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Integration Operators On Weighted Bloch Spaces

Rikio Yoneda

Abstract

Let g be an analytic function on the open unit disk D in the complex plane C. We shall
study the following operator

J,(F)(2) = /0 " HOd (O

on the Bloch space B. We show that the operator J, is bounded on B if and only if

1
sup(1 — |z]?) ( log ———= z)| < o0,
sup(1 - [z (1og ;=75 ) @)
and the operator J, is compact on B if and only if

lim (1 |2P%) logl—fll;l—z) I7(2)l =o.

jz|—1-

And we shall also characterize the boundedness and compactness of J, on weighted Bloch
spaces. '
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§1. Introduction

Let D = {z € C;|z| < 1} denote the open unit disk in the complex plane C and let
0D = {z € C;|z| = 1} denote the unit circle. Let H(D) denote the space of analytic functions
on D. Let dA(z) be the normalized area measure on D. Let 1 < p < +00. The Hardy space
HP? is defined to be the Banach space of analytic functions f on D with the norm

= L B PP P
14 li=(sup 5o [ 17Ge)IPa8)” < +oo.

For z,w € D, let B(z,w) := %log i—ﬂ%ﬁ%ﬁ, where ¢, (w) = 5. We will frequently use
the following properties of ¢, : ‘

(1— 2% (1 — Jwl?)

11 — zw|?

1- s (w)[? =

)
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w2(2) =0, ¢z(0) = z, Pz 0 pz(w) = w.

For 0 < r < 400, let D(2) = D(2,r) = {w € D; f(z,w) < r} denote the Bergman disk. Then
D(z,r) is a Euclidean disk with Euclidean center C and radius R
1-¢2 1—|2)?

C=1"gpp® B=1_ap

r_ —-r
respectively, where t = :'_ T :__r € (0, 1). We denote by |D(z, r)| the normalized area of D(z,r).
Then |D(z,r)| is comparable to (1 — |z|2)2.
The Bloch space B is the space of functions f € H(D) such that

| f lB:=sup{(1 - |21*) |f'(2)| : z € D} < +oo0.

This is a semi-norm on B and it is Mdbius invariant in the sense of || fo ¢ ||z = || f |8 for all
f € B and ¢ € Aut(D), where Aut(D) is the Mdbius group of bi-analytic mappings of D. The
Bloch space B is a Banach space with the norm || f || = |f(0)| + || f |ls- The little Bloch space
of D, denoted By, is the closed subspace of B consisting of functions f with (1 — |z|2)f/(z) — 0
(lz] = 17). The space of analytic functions on D of bounded mean oscillation, denoted by
BMOA, is the set of functions f in H? such that

Il fllBMoa :=sup{|| fop,— f(2) lla: z€ D} < +00.

It is clear that |¢’(0)] <|| g ||2 for every function g € H(D). Applying g = fo ¢, — f(2), it
follows that (1 — |z|2)|f/(2)| <|| fo @z — f(2) ||2 for f € H(D) and z € D. Thus it follows that
BMOA cC B.

Let a > 1. The a-Bloch space B® is defined to be the space of functions f € H(D) such
that

Il £ llga:=sup{(1 — |2*)* | f'(2)| : z € D} < +c0.

And the little a-Bloch space B is the closed subspace of B* consisting of functions f with
(1—|212)2f(z) — 0 (|z| — 17). Note that B! and B} are the Bloch space and the little Bloch

space, respectively.
Let w be analytic on {¢ ; |1 — ¢] < 1}. Assume that |w(1—|z|2)| —~+0as z € D and
|z| — 17. Then the weighted Bloch space B, is the space of functions f € H(D) such that
I £ l|B.:= sup{lw(1 — |2|*)| |f'(2)| : z € D} < +oo.

