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1. Introduction _

s
Let & be a k-vactor bundle over real projective space P,, and B(§) the total space of
the associated sphere bundle of &. B(&) may be considered as a differentiable manifold.
In this papsr we will consider the imbedding and immersion problem for such a manifold.
Notations and terminologies used in this bépef are made clear in Section 2. Section
3 contains some general results and partizular cases are examined in Section 4. As an
application, we cbtain an imbedding of Dold’s manifold, which is contained in Section 5.
The authours wish to thank Prof: K. Aoki and T. Kaneko for their encouragement

and many valuable suggestions.

2. Notaions and Terminologies

Let & bz a k-vector bundle over real projective space P,, (§) the associated - (k-1)-
sphere bundle of &, and E(&), B(&) the total space of &, (&), resp. Lot a denote the
canonical line bundle over P, and ek the triviak k-vector bundle over P,.

We recall the definition of KO (P,) :this is the group ofstable classes of real vector
bundles over P,. We denote the stable class of‘a vector bundle & by &,. It is known
that KO (P ) is a cyclic group of order 2¢(m generated by 2,. where ¢© (n) is the
numbzr of integer s such that o << 8 =< n and 8 == 0, 1, 2, 4 mod 8. | 4

We define the geometric cimension of the element KO (P,) as follows. Let E (P,) b=
the semi group cf equivalende cllases of real vector bundles over P,. Define KO (P,)=
KO(P,)+Z. Let 0 be the canonical homomorphism; E (P,)—KO(P,) defined by 0(&
=&o.+k. Then the geometric dimension of a (denoted by g(a)) is the least integer k such
that a+% is in the inage of . The following properties of geometric dimension are clear
by the definition.

(D) if &, s the stable cliss of o vzctor bundlz &, then g(—&)< 1 +f and only if thers
exists an l-vzclor bundle v such thi Eean:e’;‘.

() g {a+h) =g (@+g B

In what follows all imbeddings and immersions are differentiable. We will write MCR,
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MZR if there exists an imbedding of M in R , an immersion of M in R , resp.

3. General results

From now on, let £ denote a k-vector bundle over P .

3. 1. The following theorem is due to B. J. Sanderson [2]. N

(8.11) E (&) & Rntktr ¢f and only if g (VO—E;,f',.: = 7, whare vy is thz stable class of
normal vzctor bundle of P . Moreover if k-+r>n, g (vo—E)= r tmplies E(§)Rn+k+7,

From (3.1.1), we have

(3.1.2) B (§) — R2ntk gnd & Ren+tk-1,

Proor. Let P be imbedded in R»+7 with normal bundle v, where m is large enough.
Then & can be imbedded in v as a sub-bundle, in ohter words, there exists an (m-1)

vector bundle 7 such that
EDr=r

Since 7#; (Vi—tm—-2—n)=0 for @ <<n, y admits (m—%k—n) linearly independent cross
sections : p=gem—k-nt & |

Thus we have

EDE"Dem—t-n=y ‘
Hence g (p—§&0) = m. According to (3.1.1). F (30 & R2?»+* and since ¥ > 0, E (&)
— R2n+k, Now (3.1.2) follows from
Bl3 @ EE R = B(E) c B™
(@) E(E)c B = B (§) — BRm»1,

Proor. (i) is clear and for the proof of (ii), see [4].

3. 2. The following two lemmas are useful.

(3.21) Let M, N bz m-manifold, n-m-ifold, rzsp.. Supposz M & Rk, N — R,
Then of 2dim. M << k+1, M X NCRk+1,

This is due to Sanderson-Schwarzenberger.

(3.22) L=z M, N b2 as in (32.1), and N s-parallelizable. Then M XN & Rm+n+r i f gnd
only if M & Rm+r,

One can prove this easily, using the fundamental theorem on immersion; M & Rm+»
if and only if ¢ (b)) =< k&, where vy is the stable normal bundle.

3. 3. Let 7 be the bundle defined in (3.1.2). The obstruction to the existence of
(m—k—n+1) linearly independent cross sections of % is an element o, of H" (P {mn—1
(Vam—k—1,m—k—1-n+1)}), where {F} denotes the bundle of coefficients of fibre F. If n is
even, 0,=w,(%), and if y is orientable and = is odd, 0,=6 wy—1(y), where é is a homo-
morphism H»~1 (P,;Z,)—~H" (P,;Z).

