (2.9). Equation (2.8) implies that FAu§ = F ((/+AF)~'u§),
and so the middle term of the resulting three, i.e.

(F((I+AF)™ W) — F ((I + pF)™ '), (I + AF) ™' — (I + uF)'us),
is non-negative, since F' is accretive. This gives the inequality
£l|us — uf‘H2 + (Fau§ — Fuus, \Fyu§ — pFus) <0.

The boundedness of { FA\u5 } x>0 implies that the second term converges to 0 as A,u | 0
and thereby {u$ } >0 is a Cauchy sequence in L?(2) as A | 0. Thus there exists some
u® € L?(f2) such that limy_o+u5 = u® in L2. Since § is bounded, the convergence
also holds in L' . Moreover, by (2.7) and the lower semicontinuity of the L*-norm,
we know that u® € L>(Q).

Notice that for some subsequence {);} with A\; — 0 as i — oo, (14 \ifz) " 'u§ (z)
converges to u®(z) for almost every z € Q, and thus F),u5(z) = f(z, (1+Xifs) tu§, (2))
must converge to f(z,u(z)) (recall that f is continuous for any fixed x). Hence
by the Lebesque Dominated Convergence Theorem there exists some subsequence,
which we again label {u5,}, such that F),u5, converges to Fu® in L?. Equation (2.5)
thereby implies that (eI — A)uy, — w — Fu in L? and uy, — u in L. Hence the
closedness of eI — A implies that v € D(A) and eu — Au+ Fu = w. '

Also, f(-) + € satisies the conditions on f in 2.1, so we may apply part (iii) of
Lemma 2.3 and (2.3) above to get uniqueness in the following way: Let F, = eI+ F.
If uy,up € L', and —Au; + Fou; = w = —Auy + F,uy, then for some a > 0 we have

allur — uzll; < |A(u1 —u2)ll; £ 2flw—w|, =0
and hence u; = u,.

STEP 3: We are now in a position to show the denseness of R(—A + F) in L'(£2).
Let w be an arbitrary element in L!(Q2), then there exists a sequence {w.} C L®(2)
such that w. — w in L' as € — 0. Let u® be the (unique) solution to the equation
in Step 2, so that eu® — Au® + Fu® = w,. Again, applying part (iii) of Lemma 2.3
and (2.3) to f + € gives

aflu]ly < lAwflly < 2 flwell,

which shows that ||uf||; is bounded and hence eu® — 0 in L! as € — 0. Thus
—Auf+ Fuf = w, —eu® — win L, i.e. w € R(—A + F). Since R(—A + F) is closed
we have existence of the solution u € D(—A + F) to equation (2.1) and uniqueness
follows immediately, using (2.3) and part (iii) of Lemma 2.3 in the same way as
above. . m)



We now define the operator A, to match the expression on the right hand side of
the equation (PME), and use the results obtained so far to prove that the hypothesis
of 1.3 holds. We begin by placing some restrictions on ¢ and %, which, as will be
seen later, allow us to make direct use of the results obtained above.

2.6 Assumptions.
(i) The functions ¢, ¥ belong to the class €(Q x R, R).
(ii) For fixed z € Q, ¢(z,n) is strictly increasing with respect to 7.

(iii) There exists an M € R such that ¥(z,m) — ¥(z,m2) < M(m — n2) for m,
72 € R and z € Q. In other words, with respect to 7, 1 can be decreasing at
any rate but we have to be able to uniformly bound the rate at which it may
increase. '

(iv) nErilm é(z,m) = too for z € N

(v) ¢(z,0) = 9¥(x,0) =0 for z € Q

Before defining the new operators we need some properties of the function ¢
- which we investigate in the following two lemmas.

2.7 Lemma. Assume that (i), (ii) and (iv) from 2.6 hold. Then
(1) zn — To, Np T +00 implies ¢(zp,Mn) — +00
(2) z, — zo, Nn | —00 implies ¢(Zn,Nm) — —00

Proof. The pfoof of (2) is similar to (1), and so we prove only (1). For all m € N,
choose N(m) > m such that

|¢(Zn, M) — ¢(Z0,Mm)| <1 Vn > N(m) = m.
Then ¢(Zo, 7hm) =1 < $(ZN(m), Mm) < Y(ZN(m), MN(m)) and therefore lim G(zn(m), Mvem)) =
+00. This shows that for any {n;} with nx T +0co we may extract a sub-sequence
{n}} such that R}Lrgo @(Zn,Mny,) = +00, proving that ¢(zn,m,) — +o0. o
We define the “inverse” funtion ¢* : Q@ x R — R by
(2.10) : n=¢"(z,{) <= ¢(z,n)=C¢
Then the following lemma holds:

2.8 Lemma. ¢* is continuous on Q.R.



Proof. Let (z9,{) € Q@ x R and (z,,¢,) — (z0, o). Let 7, = ¢*(zn, (n), so that
Cn = &(Zn,M)- Then {n,} must be bounded, since if it were not we could extract a
sequence satisfying either (1) or (2) in Lemma 2.7 which would imply that {{,} is
unbounded. Let a = sup,{7,}. Then ¢ : Q x [~a,a] — R is uniformly continuous,
S0

(211) IC'n - ¢($0,77n)| = |¢($n>77n) - ¢(x0777'n)| —0asn— o0

Therefore ¢(zo, M) — Co = ¢(0,M0) and B, — 1, since ¢(zo,n) is strictly increas-
ing. It follows that ¢*(z,, () — ¢*(zo, (o)- | ' a

. 2.9 Definition. We define two composition operators ®, ¥ and a nonlinear diffu-
sion operator A on L'(Q2) by

(21200u](2) = $(z,w(@)) ; D@) = {w e L' | (- w()) € L'},
(2.1300w)(z) = ¢(z,w(z)) ; D(¥) = {w € L' | ¥(z,w(z)) € L'},

(2.14)Aw = A®w + Tw  ; D(A) = {weL'| dwe Wy, Adw € L', ¥w € L'}.