We define the following

Bog i={/ € H(D): 1| ¢ lrgi= s0p(1 - 12 (loB 7=z ) I9(2)] < +o0},

Bugo = {/ € H(D): Jim (1~ |=f") (log =13 ) 14(2) = 0}

2| —1—
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For a Banach space X, let S : X — X be a linear operator. Then the operator S is said to
be compact if for every bounded sequence {z,} in X, {S(z,)} has a convergent subsequence.
On the other hand, the operator S is said to be weakly compact if for every bounded sequence
{zn} in X, {S(z,)} has a weakly convergent subsequence. Then it is known that S is weakly
compact if and only if S**(X™*) C X, where S** is the second adjoint of S and X is identified
with its image under the natural embedding into its second dual X™**.

For g € H(D), the operator J, is defined on the weighted Bloch space by the following:

(D@ = [ $QF Qe (f € HD).

If g(z) = 2, then Jg is the integration operator. If g(z) = log T—l—;, then J, is the Cesdro operator.

In [4], Ch. Pommerenke showed that J, is a bounded operator on the Hardy space H? if
and only if g belongs to BMOA, and this result was extended to the other Hardy spaces HP,
1< p < +o00,in [1]. In 2], A. Aleman and A. G. Siskakis studied the operator J; defined on the
weighted (radial weight) Bergman space. Recently, in [5], A. G. Siskakis and R. Zhao showed
the following theorem:

Theorem A. The operator J, is bounded on BMOA if and only if

1 2 \2
sup ((°g - )lg'(zn?(l—lzl?)dA(z)) <+oo,

18D [T} S

and Jy i8 compact on BMOA if and only if

. (log %)2 rrov2 2 -
lim (T“ /;(I) [9'(2)[*(A - [2[*)dA(z) § =0,

\|—0
where S(I) ={z:1-|I| <|z| <1, {& € I} for an arc I in OD.

In this paper, we shall study the boundedness and compactness of the operator JQ defined
on the Bloch space , the a-Bloch space and the weighted Bloch space. Some of the techniques
used to prove our theorems come from [2] and [5].

Throughout this paper, positive constants C and K are not necessary the same as the one
in at each occurrence.

§2. The boundedness and compactness of J; on the Bloch space

In this section, we study the boundedness and compactness of the operator J, defined on
the Bloch space.

Theorem 2.1. The operator Jg is bounded on B if and only if g € Biog.
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1
Proof. Suppose that g € Biog. Then || g |lig= sug(l — 23 (log I——EP—) 19’ (2)] < +oo.
z€ -
Let f € B. Then

|f(z )I

(1= 2 (Jpf)' ()] = (X = 1) f()Ig'(2)] = (1 - |2I%) (108 _1| |2)I (= )Ilog

Since | f(z)| < C || f ||B log I 1‘ ? (see [7, Theorem 5.1.6 ]), we have
2 1
15/ s < Csup(t— |=P") (log ;1) I Il £ 1z
zeD 1— |z
= Cllglaugll 5 -

To prove the converse, suppose that J; is bounded on B. For a € D, put f3(2z) = log ﬁ

1 1
. —_— < —. Si -
Then f; € B. For z € D(a,r), we have logl_ S c logl—-ﬁzl Since the subhar

monicity of |¢/(z)], we see that (1 — |a|*)%|g’(@)® < [p(ay) |9/(2)I?dA(z) (see [7, Proposition
4.3.8]) So by using the fact that there is a constant C; > 0 (depending only on r) such that
dA(z) < C; < 0o, we have

D(asr) (1 — |2[2)?

2
(1 faf?y? (log ——7) o (a>|2 (log ﬁp) Syl NdAC2)

1
<cf g
D(a,r)ogl—az
1 .
cof o Loaope
D(a,r) (l—lzlz)z( =)

log.1 e

'(2)|*dA(2)

tog 1| lg ()Paace)

1
D(a'r) (1-12%)?

<C sup (1-|[z*)?
z€D(a,r)

<cGy sup(l — |2]%)?

dA(z)

og - | o/
< CCrsup || Jgfa ”B
a€D
<CCh | Jg "2 sup || fa "23 .
a€ED

Since || fa ||B=sup,ecp(1— |z|2),ﬁ7|a| <2 < oo for any a € D, we see sup,cp || fa ||B< 0.
Hence we have sup,cp(1 — |a|?) (log T-ﬁ’) |g’(a)] < co. Thus g € Biog. O

Lemma 2.2. For f € H(D)and 0 <r < 1, put fo(z) = f(rz), z€ D. Let f € Biog.
Then rl—lgl— I| fr — f llBig= 0 if and only if f € Biog,p.

