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1. Introduction

A Jordan *-homomorphism which satisfies the Cauchy-Schwarz inequality is *-homo-
morphic (E. Stermer [4], M. D. Choi [1] and T. W. Palmer [3]). In this paper, we shall
give an elementary proof of this theorem under some weaker assumptions than theirs
(Corollary 4). T.W. Palmer [3; Corollary 1] presents a characterization theorem of
*-homomorphisms from U*-algebras. We shall give an elementary proof of this theorem
(Corollary 6). Finally, we shall show that the linear functional on a Banach algebra
which does not take the value 1 on the quasi-invertible elements is multiplicative.

2. Preliminaries

Let A be a *-algebra. We use the following notations:

Aa={h&EA: h*=h (i. e. Hermitian element of A)}.
A+={ ‘ﬁ ai* aj: a; €A, n=1, 2, }
=1

For A, kEAn we write A<k if k—hcA,.
Aqr={xEA: quasi-invertible element}.
Agu={uEA: w*u=uu*=u+u* (i. e. quasi-unitary element)}.

U*-algebra, introduced by T. W. Palmer, is a *-algebra which is the linear span of its
quasi-unitary elements. Let A and B be *-algebras. A Jordan *-homomorphism ¢ of A
into Bis a linear map such that

¢yt ) =¢(x) d(MN+6() ¢(x) and ¢E*)=¢(x)*
for all x, yEA.

All algebras considered in this paper are those over the complex field C.
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3. Results
Every Jordan homomorphism ¢ of an algebra A into another one satisfies the follow-
ing equality:
(p(xy—yx))2= (9 (x) p(3) —0(») $(x))2  forall =x, yEA.
(cf. N. Jacobson and C. E. Rickart [2]). This equality gives the following.

ProPosITION 1. Let A be a *-algebra and B be a *-algebra with {h&Bu: h2=0}={0}.
Suppose that either A or B is commutative. Then every Jordan *-homomorphism of A into B
is automatically *-homomorphic.

Proor. Let ¢ be a Jordan *-homomorphism of A into B.
(i) The case where A is commutative. We have
(¢ (h) ¢ (k) —¢ (k) ¢ (B))?= (¢ (hk—Fkh))2=0
for #, kEAn. Hence
Li(p(B) g (k) —9(k)p(R)) =0,
and, it follows from the assumption for B that
i(p(h) p(k)—9p (k) p(B))=0
i.e. ¢(h) ¢ (k)= (k) 6 (h).
It follows from this equality that
20(m) ¢ (k) =0 (h) o (k) +¢ (k) ¢ (h) = (hk+kh) =26 (hE).

Therefore o (hk) =g (h) ¢ (k).
Since A=Aun+iAH, ¢(xy)=¢(x)9(») holds for every pair x, y of elements of A.

(ii) The case where Bis commutative. We have
(p(hk—kh))2 = (p(h)p (k) —p (k) $(B))2=0

for h,kcAn. So (¢(i(hk—Ekh)))2=0, and, from the assumption for B, it follows that
¢ (i(hk—kh)) =0

ie. o (hk) = ¢ (kh),
and
2¢(hk) = ¢ (hk+kh) = ¢ (h) ¢ (k) + ¢ (k) p(h) =2¢(h) (k).

Therefore ¢ (hk) =¢(h) ¢(k). This shows that ¢ is a *-homomorphism.

Remark 2. Corollary 1 in [5] follows easily from the equality (¢ (xy—yx))2=(¢(x)
¢(») —¢(») ¢ (x))? for a Jordan homomorphism ¢.
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ProrosiTiON 3. Let A and B be *-algebras, and ¢ be a linear map of A into B. Then ¢
is @ homomorphism iff ¢ (x*x) =¢ (x*) ¢ (x) for all x EA.
Proor. If ¢(x*x)=¢(x*)¢(x) for all xEA, we have
¢((x+9)*(x+3) =8 ((x+3)*) g (x+9) forall x, yEA.
Hence # (x*y) +¢ (y*x) = (x*) $ (3) +9 (3*) 6 (x).
Replacing y by iy and then multiplying by —i, we have
¢ (x*y) — ¢ (y*x) =9 (x*) 6 (9) — 8 (5*) 6 ().
Thus ¢ (x*y) =¢ (x*) ¢ (»). This shows that ¢ is a homomorphism. The convers is evident.

CoroLLARY 4. Let A be a *-algebra, B be a *-algebra with Byn(—B+)=1{0}, and ¢ be a
linear map of A into B. Then ¢ is a *-homomorphism iff ¢ is a Jordan *-homomorphism and
satisfies the Cauchy-Schwarz inequality ¢ (x*x) =¢ (x*) ¢ (x) for all x EA.

Proor. Let ¢ be a Jordan *-homomorphism and let ¢ satisfy the Cauchy-Schwarz
inequality. Then we have

¢ (A*x+22*) =6 (%) ¢ (x) + 6 (%) $ (x%),
that is, d(x*x) —p(x*) () =— (p (xx*) —0p (x) p (x*)) for TEA.

The left hand side of this equality belongs to By and the right hand side belongs to —B,.
Hence ¢ (x*x) =¢ (2*) ¢ (x) holds by the assumption for B. Therefore it follows from Pro-
position 3 that ¢ is a *-homomorphism.