The (n—1)-th and n-th Stiefel-Whitney classes of % can be calculated by the formula

w(&). w(@p)=w)
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For example, if §,=1Izy, then
w(p) = (1+a)=(n+1+D
and hence
wi) =+ @ mod 2

where @ is a gznerator of H*(P ;Z).
If 0,=0, then g(vo—&p)<n—1, which implies

B(&)  Rentk—1 (k>1)

3. 4. We calculate the Stiefel-Whitney classes of B(£).

As is well known,
T(B(E))@el=n*{r (P DE}

Hence we have
w(B(E)) =m*(w(Py)w(E))

From this formula, we can calculate w (B(£)) and hence normal Stiefel-Whitney classes

w, (B(E).

3. 5. Now we will discuss the relations between the stable class of £ and imbeddability
of B(&). Let the stable class of & be lzp (0=1<<2¢(m),

Then we have
9g(vo—& )=g(—@m+1+Dao)

If n+141<2¢(n) we have

g(o—E)=2¢(m)—(n+1+1)

By (3.1.1.), we have

E(&)CT Ree(m)—-1+k+1

and if 2n+1<<2¢( 4+ k—1
B(&) < Ree(m)—i+k-1 and & R2¢(n)+k-1-2
If n+1+1>2¢(m), then
g(v—Eo) =g((29m — (n+1))ag+ (200m) —Dazg) <29 +1— (n+ 1+ 1).

Hence we have

E¢) & Rie(m+1+k-1-1

and if 2n+1 << 2e(m+14 k]

B(&) c Re(m+1+k—i-1 and & R2e(n)+1+k—1-2
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As spacial cases, we have
(i) if yp=0, then B(&) < Rr+k+1+2e—1 (2¢m) +k+1+1>n)
(i1) if &=0, then B(§) < R2e(m~1+k (2¢0(n) —14k>>2n)

3. 6. We conclude this section with a non-imbedding thoorem for B(§). Consider
Grothendieck’s operators. (1]

ri; KO(X)—KO(X)
15 KO(X)—-A(X)

where A(X) denotes the multiplicative group of formal power series in ¢ with coefficients
in KO(X) and constant term 1. Explicitly, the operators 7¢{ and 7; are defined by the

following equations
ri(a)= %T"(a)ti= E‘. Ai(a)ti(1—t)—¢ ac KO(X)

where 4i; KO(X)—KO(X) denotes the exterior operator.
M. F. Atiyah proved in (1] the following properties of operators 7i and 7:.
- 861y (1) if aeKO(X), then 7°(a)=1 and 7l(a)=a.
(i) 7 s a natural ring homomordhism
(i) if aeKO(X), then 1 (as)=0 for i>g(ao)
(iv) let M be a compact dif ferentiable mantfold of dimension m. If M SRBmtk (resp.
M < Bm+R) then v (—wo(M))=0 for ¢ k(respi = k) '
(v)  1r(@o) =1+xot, where ay is the generator of KO(Py).

Suppose &,=1Ix. Since
To(B(E)) =n! {to(P ) +&o}=n' {(n+1+1)ao}
we have
vo(B(E) =n! (—(n+1+1ao)
By (8.6.1) (v) and the naturarity of ri, we have
Tto(B(E)) =n! (1 +wef) ~#++D
Since
1 (= (et 14 Da) = £ 26-1(" FDay, 7iQe(B) =n! (£2-10"HDas,)
We define ¢ by
o=max {i|2:-1(*"*%) 20 mod 2¢(m}
Then
79 (—(M+1+1)a3) 0

Thus if #! is an isomorphism, then
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7° (o(B(€)))<0.
this implies
B(s) CF Rntk-1+e and $ Rntk—1+o-1

Therefore we have obtained the following
(36.2) TuroREM. Suppose ! ; KO(P )—~KO(B(£)) be an isomorphism.
Then

B(&) & Rntk-1+e gnd £ Rntk-1to-1

4. Special cases

In this section, we will show some results on the imbeddability and immer ibility of
B(&) (n=2, 3, 4; k>1). We quote from (3] the results of the classification of vector
bundles over P,.

4, 1. The k-sphere bundle over P,

We have

(i) B(ektl) < R4tk and & B3tk (k=1)

These results are best possible. ,

These follows from (3.2.1) and (3.5), and the fact that w; (B(§)=0 implies Bd: R3+%,

(1) B(aPek)  Ritk gnd & R3+E (k>1)

We have 0; ()=0, where % is the bundle in (3.3). In fact, since w(y)=_1+a)-4, w(y)
=02(p) =0.