Proof. Suppose that f € Bjog and lu}x | fr — f lBig= 0. Then for any € > 0, there is
r—1-
a 8 € (0,1) such that || fr — f || B, < € for 8 < r < 1. By using the fact la+bj2 < 2|a|? +2|bj2
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and the definition of || * || 5,,, we have

2
(1-la*y? (log ) \f'(@)?

1
1-—|a?
2 1 2
<2(1 - |af*)? (108 —ﬂy) 1f'(@) — £1(@)1* +2(1 - |af*)? (105 ITGF) | /(@)

2
< 2e+2(1 - |af?)? (log ) FACHE

1 |af?

1
1— |af?

2
Since fr € Biog0, we have (1 — [a|?)? (log ) (fi(a)]? = 0 (|a| — 1~ ). Hence we see

f € Blo&O'
To prove the converse, suppose f € Bjogo. Then for arbitrary enough small € > 0, there

isa & € (0,1) such that (1— [2(2)log ——ng(f’(z)l < efor all 62 < (2| < 1 and (1 — |2[?) log-—r-r;
is a decreasing function on 62 < |2| < 1. For 0 < r < 1, we have

I fr = S = sup{(1~ |21 log 7—— Hgl'rf (r2)~ f(2)] : z € D}
< sup{(1 - [2/") log {15l f(r2) — £ : 8 < el < 1}
+eup{(1— |=f") log {1l f(r2) — £/ s |4 < &),

Since rf/(rz) — f/(z) uniformly for |z| < 8, the second term in the above approaches to zero as
r—1".If§<r<1and§ < |z| < 1, then we have 62 < r|z| < 1. Since (1— |z|2)log-—|—,glsa
decreasing function on |z| € (62, 1), for 62 < r|z| < |z] < 1,

(1~ [21%)log 7=zl (r2)| < (1= r2(ef?)log Tzl (ro)l <.

Hence
sup{(1— IZI")IOS1 ' lgl"f (rz) — fi(2)]: 6 < |zl <1} <2

for all 6 < r < 1. So we see limsup || fr — f [|B,,< 2¢. Thus we have lim || fr — f ||B,=0. O
r—=1— r—1-

Theorem 2.3. The operator J, is compact on B if and only if

Jim (1~ 12%) (log =727 ) 192 =
Proof. Since |f(z)| < C || f |5 log —— - | E for f € B, the unit ball of B is a normal

family of analytic functions. By the normal family argument, Jj is a compact operator on B
if and only if every sequence {f,} in B with || fn ||[< 1 and fr — 0 (n — +00) uniformly on
compact subsets of D has a subsequence {f,, } such that || Jyfn, |[B— 0 (n — +00).

Suppose that | }m} (1—|z%) log i——ll;l—flg'(z)l =0. By the proof of Theorem 2.1, we
z|—1- -
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have || Jof ||B< C || g |Bogll f Il for f € B. Then by Lemma 2.2, there exist polynomials P,
such that || g — F, ||p,— 0. Since || (Jg — Jp,) (f) 18< C || g — Pa llBigll f IIB, thus we have
| Jg— Jp, IS C |l g — Pa llBiog— 0 (n — 00). For any polynomials P, Jp is a compact operator
on B (see [2, p.342]). Hence we see that J, is a compact operator on B.

To prove the converse, suppose that J, is compact on B. Let a, — a € D and put
fa(z) :=log 1" f(z) :=log 1 —I’a'z' Then fo(z) — f(z) uniformly on compact subsets of

D. By the proof of Theorem 2.1 and the fact [a + b2 < 2[a|? + 2(6]2, we have

2
(1~ laaf®)® (log iﬁ) ¢ (@n)P?