2.10 Theorem. Under assumptions 2.6, D(A) is dense in LY(Q).

Proof. In view of the density of Co(2) in L*(£2), it is sufficient to prove that given
w € Co(R) there exists a sequence of elements of D(A) approximating w. So let
w € Co(R) and let z = ¢(-, w(-)). The continuity and normality of ¢ ensures that
z € Co(R2) and so there exists a compact set K C 2 and a sequence {2,} in C§°(2)
such that '

(2.15) lzallcm) < lzllc@y, #» — 2z € C(Q) and suppz,Nsuppz C K.
Let w, = ¢*(-,2,(")). Then w, € C(Q), Yw, € L}(Q) and dw, € CF(Q) so
w, € D(A). It remains to show that w, converges to w in L!(f2), but ¢* :

K x [~ |lzallc@my» l#nllc@] — R is uniformly continuous, and so ¢*(z, zn(z)) —
¢*(z, z(x)) uniformly over z as » — oo and hence w, — w in L'(f). ]

2.11 Theorem. Under assumptions 2.6 we have
(i) A — M is dissipative in L*(2)
} | . /M : M>0
—_ = J1 _ )
(ii) R(I — AA) = L'(Q) for A € (0,~), where v = { oo . M=o,

where M is the constant from part (iii) of 2.6.




Proof. We prove the second statement first. Let A € (0,7) and w € L}(Q). We
seek an element u € D(A) such that (] — AA)u = w. For this purpose we define

(2.16) f(@,m) = X"1¢*(z,n) — ¥(x,¢"(z,7n)) for z € Q,n € R.

Clearly, f satisfies (ii) and (iii) of 2.1 by the continuity of ¢ and %, and the fact that
&(z,n) is strictly non-decreasing with respect to 7. Note that by (iii) of 2.6,

(2.17) {v(z,m) ~ ¥(z,m)} sen(m — ) < Mg —mp| for m,mz €R

and that

A{f(z,m) — f(z,m2)} sgn (m — me) -
='|¢*(~”5,771) - ¢*($) 772)' - A {’l,b(l‘, ¢*($, 771)) - ’l,[)(%, ¢*(17, 772))} sgn (771 - 772) .

Since sgn(m — 72) = sgn(¢*(z,m) — ¢*(,m)), equation (2.17) gives
(2.18)  A{f(z,m) - f(z,m)}sgn(m —n2) = (1 — AM) |¢*(z,m) — ¢*(z, )| -

In particular, when \ € (0,7) we have A {f(z,m) — f(z,72)} sgn (m, — n2) > 0 for all

M, N2 € R, i.e. condition (i) from 2.1 is satisfied. Therefore we may apply Theorem
2.5 to obtain the existence of some v € D(—A) N D(F') such that

—Av+ Bv=\"1w

We then define the function u(-) by u(z) = ¢*(z,v(z)) for z € Q. Then u is
measurable and )\If(:c,v(:v))| > (1 — AM)|u(z)| for a.e. z € Q. Since v € D(F), we
infer that f(-,v(-)) € L!. Moreover u(-) € L!, so that u € D(A) and

A w = —Av + By = —A®u + A7 u — (z,u) = —Au + X" tu.

This means that (I — AA)u = w and that (ii) holds. We now show the dissipativity
of A— M. Assume that (I — AA)u; = w;, for i = 1,2 and set v; = Pu; so that
—Av; + By; = A 'w;, for i = 1,2. We apply (2.2) from Theorem 2.5 to obtain

|Bvy — Buall; < A7 lwy —well; A €(0,7).
Equation (2.18) now shows that
Al|Bvr — Buafl, 2 (1 = AM) |luz — ual,

and therefore (1 — AM) [juy — u2l|; < ||lwy — ws||;, whereby the statement follows

from Lemma 1.1. 0

2.12 Remark. We note that the use of Theorem 2.5 implies the uniqueness of our
solution u € D(I — AA) to (I — M)u = w, however this also follows from the

dissipatiivity of A — M.



The above theorem shows that R(] —AA) D D(A) for sufficiently small A, and so
the results for nonlinear semigroups, in particular 1.3, can now be applied to obtain
the following result.

2.13 Theorem. Under the assumptions of 2.6, we may construct a one-parameter
family of operators {S(t) : t > 0} generated through the exponential formula

, ~[t/A .
S(t)w = %1(1 - )\A) w  forw e L},

and this family has the following properties:
(1) S(0)w = w and S(t + s)w = S(t)S(s)w fort,s >0 and w € L.
(2) For allw € L', S(t)w : [0,00) — L! is continuous.
(3) 1S@)wy — S(t)wal; < eMt|lwy — wy||, fort >0, and wy,w, € L.
(1) |S@E)w — S(s)wl|, < eMt+9) ||Aw||, |t — s| for s,t > 0 and w € D(A),

where M = max{0, M}.
For any uo in L* the function S(t)zo : [0,00) — D(A) = L! is an integral solution
of type M to the problem (PME).

