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MINIMAL SUBMANIFOLDS IMMERSED
IN A COMPLEX SPACE FORM

MAYUKO KON

ABSTRACT. We study a minimal submanifold M of a complex space form M™(c)
of constant holomorphic sectional curvature c. We give a Simons’ type formula for
|A]2, the square of the length of the second fundamental form A of a minimal sub-
manifold M of M™(¢),c > 0. As applications, we prove some pinching theorems
in terms of |A|2. We also give some fundamental results of submanifolds of M™(c)
related to the structure induced from the action of the almost complex structure
of M™(c). We do not assume the condition that the immersion is compatible with
the standard fibration.

1. Introduction

In 1968, Simons [10] gave the integral formula for the square of the length of the
second fundamental form A of a compact n-dimensional minimal submanifold M
in a real space form M™(k) of constant curvature k. The specific expression of the
formula is the following:

%A|A|2 = kAP — 3 (1 An A2 + 3 tr[Au,, Ay P + VAP,
a,b a,b
where {v1,--- ,vp} is an orthonormal basis of normal vector space and p = m —n
is the codimension of M. Here we denote by | - | the length of a tensor with respect
to the Riemannian metric g on M and by [, ] the commutator.

As an application, Simons proved that if the second fundamental form A of a
compact n-dimensional minimal submanifold M in S™*? satisfies |A|?> < n/(2—1/p),
then M is totally geodesic. Moreover, Chern, do Carmo and Kobayashi [4] proved
that if the second fundamental form A satisfies |A|?2 = n/(2 — 1/p), then M is a
Clifford hypersurface or a Veronese surface in S4.

The Simons’ type formula was studied by many authors under different situations,
and many interesting results are given. For the special submanifolds of complex
space forms, we see the following results:
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For the study of complex submanifolds in a complex space form, Ogiue [7] and
Tanno [11] showed the Simons’ type formula for the square of the length of the
second fundamental form.

In 1974, Chen-Ogiue (3] made the Simons’ type formula for minimal totally real
submanifolds in a complex space form M™(c).

Simons’ type formula for generic submanifolds and C'R submanifolds in M™(c)
was given by Yano-Kon [13] under some additional conditions on the normal cur-
vature and the mean curvature vector field. Using this formula, they proved some
results of the pinching problem for the square of the length of the second fundamen-
tal form.

For the general submanifolds of a complex space form, a direct extension of Simons
methods for the sphere to the complex projective space CP™ as an ambient space
has some difficulties (see Lawson [6]). So many authors push known theorems on
the sphere down to CP™ by using the following commutative diagram:

N — S2m+1

1 !
M — CP™,

where 7 : §2"*t! — C'P" is the standard fibration and N and M are submanifolds
of $?"+1 and CP™", respectively (cf. [6], [8], [13]). '

In this paper, we compute the Simons’ type formula and its useful modification
for general submanifolds in a complex space form M™(c), ¢ > 0, and give pinching
theorems in terms of the square of the length of the second fundamental form with-
out the assumption that the existence of the above commutative diagram for the
standard fibration.

In section 2, we prepare some definitions and basic formulas for submanifolds in
a complex space form M™(c). In section 3 and section 4, we give a Simons’ type
formula for submanifolds in a complex space form. Using the formula, we prove
some pinching theorems for the square of the length of the second fundamental form
or the scalar curvature. In the last section, we give some results for submanifolds in
a complex space form with semi-flat normal connection.

2. Preliminaries

Let M™(c) denote the complex space form of complex dimension m (real dimension
2m) with constant holomorphic sectional curvature c. We denote by J the almost
complex structure of M™(c). The Hermitian metric of M™(c) is denoted by g.

Let M be a real n-dimensional Riemannian manifold immersed in M™(c). We
denote by the same g the Riemannian metric on M induced from that of M™(c), and
by p the codimension of M, that is, p = 2m — n. We denote by V the Levi-Civita



connection in M™(c) and by V the connection induced on M. Then the Gauss and
Weingarten formulas are given respectively by

VxY =VxY + B(X,Y), VxV = —AyX + DxV

for any vector fields X and Y tangent to M and any vector field V' normal to M,
where D denotes the normal connection. A normal vector field V on M is said to
be parallel if DxV = 0 for any vector field X tangent to M. We call both A and B
the second fundamental form of M that are related by ¢(B(X,Y),V) = g(AvX,Y).
The second fundamental form B is symmetric. Ay can be considered as a symmetric
(n, n)-matrix.

For the second fundamental form B, we define V B, the covariant derivative of B,
by

(VxB)(Y,Z) = Dx(B(Y,Z)) — B(VxY,Z) — B(Y,VxZ)

for any vector fields X, Y and Z tangent to M. If VxB =0 for all X, then the
second fundamental form B of M is said to be parallel. This is equivalent to the
condition VxA = 0 for all X, where Vx A is defined by

(VxA)WY =Vx(AvY) — Ap,vY — Ay (VxY).
We notice the relation
9((VxB)(Y, 2),V) = g((VxAWY, Z).

The mean curvature vector p of M is defined to be p = (1/n)trB, where trB is
the trace of B, that is trB = ), B(e;, €;), {e;} being an orthonormal basis for the
tangent space T,,(M) at z. If u = 0, then M is said to be minimal.
We next give some notations and fundamental formulas on M induced from the
action of the almost complex structure J of M™(c) to the tangent space of M.
For any vector field X tangent to M, we put

JX = PX + FX,

where PX is the tangential part of JX and FX the normal part of JX. Then P
is an endomorphism on the tangent bundle T (M) and F is a normal bundle valued
1-form on the tangent bundle T'(M).