ProprosITION 5. Let A be a *-algebra, B be a *-algebra with Bin(—B3) ={0} and ¢ be
a linear *-map of A into B. Suppose that there is a subset S of A such that
(i) A is the linear span of S,
(ii) S is self-adjoint, i.e. S=S*. v
Then ¢ is a *-homomorphism iff ¢ (x*x) =¢ (x*)$(x) holds for x &S and the Cauchy-Schwarz
inequality ¢ (x*x) = ¢ (x*) ¢ (x) holds for x EA\S.

Proor. Let ¢(x*x) =¢(x*)é(x) hold for ¥ &S and let ¢ (x*x)=¢(x*)#(x) hold for
x&A\S. Then ¢ (x*x) =¢ (x*) ¢ (x) holds for x&C-S={ax: a=C, x&S}.
We have for x, y=C-S,

p((x+9)*) g (x+ =0 ((x+3)*(x+1)),
p((x—9*) g (x—) =9 ((x—3)*(x—3)).
It follows from these inequalities that
#(x%) ¢ (9) +6 (3*) ¢ (2) < ¢ (x*9) + 8 (5*%),
— (@M $ () +8(3*) ¢ (1)) =— ($ (5*9) +¢ (5*2)).
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That is

(¢ (x*y) +6(5*%)) — (B (6*) 8 (3) +6 () 8 (2)) EBs4,

(6(x*) 8 () +6 (5" () — (#(x*y) +¢(y*%)) EB.
Therefore the assumption for B induces

P*N) +B(57*2) =S (A" S(P) F P (PP (). «eeveeermreeeerrreeereeeernreennene )
For x, iyEC-S this equality implies

ig(a*y) —ig (1) =id(x*) () —i s (s o),

ie. ¢ (x*9) —B (5*2) =@ (x*) B (3) =S (PP (). -+ovveeeriieiiiiii 2

From (1) and (2), ¢ (x*y) =¢(x*)#(y). Hence it follows from (ii) that ¢(xy) =¢(x)é ()
for all x, y&S. Therefore it follows from (i) that ¢(xy) =¢(x)#(y) for all x, y=A. The
converse is evident.

COROLLARY 6. Let A be a U*-algebra and B be a *-algebra with Byn(—B+)={0}. Let ¢
be a linear map of A into B. Then ¢ is a *-homomorphism iff ¢ (Aqu) CBeu and the Cauchy-
Schwarz inequality ¢ (x*x) = ¢ (x*) ¢ (x) holds for all x = A.

Proor. Let ¢(Aqu) CBgu and ¢ (x*x) = ¢ (x*) ¢ (x) hold for all x EA. Then, we know,
making use of the argument in the proof of [3; Corollary 1], that ¢ is a linear *-map.
For any uEAqu
¢ (w*u) = ¢ (w*+u) =@ (u*) + ¢ (w) = (u) *+ ¢ (u) = ¢ (u*) ¢ ().

Therefore it follows from Proposition 5 that ¢ is a *-homomorphism. The converse is
evident.

W. Zelazko [5] gives a characterization of the multiplicative linear functionals on
complex Banach algebras. Making use of this characteization we have the following.

ProprosITION 7. Let A be a Banach algebra and f be a linear functional on A. Then [
is multiplicative iff f(Aqu) CC\{1}.

Proor. If f is multiplicative, then
F@)+f)=r=x)f(y
for x ©=Aqr and its quasi-inverse y. So f(x) #1,
i.e. F(Aqr) CC\(1).

Conversely assume f(Aqr) CC\{1}. Whether A has a unit element or not, we make
the unitization A;=A+C and extend f onto A; by putting f(1)=1. If (x, @) is an inver-
tible element of A,, then there exists an element y of 4 such that

(5, (5 —2-)=, 1,
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i.e. (—%—x >+ (—ay)—(—_—i_—x >(—ay) = 0.
So ——-}T-x EAqr and f(——‘%—x)il,

from which f((x, @))#0. Therefore f((x, &¢)) (0, 1) — (x, @) is a singular element for any
(x, ) EA;. Hence f((x, @)) belongs to the spectrum of (x, @). It is now clear from [5;
Theorem 2] that f is multiplicative on A.

ProrosiTiON 8. Let A be a Banach algebra, B be a commutative semi-simple Banach
algebra and ¢ be a linear map of A into B. Then ¢ is multiplicative iff ¢(Aqr) CByr.

Proor. Denote the set of all multiplicative linear functionals on A (or on B) by
M(A) (or by M(B)).
Let ¢(Aqr) CByr. Then

(f¢) (Aqr) = ($(Aqr)) Cf (Ber) €C\(1} for any f&M(B).
So it follows from Proposition 7 that f-¢ EM(A). Therefore

F@@n))=rf@®) f@()=r (@) ()

for x, y&S and feM(B).
Now, the assumption for B implies that ¢ (x)¢ () =¢(xy).

RemARrk 9. Proposition 8 is not true if B fails to be semi-simple.

References

[1] M.D. CHo1, A Schwarz inequality for positive linear maps on C*-algebras, Illinois J. Math., 18
(1974), 565-574.

[2] N. Jacosron, and C. E. RickarT, Jordan homomorphisms of rings, Trans. Amer. Math. Soc., 69
(1950), 479-502.

[3] T.W.PALMER, Characterizations of *-homomorphisms and expectations, Proc. Amer. Math. Soc.,
46 (1974), 265-272.

[4] E. STorRMER, On the Jordan Structure of C*-algebras, Trans. Amer. Math. Soc., 120 (1965), 438
447,

[5] W. 2ELA2K0, A characterization of multiplicative linear functionals in complex Banach algebras,
Studia Math., 30 (1968), 83-85.



	1. Introduction
	2. Preliminaries
	3. Results
	References