3 Comparison Theorem and L? Estimates

In this section we investigate positivity and order properties of solutions to (PME).
Note that nonlinearity means that even if a solution preserves positivity of initial
data, it need not necessarily preserve order (see Remark 1.6). Positivity is partic-
ularly important when one considers what the function u may represent physically.
Quantities such as concentration or density only have a physical meaning when
they take non-negative values and therefore it is important that non-negative inital
conditions do not yield results which are meaningless in this sense.

Estimates for the solutions to problems of the form (I — AA)u = w are also
obtained, and these shall be of crucial importance in dealing with the equation
(PMS).

3.1 Order preserving properties of (I — AA)™! and S(¢)

3.1 Lemma. Under the assumptions of 2.1, if uy, u2, w; and we satisfy
—Aus + f(,u1) =w; and — Aug + f(+,u2) = wo,

then

(3.) 1) = £C ¥, < o = wa)* ]l

In particular, w; < w, implies that f(-,u;) < f(-,u2), as in Remark 1.6.



Proof. Combining the two equations, we have

—Auy —uz) + f(,u1) — f(-,u2) = w1 — w2
Let £ = {z € Q| ui(z) > uz(z)} and let h(z) = Xg(z). Clearly h(z) = [sgn(ui(z)—
uz(z))]*. We shall show later that (A(u; — uz), h) <0, giving

(F(w) = f( ug), ) = /E(wl —wy)dz < /Q[wl — wo]tdz.

The result follows, since

(f("ul) - f(, u2)’h) = L(f(rul) - f(, u2))d$ = ./S"I[f(.’UI) - f(’ uz)]+d$.

Therefore it remains to show that when u;,u; € Wy'' and Au;, Au; € L' we have
(A(uy — uz), h) < 0. Define

0 :t<0
ra(t)=¢ nt :0<t<l/n
1 :1/n<t
Then r/,(t) > 0, r(t) — [sgn(t)]* in L* as n — 0o and |r,(t)] < 1 so that

(Aul,r,,(ul)) = - (Vul,r;(ul)Vul) = —/ |Vu1|2.r;(u1)dx _<_ 0.
The Lebesque Convergence Theorem thereby gives (A(u; — uz), h) < 0. ]

3.2 Lemma. Under the assumptions of 2.6, if A € (0,v) for vy as in 2.11, and
(I = AA)u; =w; fori=1,2, then

(32) (1= AM) [[[w2 — wal*f, < [[wr = wof ], -
In particular, w, < w, implies u; < uy in L*(R).
Proof. For i = 1,2, we write the equations in the form

u; — AMG(-, us) — AP(, u) = w;

and put v; = ¢('7ui) and f(xﬂ?) = ¢*($a77) - ’\1/)(1:’ ¢'(1"7 T’)) for (ZE, 77) € ﬁ x R.
Then f(-,v;) = u; — AY(-,u;) and so » ‘

=M + f(v) = wi
for i = 1,2. Thus we may apply Lemma 3.1 to get
| (£ Cown) = £ vy < Nlfn — wal
Since (2.18) implies
[f (z,01(2) - f(z,%(2))]" 2 1= 2M) [wi(e) — us(2)] 7,
we obtain the desired estimate (3.2). =]




3.3 Theorem. (Comparison Theorem) The semigroup {S(t)} generated in The-
orem 2.13 has the order preserving property, in the sense that

(3.3) w,® € L), w< @ implies S(t)w < S(t)@ fort > 0.
In particular, L'()* is invariant under S(t), namely S(t) is positivity preserving.
Proof. Note that for arbitrary w in L}(Q) we may write

Styw = }\irrtl) (I —2A)"w.

nA—t
Given w,® in L, let w, = (I — MA)~"w and @, = (I — AA)~"w, we have
(I - A)wp = Wp—y and (I = AA)Wp = Wpy forn >1,

where wy = w and @Wp = @. Then, since wy < Wy, we see by Lemma 3.2 that
Wy, < Wy, for all n > 0. This holds for any A > 0 and thus when we take sequences
{w,} and {@,,} generated as in the definition of S(¢), where A, | 0 and n), — ¢,
the statement. holds for every n, and thus holds for the limit. O

3.2 L”-estimates and comparison of solutions on f, ¥ and ¢

3.4 Lemma. Let functions fi(-,-) and fi(-,-) satisfy the assumptions of (2.1). As-
sume that fi(z,n) < fo(z,n) for (z,n) € @ x X, and that —Au; + f;(-,u;) = w;.
Then we have

@) (¢ u2) = £iCu)l¥]], < |[fwe — wi]*|), fori=1,2.
In particular, _
| (2) if wg < wy, then fi(-,u2) < fi(-,u1) fori=1,2,
(3) if either one of the f;’s is strictly increasing, wy < w, implies us < u;.
Proof. We may write the above equations in u;, f; and w; as
{ —Auy + fi(,w1) = w; and — Aup + f1(-, u2) =ws + f1(-, u2) — fo(-, us).

Using Lemma 3.1, we obtain

“ [f1(,up) — f1(',u1)]+“1 < “ [wa — w1 + fi(,ug) — f2(','d2)]+”1 < w2 = wi] |,

since fi(:,u2) < fa(:,u2). The result for f, follows in a similar way, and parts (2)
and (3) follow from (1). m]



3.5 Lemma. Assume that ¢; and v; satisfy the assumptions of 2.6 for i = 1,2, and
that

bu(z,m) > $o(z,m) and y(z,m) > Yo(z,7) for all (z,m) €A R,
Let operators A; be defined
Aiw = Agi(-,w) + ¥i(-, w) for all w € D(A;).

