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1. Introduction

A Jordan *-homomorphism which satisfies the Cauchy-Schwarz inequality is-homo-
morphic (E. Strmer [4], M. D. Choi [1] and T. W. Palmer [3]). In this paper, we shall
give an elementary proof of this theorem under some weaker assumptions than theirs
(Corollary 4). T. W. Palmer [3; Corollary 1] presents a characterization theorem of
$*$-homomorphisms from $U^{*}$-algebras. We shall give an elementary proof of this theorem
(Corollary 6). Finally, we shall show that the linear functional on a Banach algebra
which does not take the value 1 on the quasi-invertible elements is multiplicative.

2. Preliminaries

Let $A$ be $a^{*}$ -algebra. We use the following notations:

$AH=$ { $h\in A:h^{*}=h$ ( $i$ . $e$ . Hermitian element of $A$)}.

$A_{+}=\{\sum_{j-1}^{n}aj^{*}aj:aj\in A,$ $n=1,2,$ $\ldots\}$ .

For $h,$ $k\in AH$ we write $h\leqq k$ if $k-h\in A_{+}$ .
$A_{qI}=$ { $x\in A$ : quasi-invertible element}.

$A_{q}u=$ { $u\in A:u^{*}u=uu^{*}=u+u^{*}$ ( $i$ . $e$ . $quasi\cdot unitary$ element)}.

$U^{*}$-algebra, introduced by T. W. Palmer, is a $*$-algebra which is the linear span of its
quasi-unitary elements. Let $A$ and $B$ be-algebras. A Jordan *-homomorphism $\phi$ of $A$

into $B$ is a linear map such that

$\phi(xy+yx)=\phi(x)\phi(y)+\phi(y)\phi(x)$ and $\phi(x^{*})=\phi(x)^{*}$

for all $x,$ $y\in A$ .
All algebras considered in this paper are those over the complex field $C$ .

*Niigata University.



48 S. Tomita

3. Results

Every Jordan homomorphism $\phi$ of an algebra $A$ into another one satisfies the follow-
ing equality:

$(\phi(xy-yx))^{2}=(\phi(x)\phi(y)-\phi(y)\phi(x))^{2}$ for all $x,$ $y\in A$ .
(cf. N. Jacobson and C. E. Rickart [21). This equality gives the following.

PROPOSITION 1. Let $A$ be $a^{*}$-algebn and $B$ be a $*$-algebn with $\{h\in BH\ddagger h^{2}=0\}=\{0\}$ .
Suppose that either $A$ or $B$ is commutative. Then every Jordan *-homomorphism of $A$ into $B$

is automalically’$homomorphic$.
PROOF. Let $\phi$ be a Jordan *-homomorphism of $A$ into $B$.

(i) The case where $A$ is commutative. We have

$(\phi(h)\phi(k)-\phi(k)\phi(h))^{2}=(\phi(hk-kh))^{2}=0$

for $h,$ $k\in AH$ Hence

$[i(\phi(h)\phi(k)-\phi(k)\phi(h))]^{2}=0$,

and, it follows from the assumption for $B$ that

$i(\phi(h)\phi(k)-\phi(k)\phi(h))=0$

$i$ . $e$ . $\phi(h)\phi(k)=\phi(k)\phi(h)$ .
It follows from this equality that

$2\phi(h)\phi(k)=\phi(h)\phi(k)+\phi(k)\phi(h)=\phi(hk+kh)=2\phi(hk)$ .
Therefore $\phi(hk)=\phi(h)\phi(k)$ .
Since $A=AH+iAH,$ $\phi(xy)=\phi(x)\phi(y)$ holds for every pair $x,$ $y$ of elements of $A$ .
(ii) The case where $B$ is commutative. We have

( $\phi$ (hk–kh))2 $=(\phi(h)\phi(k)-\phi(k)\phi(h))^{2}=0$

for $h,$ $k\in AH$. So $(\phi(i(hk-kh)))^{2}=0$, and, from the assumption for $B$, it follows that

$\phi(i(hk-kh))=0$

$i$ . $e$ . $\phi(hk)=\phi(kh)$ ,

and
$2\phi(hk)=\phi(hk+kh)=\phi(h)\phi(k)+\phi(k)\phi(h)=2\phi(h)\phi(k)$ .

Therefore $\phi(hk)=\phi(h)\phi(k)$ . This shows that $\phi$ is $a^{*}$-homomorphism.

REMARK 2. Corollary 1 in [5] follows easily from the equality $(\phi(xy-yx))^{2}=(\phi(x)$

$\phi(y)-\phi(y)\phi(x))^{2}$ for a Jordan homomorphism $\phi$ .
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PROPOSITION 3. Let $A$ and $B$ $be^{*}$ -algebras, and $\phi$ be a linear map of $A$ into B. Then $\phi$

is a homomorphism iff $\phi(x^{*}x)=\phi(x^{*})\phi(x)$ for all $x\in A$ .