2
<C sup (1- |22 flog —1o | ()P
v z€D(an,r) 1_'
1-az
<2C sup [log I.q(Z)Iz(l—IZP)2
z€D(an,r)
+2C sup [log —— '(Z)lz(l—lzfg)z
z€D(an,r) 1-—-
<20t =NIB+2C_sup Nlog =L 21 - 292
z€D(an,r)

=: M1 + Mo.

By the compactness of J;, we have M; — 0 (n — 00). Since By is a subspace of B and they
share the same norm, the compactness of J; on B implies its compactness on By (see [10, Lemma
8] or [5, Theorem 3.6]). Hence we see that J, is weakly compact on By. Since (Bg)** = B and
Jg* = Jg, we have Jg(B) C Bp. Thus we have Jy(f) € By. Thus we have

M, = zels)?fn,r) log - ' ' (2)P1 - 2*)? = . su‘g.r ((1 1z]%) ,(Jg(f)) (z)D — 0 (n — oo).
| Hence we have |z}i—!»rll‘ (1—|z]?)log = |z12[g (z)f=0. 0O

§3. The boundedness and compactness of J, on the a-Bloch space

In this section, we study the boundedness and compactness of the operator J; defined on
the a-Bloch space for a > 1.

Theorem 3.1. Let a > 1. Then the operator Jg is bounded on B® if and only if

sup(1 — |z|?)|g’(2)] < 400, ie g€ B.
z€D

Proof. Suppose that sup(1 — |z|?)|g’(z)| < +00. Let f € B*. Then we see
zeD

|f(2)]

(1= %)% (Jof) () = (1 = |z f(lg (=) = (1 - IZIz)lg'(z)f(T:TZIT)I:-
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Since | f(2)| € C || f llp= (1 — |2|*)!~ (see [9, Proposition 7]), we have
I Jof llig=< Csup(1 - |2*)lg'(2)| || £ Il = -
z€D

To prove the converse, suppose that .J, is a bounded operator on B®. For a € D, put
fa(z) = (1 —@z)17® . Then it is clear that f, € B®. By using the subharmonicity of l9'(2),

the fact that b mdA(z) < C1 < 00, and the fact that |1 —@az| is comparable to
a,r -
(1-|2)%) on D(a,r), we have

— 1al2)2ld (a))2 H()I12dA(z
- laPFito) < oy 9 (AAC)

_ 2 (] — |22)2(0-0)) ()2 dA(z)
D(a,r)(l [2]7)**(1 = |2(%) lg'(2)| A 1Pp

_ 20— dA(z)
SC’/ 1 — 2122 (1 — az[21=2) | /() 2—222)
oy 0 1 = 30 g () -

2
< C’/D a4z (z sup (1—|2%)%|1 —azf' ™" Ig'(z)l)

(ar) (1 — |z]2)2 €D(a,r)
2
< CCy (sup(l —|2/%)? |1 — a2 [g’(z)l)
zeD
< CCrsup || Jofa =
aeD

<CCL|[ g I1? sup || fa lif= -
a€D

Since || fa |lpe= sup,ep(1 — |21%)* 8 < (@~ 1)2* < +oo for any a € D, we see supgep ||
fa l|B=< +00. Hence we have sup(l — |a|?)|g’(a)| < +c0. O
acD

Theorem 3.2. Let a > 1. Then the operator Jy is compact on B* if and only if
o (1 12%)lg'(2)| =0, ie g€ Bo
2| —1—
Proof. Since |f(z)| < C || f lB= (1 = |2|?)}~® for f € B, the unit ball of B* is a normal
family of analytic functions. By the normal family argument, J, is a compact operator on B*
if and only if every sequence {f,} in B* with || f, ||[p=< 1 and fp, — 0 (n — +00) uniformly

on compact subsets of D has a subsequence {fn, } such that || Jgfn, ||B=— 0 (n — +00).
Suppose that | }m} (1 — |z/%)|g’(2)| = 0. By the proof of Theorem 3.1, we have
z|—1—

| Jgf l=<C |l g liBll f liB=

for f € B®. Then by {7, Theorem 5.2.2.], there exist polynomials P, such that || g— P, ||g— 0.
Since || (Jg — Jp,) (f) =< C || g — Pu |||l f ||B~, we have

| Jg—JpP. IS Cllg— Fallz— 0 (n — 00).
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For any polynomials P, Jp is a compact operator on B* (see [2, p.342]). Hence we see that J,
is a compact operator on B®.