Let (I — MA;)u; = w;, v; = ¢i(+,u;) and X € (0,7), v being defined as in 2.11. Then:

(1) (I =2AM) ||[8; (-, v2) — ¢1(, v Tl < [fwe — wa] |-

(2) In particular, wp < w, implies that 2 u2) < ¢1(-,ur).
Proof. Set fi(z,v) = ¢} (z,v) — Mi(z, ¢} (z,v)), Then the equation for w; becomes

=Muy; + fi(,v) =w;, 1 =1,2.

Noting that ¢1(z,w) > ¢2(z, w) implies ¢j(z, w) < ¢3(z, w) for all (z,w) € QxR
it is clear that fi(z,n) < fo(z,n) for all (z,n) € Q@ x R. Therefore we may apply
Lemma 3.4 to get

|0 v0) = it ], < s = il

Since [fi(-,v2) = fi(-,v1)]t = (1 — AM) (¢! (z,v2) — ¢} (z,v1)]* by (2.18), (1) follows.
(2) is clear from (1). Note also that we require the restriction A € (0,7) in order
that monotonicity of the f;’s is achieved. This allows us to apply Lemma 3.4. O

3.6 Lemma. Assume that ¢ satisfies 2.6 and define ¢ and ¢, respectively, by
éum(n) = max¢(z,n) and ¢m(n) = min ¢(z,7)
€N €N
Then
(1) ¢m and ¢, are continuous and strictly increasing over R.
(@) Jtim éu(n) = Hm ém(n) = Eoo.

Proof. We show the statement for ¢, only, since the proof for ¢,, is similar. The
lower semicontinuity of ¢,s is clear. Hence, in order to.show (1), we prove that it
is also upper semi-continuous. Assume then that 7, — 7. Let o = lim,_.codar(n,)-
Then we can find a subsequence {7,,} such that a = limg_,c @rr(7n,). But for
each n; we have ¢(n,,) = ¢(@n,,7n,) for some {z, .} C Q. By the compactness of
Q we may choose a subsequence {zn;} C {2n,} converging to some z € Q. Then
A (Zny M) — ¢(z,7), by the continuity of ¢, and therefore

a = I}LIBO b () = klgf,lo @y Mny,) = (2, M) < dm(n).

Thus ¢, is upper semi-continuous and the contihuity of ¢ follows. (1) and (2) are
now clear from the properties of ¢ _ 0




3.7 Theorem. Assume that ¢ and v satisfy the hypotheses of 2.6, and that the
én and ¢, are as in Lemma 3.6. Define operators Ay, A, and A by

Apw = Aoy (w) + (-, w) for w € D(Ap)
Anw = App(w) +9(,w) for w € D(A,,) ,
Aw = A¢(-,w) + Y(-,w) for w € D(A).

Then for w,u; and w € L! the relations (I — MA)u = w, (I — AMu)u,, = w and
(I — Mpr)upy = w together imply that
¢X; (¢m(um)) <u< ¢r_n1 (QSM(UM))v for A € (0)7)

Proof. By Lemma 3.5 we know that ¢, (um) < (-, u) < dar(un). Since ¢pm(u) <
¢(z,u), we have ¢ (u) < gur(un) and so u = ¢, (¢m(u)) < S5 (nr(um)).
Similarly, ¢a(u) > $(@,u) > $m(um) implies that 5 (Bm(um)) < da(bar(w)) = u.
O

3.8 Lemma. Let ¢ : R — R be continuous and non-decreasing. Then
~(Aw, p(w)|p(w)[P~2) >0 for w € WP(Q) N WyP(Q) N Lo(Q).

Proof. Since ¢ can be approximated by smooth functions, we assume that ¢ €
CY(R) and that ¢’ > 0. Note that ¢(w)|p(w)|P~2 € L>®°(Q) C LI(S2), where p~! +
g ! =1, and so ‘
~ (Aw, (w)gw) P = (p— 1) (Yo, Vwd'(w)|$(w) )
= =1 [ [VuPd@lew)P s 20

O

3.9 Theorem. (L? Estimates) Assume that 2.6 holds, and that ¢(z,n) is a fun-
tion only of . Define

M= sup ﬂ‘lw(x,ﬂ) <M and Aw = A¢(’LU) + w(:w)
z€Q
n#0 )

For X € (0,7) and w € L*°() there exists a unique v € D(A) such that (I - A)u =
w,

(i) w € C(Q) and (1 — AM) ||ul|,, < |lw], for all p with 1 < p < oo,

(i) Pp(u) € WP N WP for all p with 1 < p < oo, and Ap(u), ¥(-,u) € L®(Q).



Proof. The existence and uniqueness of u € D(A) is obtained by Theorem 2.11
(see Remark 2.12). Therefore we prove (i) and (ii). Let u be such that u —AA¢(u) -
Mp(-,u) = w. As before, we let v = ¢(u) and f(z,n) = A~1¢*(n) — ¥(z, ¢*(n)). Let
g = A"lw, then —Av + f(z,v) = g.

For any ¢, . > 0, the proof of Theorem 2.5 gives the existence of v, € WZ’POW(}”’ ,
1 < p < o0, such that

evy — Ay + Byy, = g and ||, <7 |lgll, for 1 < p < oo,

where f(z,7) = p~{1 - (1+ pf)"}n = f(z, (1 + pfa)"n) and [Buol(z) =
fu(z, z(x)), for all z € L}(2). Therefore we obtain

1 vl < max{f (2,67 glle), = (2= llglloa)}-

Fixing any € > 0, we see that {ev,},>0 and {f.(-,v.)}.>0 are both L* bounded.
From this it follows that {Av,},>o is also L® bounded. Hence {v,}u>o is W??P
bounded for all p with 1 < p < 0o (see Tanabe [11]). .