PROOF. If $\phi(x^{*}x)=\phi(x^{*})\phi(x)$ for all $x\in A$ , we have

$\phi((x+y)^{*}(x+y))=\phi((x+y)^{*})\phi(x+y)$ for all $x,$ $y\in A$ .
Hence $\phi(x^{*}y)+\phi(y^{*}x)=\phi(x^{*})\phi(y)+\phi(y^{*})\phi(x)$ .
Replacing $y$ by $iy$ and then multiplying $by-i$, we have

$\phi(x^{*}y)-\phi(y^{*}x)=\phi(x^{*})\phi(y)-\phi(y^{*})\phi(x)$ .
Thus $\phi(x^{*}y)=\phi(x^{*})\phi(y)$ . This shows that $\phi$ is a homomorphism. The convers is evident.

COROLLARY 4. Let $A$ be $a^{*}$-algebra, $B$ be $a^{*}$ -algebra with $B_{+\cap}(-B_{+})=\{0\}$ , and $\phi$ be a
linear map of $A$ into B. Then $\phi$ is $a^{*}$ -homomorphism iff $\phi$ is a Jordan *-homomorphism and
satisfies the Cauchy-Schwarz inequality $\phi(x^{*}x)\geqq\phi(x^{*})\phi(x)$ for all $x\in A$ .

PROOF. Let $\phi$ be a Jordan $*.homomorphism$ and let $\phi$ satisfy the $Cauchy\cdot\&hwarz$

inequality. Then we have

$\phi(x^{*}x+xx^{*})=\phi(x^{*})\phi(x)+\phi(x)\phi(x^{*})$ ,

that is, $\phi(x^{*}x)-\phi(x^{*})\phi(x)=-(\phi(xx^{*})-\phi(x)\phi(x^{*}))$ for $x\in A$ .
The left hand side of this equality belongs to $B_{+}$ and the right hand side belongs $to-B_{+}$ .
Henoe $\phi(x^{*}x)=\phi(x^{*})\phi(x)$ holds by the assumption for $B$. Therefore it follows from Pro-
position 3 that $\phi$ is $a^{*}\cdot homomorphism$ .

PROPOSITION 5. Let $A$ be a $*$-algebra, $B$ be $a^{*}$ -algebra with $B_{+\cap}(-B_{+})=\{0\}$ and $\phi$ be
alinear $\cdot mapofAintoB$. Suppose that there isasubsetS ofA such that

(i) $A$ is the linear span of $S$,
(ii) $S$ is self-adjoint, $i$. $e$. $S=S^{*}$ .

Then $\phi$ is $a^{*}\cdot homomorphism$ iff $\phi(x^{*}x)=\phi(x^{*})\phi(x)$ holds for $x\in S$ and the Cauchy-Schwarz
inequality $\phi(x^{*}x)\geqq\phi(x^{*})\phi(x)$ holds for $x\in A\backslash S$.

PROOF. Let $\phi(x^{*}x)=\phi(x^{*})\phi(x)$ hold for $x\in S$ and let $\phi(x^{*}x)\geqq\phi(x^{*})\phi(x)$ hold for
$x\in A\backslash S$. Then $\phi(x^{*}x)=\phi(x^{*})\phi(x)$ holds for $x\in C\cdot S=\{\alpha x;a\in C, x\in S\}$ .
We have for $x,$ $y\in C\cdot S$,

$\phi((x+y)^{*})\phi(x+y)\leqq\phi((x+y)^{*}(x+y))$ ,

$\phi((x-y)^{*})\phi(x-y)\leqq\phi((x-y)^{*}(x-y))$ .
It follows from these inequalities that

$\phi(x^{*})\phi(y)+\phi(y^{*})\phi(x)\leqq\phi(x^{*}y)+\phi(y^{*}x)$ ,

$-(\phi(x^{*})\phi(y)+\phi(y^{*})\phi(x))\leqq-(\phi(x^{*}y)+\phi(y^{*}x))$ .
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That is
$(\phi(x^{*}y)+\phi(y^{*}x))-(\phi(x^{*})\phi(y)+\phi(y^{*})\phi(x))\in B_{+}$ ,

$(\phi(x^{*})\phi(y)+\phi(y^{*})\phi(x))-(\phi(x^{*}y)+\phi(y^{*}x))\in B_{+}$ .
Therefore the assumption for $B$ induces

$\phi(x^{*}y)+\phi(y^{*}x)=\phi(x^{*})\phi(y)+\phi(y^{*})\phi(x)$ . $\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots(1)$