To prove the converse, suppose that J; is compact on B®. Let a, — a € 8D and put
fa(2) = (1 —azz)'®, f(2) := (1 —az)!~*. Then f,(z) — f(z) uniformly on compact subsets
of D. By the proof of Theorem 3.1 and the fact |a + b|2 < 2|a|? + 2|b|2, we have

A= lonl i@t SC [ 11— a0 g (1~ ey T B
=) _ (1 _ (=) | dA(z)
<2 Ja-mt - (- a i@ - e = s

a2 210) | 1V 12(1 — |o12)20_GA(2)

420 [ =P~ e

SK|| Jo(fo— ) Il +K sup |1-az2 02 |g/(2)2(1 — |2f2)%

z€D(an,r

=: 1 + Is.

By the compactness of J,, we have I; — 0 (» — 00). Since Bf is a subspace of B* and they
share the same norm, the compactness of J; on B* implies its compactness on Bj. Hence
we see that Jg is weakly compact on Bj. Since (Bf)*™ = B® (see [9]) and J;* = J, we have
Jg(B*) C Bf. Thus we have Jy(f) € B§. Thus we have

L= s 1-a@PC R0 1h% = sup (112K 2)])°
z€D(an,r) 2€D(an,r)

= 5up (Xp(ene) ()1 — 21%)* |(Jo (1) (2)])" = 0 ( = o).

Hence we have . ‘lmll 1-1z)\d'(z)| =0. O
Z[—1-

§4. The boundedness and compactness of J, on the weighted Bloch
space B,

In this section, we study the boundedness and compactness of J; on the weighted Bloch
space B,,.

Theorem 4.1. Let0 < r < +00. Let w be analytic, non-vanishing on {¢ : 1-¢| <1},
and |w(1 — |z|?)] — 0 as |z] — 1'. Suppose that
() sup,ep (1 — |2/ Ji ity < +oo,
(i) sup, aep BITEN < oo,
(i%2) f'z’ "‘-;(ll'_a;u'ﬂ < 400 for any z € D,
(@) B oty — oo (1] — 17),
(v) for any a € D there is a constani C > 0 (independent on a) such that
for all z € D(a,r),

w(l —az)

<
S| = ¢
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21
(vi) thereisaconstant K > O(independent on z) such that / l a ds 2
0 —
forall ze€ D.
Then the operator Jy is bounded on B, if and only if

lzl ds '
I 9 llwi= sup (1 = 29| | a1/l < +oo.

-zn) l

Proof. Suppose that || g |[w< co. Let f € B,,. Then we see
1
\f@~ 1) =1a [ f'at)at

<ol [ M
al [ o2 ~ et @Ol =t

la| 1
<|| f s, f |_(1_'9:_ai|7)_|dt =l f 5. /0. jw(l— sz)I(Jl(s

Thus |f(@)| < C | f Iz, " rrtsayds- Then
w(t = 2| (Jaf) ()] = (1 = =D F(lg' =)
v 1z ds ,
<O — 1) [ oyl @1 S s,
<Cllglwl s -

Hence we have || Jof ||B,.< C || f |5, -
To prove the converse, suppose that J, is bounded on B,. Put hy(2) := 5 571_1?5)"1’7' By
the assumptions that there is a constant C > 0 (independent on a) such that ‘-‘3’-((11:%’}5‘ < C for

all z € D(a,r), and that there is a constant K > 0 (independent on z) such that f M m—%ﬂ <

Z
w 1——?iv1

Z 1
w(1-27
we have

ol ds :