As shown in the proof of Theorem 2.5, we take an appropriate sequence {un}
with g, | 0, to show that v,, converges to the solution v of

(3-4) ev—Av+ f(,v) =g

in L%(Q). Since Q is bounded and W?2? is reflexive (and hence bounded sets are
weakly sequentially compact), we infer that v € W2P N WJ”’ .
For each € > 0, any solution to (3.4) satisfies

(35) vt — AvF + $6°0) ~ $(, (@) = ¢

lv¢ll, < 2 llgll, for 1 < p < oo, and all terms belong to L=(€2).
Multiplying both sides of (3.5) by ¢*(v¥)|¢*(v¢)|P~2 and integrating the resulting
identity, we have

(ev® — AvE + A71¢*(v°) — ¥(-, ¢* (v°)), @ (v°)|@*(v°)P~%)
= (g, 8" (v°)|8* (v°)IP~2) .

Since — (Av°, ¢*(v¢)|¢*(v°)|P~2) > 0 by Lemma 3.8, and 9(z,n)n < Mn? for all
n € R, we obtain

;1\- ll#* (@)IIE — M ||¢*@)IIE < ligll,, -llg* (@)IE~.
Hence |

(3.6) 1 =2M) llg* @), < Mg, = llwll, , 1<p<oo.



Thus {3¢"(v) — ¥(-,#*(v°))}es0 is L™ bounded (by the continuity of ) and so
{Av®}50 is also L™ bounded. This shows that {v¢}.50 is W2P bounded, for 1 <
p < 0o. The proofs of Theorems 2.5 and 2.11 show that v® — ¢(u), i.e. ¢*(v°) — u
in L'(2). Hence (3.6) implies that

(1= AM) JJull, < flwll, , 1<p<oco.

Since Av® — A¢(u) in L}(R2) and {Av}.so is L™ bounded, A¢(u) € L. The
W?P boundedness of {v°}.»o implies that ¢(u) € W2P N WP for 1 < p < oo.
To complete the proof, we note that W?? — C(Q) for p > n/2 (see Brezis [2]).
Therefore u € C(Q) and ¥(-,u) € C(Q). O

3.10 Theorem. Under the assumptions of 2.6, let ¢(z,n) be a function of both z
and 1 and let

Aw = Ad)(’w) + w("w)r wE D(A)7
Then for any A € (0,7) and any w € L*®(), there exists a unique u € D(A) such
that (I — AA)u = w

(1) llulle < max {¢;} (drm(c)), =837 (Im(c))} , ¢ = (1 - M) I‘leloo
(ii) #(-,u) € WP NWyP, 1 < p < oo for u € C(Q), and Ap(-,u), Y(-,u) € L®.

Proof. Part (i) follows immediately from 3.7 and 3.9, so we need only show (ii).
As in the proof of 3.9, for any € > 0 there exist solutions v¢,v¢ € W2P N WP
1<p<oo,to

(3.7) eve —Ave+>\ 7, v%) — B(, 9% (v%) = A Mw

' — At + A7 (0F) — (-, 67 (%) = Ahw, (6= M,m),

such that ¢;,1 (() < ¢*(z,¢) < ¢;1(¢) for all (z,¢) € @ xR. Thus Lemma 3.4 implies
that v§, > v® > v%,. As in the proof of Theorem 3.9, in particular equation (3.6),
the sequences {v§}eso are L* bounded, and thus {v®}c>o is also L™ bounded. It

follows, then, that each term in (3.7) is also L*™ bounded, in particular {Av®}.5¢.

Hence {v°}¢>0 is W2P bounded. Thereby, letting € — 0% gives the desired results.
O

3.11 Theorem. (L? - invariance) Suppose that ¢(z,n) is a function of n only. If |
we assume that 2.6 holds, then the semigroup generated in Theorem 2.13 has the
.following properties for 1 < p < oo:

S(t) : LP(Q) —~ IP(Q), and ||S(t)wl||, < €M |lwl,, for w € P,

Proof. Part (i) from Theorem 3 9 implies that Jy ¥ (I — AA)~! maps L? into L?,
and that ||/ wll, < (1 — AM)™! |lw||,. Hence [[J{w]||, < (1 — AM)™"||wl|,. Since
Jiw — S(t)w as A | 0 and n = [t/)], we have ||S(t)w]], < eM* ||w]|,. O



4 Coupled System of Porous Medium Equations

In this section we attempt to apply the results from the previous two sections to the
weakly coupled porous medium system (PMS). We begin by placing restrictions on
the functions ¢;, ¢2, ¥ and 1, which resemble those in 2.6, along with some extra
assumptions according to the nature of the coupling.

4.1 Assumptions.
(i) ;e COxR,R), %, e COAxRxR,R),i=1,2,
(i1) ¢i(z,n) is strictly increasing with respect to 7 for ¢ = 1, 2.
(iii) There exists M; : (0,00) — R and N; : (0,00) — (0, 00), such that

?/’1(-’13,772,771) - 1/)1(3:77’2)ﬁl) _>_ MI(K)(nl - ﬁl) , TE Q—’ anI S K) 771;’71 € R;

|T/’1(3'3v7)2,771) - ¢1($,ﬁz,ﬂl)| < Nl(K) |T’2 _ﬁ2| , TE ﬁa |n2|a ,ﬁ2| < K7 |"71| < K

For the function 1,, we assume the existence of M, and N, and the corre-
sponding conditions.

(iv) ¢i(z,0) = ¢y(z,n,0) =0forz € Q, nERand i =1,2.