(iii) B2xPektl) — R5+k and = R4+
For k> 2, these results are best possible.

Since 2x@ek-1 has a cross section for k>2, n! ; KO(Py)—~KO(B) is isomorphic.
Combining this and the fact that ¢ in (3.6) is 2, we have B o R4+%k and s R3+*
(iv) B@BxPek—2) — R5+k and & Ri+k,
For any %, these are best possible.
These follows from (3.5).
4. 2. The k-sphere bundle over Ps
(1) B(e**1) — R5+k gnd & Ritk (k>2)
For k=1, BCR" and & K5,
These follows from (3.2.1) and (3.2.2).

(i) B(xP®ek) < RI+k and < R6+k (h>1)

These are best possible. In fact, we have w3 (B)=n*a. Since wi+x(xPek) =0, ©* is an
isomorphism by the exactness of Gysin sequence. Thus we have w3 (B) =0

(iii) B(2xPe*-1) < Botk and < R5+¢ (k>2)

(3. 6) implies these are best possible for k>2.

(v) BBxdPek-2) < R5+k and = Rtk (>2)
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These are best possible for &k > 3. These follows from (3.5) and (3.6)
4. 3. The k-sphere bunble over Pj.
() B(ek+1)  R8+k and < Ri+k
These results are derived from (3.5), and (3.6) implies these are best possible.
(ii) B(xPek) < R8tk gnd & RT+E,
(iii) B2xEPek-1) — Re+k Nand & R7+k (k>1).
(iv) B(BxPe*-2)  R8+k gnd & R7tk (E>2).
(v) B(4s@Dek-3) < ROk and = R8+E (k>3).
(vi) B(bxrDek—¢) < Rtk gnd & R8+k (k>4).
(vii) B(6xPek—5)  RO+* gnd & R8+*(k>=5).
(viil) B(TxPDek—6) — ROtk gnd &= R8+% (k>6).
It is easy to see that B in (vi)~(viii) is not imbeddable in R6+%® and not immersible
in RStk

5. Imbedding of Dold’ s manifold

In this section we will discuss the imbeddability of Dold’s manifold of type (n,1).
We denote it by P(n,1). , ) )

P(nl) is defined as follows. Let 8" be the unit sphere in Rr+1l; S={(ao21, 2,
e Rntl Yp?2=1} and CP; the complex l-dimensional projective space; OP={z=(zo, 21) 2;
complex numbezr}. Now P(n,1) is the manifold obtained from S”xCP; by identifying (2,2)
with (—,z) where —# denotes the antipodal of 2 and z the congugate of z.

It is obvious that p; P(#,1)—P _ defined by p(a,2) =2 is a fibre map. We denote this
bundle by 4;

5. 1. We will first prove that P(n,1) is the total space of ‘the associated sphere bundle

of a vector bundle with cross section.

We identify CP; with S2 by the map

@ : (20,21.] _>( [2R(zozs) 2I(z02) 262 — 2,2 )

2012+212  fzoll+leal?  [20]2+ J2a[?
Let 4 b= the non-trivial element of O(1). By the definition
ACz,21)="[20,21]
Hence A operates on S2 by the formula
A(x,22,03) = (21, —Z2,23)
Thus the operation of 4 on 82 is the suspension of the operation of A on 8° This

implies 0 is the associated sphere bundle of a 3-vector bundlev§. It iseasy~to:-see that &

has a cross section.
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5. 2. According to a result of J.Levine (3], it is known that the stable class of & is
ap if n>2.

From the above considerations, we have the following

(5.21) THEOREM. P(nl)  R2n+3 gnd & R2n+2,

(6.2.2) Tueorem. P(nl) C R2»i2 gnd & R2ntl for m even.

(5.23) THEOREM. P(n,1) < R2e(m+1 gnd & R2¢(n) f 2n—1 < 2¢(m),

(56.24) THEOREM. P(n,l) < Rnte*2 gnd & Rnte+tl
where

o=max{i|2-1("* 1) "0 mod 20(m)}

(5.2.1) follows from (3.1.2), and (5.2.2) from (3.3). (56.2.3) follows from (3.5) and
(5.2.4) from (362). | '
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