(Iw(l ~le) [ mlg’(a)l)
2
< (K\w(l— |af? A ——%%—ﬂdn‘lg’(a)l)

<K2(TI%T2‘)'2' S (o -aan| [ 5= an)dn| g (z>|) dA(z)

<K' —tan :a12)2 L oy (0= 12D IRa() 19 (2)])’ dAG)
<K'C?CiCp sup (1|2 lha(2) g ()

z€D(a,r)
< K*C2C\C2 || Jgha 1%,

. w(1 = 23]
Since oD (1= az)]

< 400, we see hg, € B,,. By the boundedness of Jy on B, we have

12| ds ’
suplotd = (=) [ =gyl (2 < +eo. O
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For example, w(() := ¢ and w(() := ¢* and w(() := {log ( satisfy the conditions (i) ~ (vi)
of Theorem 4.1.
We define the following

2| s
={/ € H(D): I g Iy = sup jw(1 — |=P%)| [ | ,;ad—_—z),lg’(zﬂ < oo},

B i={/ € HD): Jim ot~ o) [ =Bl e =0}

Lemma 4.2. Letw beasin Theorem 4.1. Moreover suppose that |w(1 — |2{%)] & m l
0(lz| = 17). Then for f € Bw, lim || fr — f lw="0if and only if f € Bw,.

Proof. Suppose that f € By and ln;t It fr — f llw=0. Then for any € > 0, there is a
r—1-

8 € (0,1) such that || fr — f llw< € for f < r < 1. By using the fact |a + b|2 < 2|a|? + 2|b)2
and the definition of || * [jw, we have

(lw(l o 82)‘) lf’(z)l"’<2e+2(lw(l—lzl’)l J 82),) F@P.

Since f, € Bw,, we have f € Bw .

To prove the converse, suppose f € Bw,9. Then for arbitrary small € > 0, there isa 6 €
(0, 1) such that [w(1~|2f%)] [ amy|f ()] < eforall 62 < |2| < 1 and jw(1-|2[?)| I iy
is a decreasing function on 62 < |z] < 1. We have

{2l
I fe= £ w sup{ ot = =) [ = Ttinee) = F) 8 < 1 <1}
fzl
+oup{ (1~ o) [ =i f(r2) — £ 141 < 6 )

Since r f/(rz) — f/(2) uniformly for |z| < 8, the second term in the above approaches to zero as
r—=17. fé<r<1landé<|z| <1, then we have 62 < r|z| < 1. For 82 < r|z| < |z] < 1,

1=l Irz|
(=12 [ o el < o= e [ ol F el < e

Hence

Jz) s
sup{ lu(t (2] [ Tl (ra) - £ 6 < lel <1} <2

for all 6 < r < 1. So we see limsup || f; — f |lw< 2¢. Thus we have li1{1 W fr—fllw=0. O
r—1-

r—1-

We also see that examples w({) := ¢ and w({) := ¢* and w({) = (log({ satisfy the
condition of Lemma 4.2.

Proposition 4.3. Let w be as in Theorem 4.1. Suppose that for any a € D,
lw(@ — |a|?)| is comparable to (w(1 — |2|2)| on D(a,r), and that |w(l — lzlz)lf'z‘ Wﬁ%ﬂﬂ !
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0 (2] = 17). If limy, ;- jw(1- 12]%)] folz' fwa—%’ﬂ |f'(2)] = 0, then the operator J, is compact
on B,.

Proof. By the proof of Theorem 4.1, we have || Jof B, < C |l g llwll f B, - Suppose

l2|
that jz}i—lvrll— lw(1 =22 j(; E;—(_l—df_.sz_)ﬂg’(z)l = 0. Then by Lemma 4.2, there exist polynomi-

als P, such that || g — P |lw— 0.—S'moe | (Jg—=Jr) () IB.<C llg— Pallwll f |B,, we have
| Jg — Jm )< C || g — Pu llw— 0 (n — 00). For any polynomials P, Jp is a compact operator

on B, (see [2, p.342]). Hence we see that Jg is a compact operator on B,,. O
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