(v) lir:!]:fl #i(x,m) = oo, for z € Q and i = 1,2.
n—+oo

Given K > 0, we define the three constants

My (K) = sup {n; "1 (z,m2,m) | z €Q, 2] < K, m # 0},

My (K) = sup {n;"¢2(z,m,m2) | € Q, Im| < K, m #0},
W(K) = max {M,(K) + No(K) , Ma(K) + Ni(K)} .

4.2 Definition. We define the space X to be L!(Q)x L1 (2) with norm ||(wy, w2)|| x =
llwill g2 + l|lwell ;- The operator A and its domain D(A) are then defined

a(m)-Gabmzntmm) - () erw

D) = { (1) € X | il w) o wa) € W3, AuCw), A wa) € @),

d’l(.: wa, 'LU1), ¢2(.1 wy, ’LU2) € LI(Q)}



We also emply the convex subsets

. w1 (o) o)
DK—{<w2>€L x L

and the restriction Ax of A to Dg for each K > 0.

el s el < K} CK>o0.

4.3 Theorem. The operator Ax — w(K)I is dissipative on D.

(T — Uy _ (W _ uy _ (0
Proof. Assume that (I — AAg) (W) = (w2) and (I — MAk) (ﬁz) (@2)’ so
that :

(4.1) { u — /\A¢1é.,u1(.

)
Uy — ’\A¢2 ',Uz(‘)

A R R

and

(4 2) { al - )‘AQSlE?al()g - )\'¢'1 E')aZ(')aal(')g = ,&71()
‘ Uy = Mo (-, Ua()) — Mp2 (-, Ur(+), U2(+)) = Wa(+).

with |||, , [|Tll, < K. Using the fact that

(U1 (- vz, u1) — P1(-, Ug, Up), sgn(uy — U1)) = (P1(-, uz, w1) — P1(-, uz, Ur), sgn(ur — 1))
+ (Y1(, U2, Ur) — Y1(-, Ug, Ur),sgn(ur — U1))
< Mi(K) |lur = @y + Ni(K) |Juz — |,

subtracting the top equation of (4.2) from the top equation in (4.1), multiplying
both sides by sgn(u; — %;) and integrating, we have

(4.3)
lwy — @1ll; = (w1 — @1, sgn(uy — Uy))
= Jlus = @l + (=D [b1 (-, wa() — ¢1('ﬁl('))g,sgn(u1 — 1))
— (A (¥1(-, uz, ur) — 1 (-, Up, U) ), sgn(uy — 1)
> (1 = AM(K)) |luz — Ty, — AN (K) [luz — Tz, -
Similarly, we obtain '
(44) lwz — @ell; = (1 = AM(K)) |lug — Gall; — AN2(K) JJur — @l -

Combinign these estimates gives

’ > (1= A(Mi(K) + No(K)] flwn — @l

IC2)- @),

+ [1 = MMz(K) + Ni(K))] lluz — Tall,

()-(5)

whereby the result follows from Lemma 1.1. u

> (1 - w(K))

b

X




4.4 Theorem. D(A) is dense in X.

Proof. We approximate an arbitrary element (w;, ws) € Co(2) xCo(f2) by elements
in D(A). Let the functions z; and z; be defined by

z1(z) = ¢ (x, wl(a:)) and z3(z) = ¢ (x,wg(x)) , £ € Q.

Both of these belong to Cy(€2) by Assumption 4.1, and so there exists some compact
set K C Q and functions z; ,, 22, € C§°(2) such that

(@) lzinllegm < lzllog) for n € Nand i =1,2.
(ii) suppzin, Usuppz; C K, for i =1,2.
(iii) 2, — 2z; in C(Q), for i = 1,2.

Let win = &7 (-, 2zin(-)) for ¢ = 1,2. Then (w10, w2s) € D(A) and the function
¢; : K x [~ |lzillo@my » 1zl o] — R is uniformly continuous, so win — w; in C(Q),
i =1,2. Hence (wy 5, w2n) — (w1, ws) in X. 0O

4.5 Definition. For i = 1,2 and n € R, we define ¢; (1) and ¢;,,(n) as in the
previous section by

#im(n) = max ¢i(z,m) , ¢im(n) =min ¢i(z,n).
€N €N
We also define
©:1(K) = max {¢1,, (61,4 (2K)), —d’l—,}u (p1.m(2K))},
and define ©,(K) for ¢ pr and ¢, similarly. We shall also employ the numbers
O(K) =max{6,(K),0:(K)},

v(K) = min ! 1 1
2M(6(K))’ 2M2(O(K))’ 2/N,(6(K))No(6(K)) |’
where we replace 1/2M;(©(K)) by the value +oo., if M;(©(K)) < 0. Note that
(4.5) . A€ (0,7(K))=1/2<1- AM;(O(K)) for i = 1,2.

4.6 Theorem. For K > 0, A\ € (0,v(K)) and (w;,w:) € Dk, there exists a

(u1,uz) € D(A) such that
()= ()

and the following hold:




(1) ur,uz € C(Q), luillom) < ©1(K), lluallom) < O2(K).
(i) ¢1(-,u1), Pa(-, u2) € W2PN Wol’p for1 <p< oo.
(ii) Ag1(-,ur), Ada(:, ug), i (ry uz, wa), Yo, ur, ug) € LO(Q).
Proof. We seek solutions to the coupled system

{ Uy — AAG (-, ur) — A1 (-, U2, u1) = wy
Uy — AAP, (-, uz) — Ao (-, ur, ug) = we

For simplicity, we abbreviate ©;(K), ©,(K) and ©(K) by ©;, ©, and ©, respec-
tively. Let uzo € C(Q) be such that |juzl| o < ©, and consider the equation for
u; and w,; above, with up o in place of u;. Theorem 3.10 yields a unique element u; o
such that w10 — AA@1(, u1,0) — A1 (-, U2,0, %1,0) = wp and :

”ul,O”C(ﬁ) < max {¢1_}n (‘?I,M(C))a "‘¢1_,}\/! (¢1,m(c))} ’
where, in view of (4.5),

c= (1-2M1(02) " wille < (1=2M1(9)) 7 willo
| < (1=2Mi(0) Hlunlle <2K.