For $x,$ $iy\in C\cdot S$ this equality implies

$i\phi(x^{*}y)-i\phi(y^{*}x)=i\phi(x^{*})\phi(y)-i\phi(y^{*})\phi(x)$ ,

$i$ . $e$ . $\phi(x^{*}y)-\phi(y^{*}x)=\phi(x^{*})\phi(y)-\phi(y^{*})\phi(x)$ . $\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots(2)$

From (1) and (2), $\phi(x^{*}y)=\phi(x^{*})\phi(y)$ . Hence it follows from (ii) that $\phi(xy)=\phi(x)\phi(y)$

for all $x,$ $y\in S$. Therefore it follows from (i) that $\phi(xy)=\phi(x)\phi(y)$ for all $x,$ $y\in A$ . The
converse is evident.

$CoROLLARY6$ . $LetAbeaU^{*}\cdot algebraandBbea^{*}- algebrawithB_{+}\cap(-B_{+})=\{0\}$ . $ Let\phi$

bealinear map ofA into B. $Then\phi isa^{*}- homomorphismiff\phi(A_{q}u)\subset B_{q}uandtheCauchy$’

Schwarz inequality $\phi(x^{*}x)\geqq\phi(x^{*})\phi(x)$ holds for all $x\in A$ .
PROOF. Let $\phi(A_{q}u)\subset B_{q}u$ and $\phi(x^{*}x)\geqq\phi(x^{*})\phi(x)$ hold for all $x\in A$ . Then, we know,

making use of the argument in the proof of [3; Corollary 1], that $\phi$ is a linear $\cdot map$ .
For any $u\in A_{q}u$

$\phi(u^{*}u)=\phi(u^{*}+u)=\phi(u^{*})+\phi(u)=\phi(u)^{*}+\phi(u)=\phi(u^{*})\phi(u)$ .
Therefore it follows from Proposition 5 that $\phi$ is a $*$-homomorphism. The converse is
evident.

W. Zelazko [5] gives a characterization of the multiplicative linear functionals on
complex Banach algebras. Making use of this characteization we have the following.

PROPOSITION 7. Let $A$ be a Banach algebra and $f$ be a linear functional on A. Then $f$

is multiplicative iff $f(A_{q}u)\subset C\backslash \{1\}$ .
PROOF. If $f$ is multiplicative, then

$f(x)+f(y)=f(x)f(y)$

for $x\in A_{qI}$ and its $quasi\cdot inversey$. So $f(x)\neq 1$ ,

$i$ . $e$ . $f(A_{qI})\subset C\backslash \{1\}$ .
Conversely assume $f(A_{qI)}\subset C\backslash \{1\}$ . Whether $A$ has a unit element or not, we make

the unitization $A_{1}=A+C$ and extend $f$ onto $A_{1}$ by putting $f(1)=1$ . If $(x, a)$ is an inver-
tible element of $A_{1}$ , then there exists an element $y$ of $A$ such that

$(x, \alpha)(y,$ $\frac{1}{\alpha})=(0,1)$ ,
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$i$ . $e$ . $(-\frac{1}{\alpha}x)+(-\alpha y)-(-\frac{1}{\alpha}x)(-\alpha y)=0$.

So $-\frac{1}{\alpha}x\in A_{qI}$ and $f(-\frac{1}{\alpha}x)\neq 1$ ,

from which $f((x, a))\neq 0$. Therefore $f((x, a))(0,1)-(x, a)$ is a singular element for any
$(x, a)\in A_{1}$ . Hence $f((x, \alpha))$ belongs to the spectrum of $(x, a)$ . It is now clear from [5;

Theorem 2] that $f$ is multiplicative on $A$ .
PROPOSITION 8. Let $A$ be a Banach algebra, $B$ be a commutative semi-simple Banach

algebra and $\phi$ be a linear map of $A$ into B. Then $\phi$ is multiplicative iff $\phi(A_{qI})\subset B_{qI}$ .
PROOF. Denote the set of all multiplicative linear functionals on $A$ (or on $B$) by

$M(A)$ (or by $M(\otimes)$ .
Let $\phi(A_{qI)}\subset B_{qI}$ . Then

$(f\cdot\phi)(A_{qI})=f(\phi(A_{qI}))\subset f(B_{qI})\in C\backslash \{1\}$ for any $ f\in M(\infty$ .
So it follows from Proposition 7 that $f\circ\phi\in M(A)$ . Therefore

$f(\phi(xy))=f(\phi(x))f(\phi(y))=f(\phi(x)\phi(y))$

for $x,$ $y\in S$ and $f\in M(B)$ .
Now, the assumption for $B$ implies that $\phi(x)\phi(y)=\phi(xy)$ .

REMARK 9. Proposition 8 is not true if $B$ fails to be semi-simple.
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