(4.6)
Therefore ”“1,0“0(5) < ©4. We then solve

Uz — AM@a(:, uz) — A (-, u1,0, Uz) = W2
t0 get U1 satistying [luzllom < max {654 (62,00(¢)), ~¢7h(d2,m(e))}, Where

d = (1= AM2(61)) " ||well,, <(- AM,(0)) " (w2l
< (1-AMy(8)) 7 wall, < 2K.

~ Hence luz1llo@y < ©2. Substituting this back into the first equation and solving,

we get a u; 1, etc. Repeating this procedure we obtain sequences {u;,} and {uz,}
satisfying

(4.7) Ui — My (-, ul,n) - M1(, uz;n, ul,n) = wq,
(48 Uzn — AP (- Uzn) — AP2(5, U n—1, Uz,n) = W2,
lutnllog < €15 lluznlcm) < ©2,
$1(,urn), $2(, uan) € WP NWGP , 1 < p < 00,
The continuity of 1; and 1, implies that ||¢j(-,uz,n,ul,n)“c(ﬁ), j = 1,2, are
bounded over n € N, so that {A¢;(-,u1n)}nen, J = 1,2 are also L*°-bounded.

This shows that {¢;1(, U1 ») }nen and {¢2(:, Uz n) }nen are bounded in W2? for all p,
1<p<oo.

_67;




From the proof of Theorem 4.3, in particular estimates (4.3) and (4.4), it is seen
that equations (4.7) and (4.8) imply
(1 - )\Ml(@)) ”'LLl,n - ul,mlll < /\Nl(e) ||u2,’n - u2,m“1
(1 = AM;(0)) |luznt1 = Uzmtally < AN2(O) [lur,n — urmll;

and therefore
AN, (©)N2(O)
— < —_ .
”u2,n+l u2,m+1”1 = (1 /\Ml(e))(l AMZ(@)) ||u2,7l u2,m“1

We recall that, by equation (4.5), we have 1/2 < 1 — AM;(©(K)) for A € (0,v(K))
and 7 = 1, 2, so that

luznt1 — Uz,m+1”1 < 4/\2N1(9)N2(9) "uz,n - Uz,m”l .

Note that the term a = 4A\2N;(©)N(©) is independent of n and m, and that by
the definition of y(K) we have oo < 1. Hence ||ug,n41 — Uanll; < o™ |luz;1 — uzp0ll;,
and so it follows that given integers n,m with n > m,

n—-1

) 1
luz,n — v2mll < Za' luz,, — uzoll < @™ (I—_—&) lluz,1 — uzoll — 0, as m — 0.

i=m

This proves that {u;,}, and thereby {u, .}, is a Cauchy sequence in L!(Q). There-
fore there exist u;,us € L such that u;, — u; and up, — up in L.

For p > n/2 the injection from W2?(Q) into C(2) is compact (see Brezis, [2]),
and so we may extract a C()-convergent subsequence from any subsequence of
{¢1(-,u1,n)}. Since ¢} : Q x [-O(K), O(K)] — R is uniformly continuous, we can
extract a C(f2) convergent subsequence from any subsequence of {u;,}.

We already know that u;, — u; in L'(Q), and hence u;, must also converge
to u; in C(Q). Similarly, ug, — uz in C(Q). It follows then that {é;(-,u1n)},
{d2(-, u2.n)}, {¥1(-, u2,n, u1,0)} and {¥2(*, U1 n, Uz,») } must also converge in C(12), and
thus {A¢:1(-,u1,,)} and {Ado(-, uzn)} are L®-convergent. Since the linear operator
A is LP-closed so ¢y (-, uy), d2(-, uz) € W2P N Wol’p for 1 < p < 00, u; and uy belong
to the domain D(A) of A and

Uy — AAG (-, ur) — A1 (-, uz, u1) = wy,
ug — AAG2 (-, uz) — Ao (-, ug, uz) = ws.

Since [|usnlleg < ©1(K) and [Jugnllogm < ©:2(K), part (i) holds. O

We note that, for sufficiently small A € (0,1/w(K)), uniqueness holds by the dissi-
pativity of Ax — w(K). :

Since we cannot be sure that the solution (u;, uz) above is again contained in the
domain Dg, we cannot yet show that the range condition (RC) holds, and thereby



we are unable to apply the semigroup generation theorem. Initially, we assume the
independence of the ¢;’s on x to obtain a slightly better estimate on the L®-norm
of the solution.

4.7 Theorem. Assume that M,(K) = M, and My(K) = M,, for all K > 0, and
that ¢;(x,n) = ¢;(n) for i = 1,2. Then for any K > 0 and A\ > 0 such that

0 <A< v(K)=1/2max {M1(2K), My(2K), \/NI(QK)N2(2K)}

and any <w1) € Dk, there exists a (ul) € D(A) such that (I — \A) (ul) =
wo . U2 Ug
wl) and the following hold:
W2
(i) ui,us € C(Q) Juill, < (1 - AM,)™? llwsll, for 1 <p < oo, i=1,2.
(i) ¢i(-yui(-)) E WP N WP for1 <p <oo,i=1,2.

(iii) Ad’l(',Ul),/\¢2(',u2),¢1(',U27U1)s1/)2(',7-&1;“2) € L=(%2).

Proof. Following the proof of Theorem 4.6, we use Theorem 3.9 at the appropriate
point, namely equation (4.6), to obtain the estimate

luinll, < (1= AM)™ fJwi]l,, for i =1,2.
Leaving the rest of the proof almost identical yields the result. ]

It can now be seen that the following extra assumption guarantees that ‘(ul, uz)
is again inside Dk, allowing Theorem 1.3 to be applied.

4.8 Corollary. If Y1(z,m2,m)/m < 0 and ¢o(x,m,m2)/n2 < 0 for all x,m,n, and
d1(z,n) = $:1(n), d2(x,n) = ¢2(n), then for all K > 0 and X\ > 0 such that

1 1 1
2Mi(2K)’ 2M>(2K)’ 2,/N,(2K) N2 (2K) } ’
we have R(I —AAk) D D(Ak). Thereby it follows that Ak generates a semigroup on
1

D(AK)L = Dk, providing integral solutions of type w(K) to the problem (PMS).

0</\<7(K)Emin{

Proof. Given (w;,w;) € Dk, Theorem 4.7 implies that there exists some (u1, uz) €

L x L* such that .
Uz wWao

Moreover, since My, M, < 0, Theorem 4.7 also implies that

luillom < (1= AM) ™ lwilly < llwillg, for i =1,2.

Hence (Zl) € Dk and so R(I — MAg) D D(Ag). ]

2




4.9 Remark. If we let {Sk(t)} be the semigroup generated by Ak, then Ax C Ak
for K < K’, and so

Sk (t) C Sk (1),

in the sense that the graph of Sk(t) is a subset of the graph of Sk-(t) for all ¢ > 0.
Therefore we may define a semigroup {S(¢)} on L>® x L* by

S(t) (3;) = Sk(t) (g;) , when (Zg) € D(Sk) = Dg.
4.10 Theorem. The semigroup generated in Corollary 4.8 has the following prop-
erties:
(i) For allt > 0, S(t) maps L x L™ into L™ x L*.
(ii)) S(0) = I and S(t + s) = S(¢)S(s).

wy W w(E) || [ W1 Wy
S(t -Sit) | ~ < - ~
(i) 2 (w2) ®© (“’2) ’x =° (wZ) (w2) x
for zl , :f)u\l) € Dk, andt > 0.
2 2

(iv) For (Zl) € Dg, we have
2

o) - ()],

where wo(K) = max{0,w(K)}

< e2wo(K)(t+s) Jt —s| for t,s >0,

X

A ()

0

(v) For all (Zg) € L™ x L™, let (Z;Eg) = S(t) (Zé) Then

s, < P all, o lua@l, < & Jud]], for1 <p< oo

Note that we assume here that My, and M, > 0 throughout.

Proof. We show only (v), since all other results follow immediately from Theorem
1.3. Theorem 4.7 implies that when (I — AA) (zl) = (zl), then
2 2

ludll, < (1 =AM Hwnll, 5 fluall, < (1= AM2) 7! lwel,



0 0
Let (Z},) € L™ x L™ and set ('Zl”“) = (I-)A)* (Z},) Then (I —)\A) (“1”“) =
2

2 U2,k
U,k-1
' , and so
U2,k—1

”’U«,’J‘;“p S (1 - )\Mi)_l ”ui,k—lllp S (1 - )\_M,’)_k ”u?”p fori = 1, 2.

1

Letting k — oo and A — 0 in the appropriate way, we obtain the desired result. O

4.11 Assumptions. We impose the conditions of 4.1, replacing (iii) by

"/’1(% 7)2,771) - ¢1(-’r>772, 771)

(lll)’ sup = Ml < o0
z€ll,meR M=
m#m .
sup d’l(m’ 7727771) — ?l(xv"h’nl) — Nl < 00
z€,meR N2 — 2
’72#’?72 ~
sup '%1’2(1',771:772) - fZ("Q M, 72) = M, < 0
z€0n R T2 — 72
n2#ENR
x —-
sup Y2(2, M, m2) f2($,771’772) = N, < 00
zell,n2€R ="
MFN )

We define M, (K) = M, and M, = M, as was done previously. Now we can consider
the whole space L™ x L™ and show that the range condition (RC) holds.

4.12 Theorem. Suppose that the assumptions of 4.11 above hold. Then for all
A € R such that ,
O<A<ny= 1/2max{M1, Ms,, \/NlNz} :
where, again if M; < 0 set 1/M; = oo, we have
R(I — M) D D(Ax),
where Ao, denotes the restriction of A to L*® x L*>.

Proof. For any given w;, wy € L, the result follows immediately from the proof
of Theorem 4.6. S ]

4.13 Corollary. The operator A,, generates a semigroup {S(t)} in X which pro-
vides unique integral solutions of type w (as before w = max{M; + Ny, My + N1})
to (PMS) and satisfies '

(i) S(t): X —» X forall T > 0.




(ii) S(0) = I and S(t +s) = S(t)S(s).

w ’l/l)\l (wt) un _ ’&71
(111) S(t) <w2) - S(t) (132) X =e (wz) (ﬁz> lX’
for w1 , (w1> € Dg,t >0
wWa wy
(iv) For (“’1) € D(Aw), t,5 >0
o (2) -5 ()] 5w (22)], -
w2 (') x wao x

where wg = max{0,w}.

Note that (v) of Theorem 4.10 cannot be included.
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