For any vector field V normal to M, we put

JV =tV + fV,

where tV is the tangential part of JV and fV the normal part of JV. Then P and
f are skew-symmetric with respect to g and g(FX,V) = —g(X,tV). We also have
P?=_]—tF, FP+ fF =0, Pt+tf = 0 and f?2 = —I — Ft. We notice that
|FP| = |fF|=|Pt| = |tf|, where | - | denotes the length of a tensor with respect to
g.



We define the covariant derivatives of P, F', ¢t and f by (VxP)Y = Vx(PY) —
PVxY,(VxF)Y = Dx(FY)-FVxY, (Vxt)V =Vx(tV)—tDxV and (Vxf)V =
Dx(fV) — fDxV, respectively. We then have

(VxP)Y = Apy X +tB(X,Y), (VxF)Y = —B(X,PY)+ fB(X,Y),
(th)V = —PAy X + Ava, (fo)V =—-FAyX — B(X, tV)

The Riemannian curvature tensor R of a complex space form M™(c) is given by

RX,Y)Z =§ (g(Y, 2)X — g(X, 2)Y + g(JY, Z)JX

— g(JX, Z)JY +2g(X, JY)JZ)

for any vector fields X, Y and Z of M™(c). Then the equation of Gauss and the
equation of Codazzi are given respectively by

R(X,Y)Z =5 (9(Y, 2)X — 9(X, 2)Y + g(PY, Z)PX — g(PX, Z)PY
—29(PX,Y)PZ) + Apw.)X — Apx,2)Y

and
(VXB)(Y’ Z) - (VYB)(X’ Z)

=§ (g(PY, Z)FX — g(PX, Z)FY +2¢(X, PY)FZ).
We define the curvature tensor R+ of the normal bundle T(M)+ of M by
RY(X,Y)V = DxDyV — DyDxV — Dixy,Z,

where X and Y are vector fields tangent to M and V is a vector field normal to M.
Then we have the equation of Ricci:

g(RY (X, Y)U,V) + g([Av, Av) X, Y)
c
=2 (s(FY, )g(FX,V) - g(FX,U)g(FY,V)
+29(X, PY)g(fU,V)),
where [, ] denotes the commutator and [Ay, Ay] = Ay Ay — AyAy.

Definition 2.1. Let M be an n-dimensional submanifold of a complex space form
M™(c). If the normal curvature tensor R+ of M satisfies

RY(X,Y)U = %cg(X, PY)fU

for any vector fields X and Y tangent to M and any vector field U normal to M,
then the normal connection of M is said to be semi-flat.

If the normal curvature tensor R' of M vanishes identically, then the normal
connection of M is said to be flat.



We denote by S the Ricci tensor field of M. Then we have
S(X,Y) =§ ((n ~ 1)g(X,Y) + 3g(PX, PY))

+ ) trAag(AX,Y) = D g(ALX,Y),

where {vi, - -+ v,} is an orthonormal frame for the normal space T,,(M)* at « and A,
is the second fundamental form in the direction of v,. From this the scalar curvature
r of M is given by

r = :i-((n - ].)TL - 3trP2) + ;(171‘140)2 - |A|27

where |[A]? =Y, TrA2.
Next we define the notion of CR submanifold (Bejancu [1]).

Definition 2.2. A submanifold M of a Kahler manifold M with almost complex
structure J is called a CR submanifold of M if there exists a differentiable distri-
bution D : £ — D, C T(M) on M satisfying the following conditions:

(i) H is holomorphic, i.e., JD, = D, for each z € M, and

(ii) the complementary orthogonal distribution D+ : x — D C T,(M) is anti-
invariant, i.e., JD} C T,(M)?' for each z € M.

If JT,(M)+ C T,(M) for any point = of M, then we call M a generic submanifold
of M. Any real hypersurface of M™(c) is obviously a generic submanifold of M™(c).

If JT,(M) C T,(M) for any point z of M, then F' and t vanish identically, and
we call M a complex submanifold of M. If JT,(M) C T,(M)* for any point z of
M, then we call M a totally real submanifold of M. Then P vanishes identically.

Lemma 2.3. Let M be a CR submanifold of a Kdhler manifold M. Then
FP=0, fF=0, tf=0, Pt=0,
PP+P=0, f°+f=0.

We use the following theorem (see [13]).

Theorem 2.4. In order for a submanifold M of a Kdhler manifold M to be a CR
submanifold, it is necessary and sufficient that FP = 0.

Example. Let S?™*! be a (2m + 1)-dimensional unit sphere and N be a (n + 1)-
dimensional submanifold immersed in S?™*!. With respect to the standard fibration
7 : §2m+l — CP™, we consider the following commutative diagram (cf. [6], [9],

[13])



N — 52m+1

1 !
M — CP™
We denote by (¢, £,7n,G) the contact metric structure on S?™+!, The horizontal
lift with respect to the connection 7 will be denoted by *. Then (JX)* = ¢X* and
G(X*,Y*) = g(X,Y)* for any vectors X and Y tangent to CP™. A submanifold N
in S?m*! is tangent to the totally geodesic fibre of m and the structure vector field
¢ is tangent to N.
Let a be the second fundamental form of N in S?™+1. Then we have the relations
of the second fundamental form o of N and B of M:

a(X*,Y*)=B(X,Y), «al€)=0.
Moreover, we have
(Vx-a)(Y*,Z2%) = [(VxB)(Y, Z) + g(PX,Y)FZ + g(PX, Z)FY]",
(Vx-a)(Y*,§) = [fB(X,Y) — B(X, PY) — B(Y, PX)]",
(Vx-a)(§,€) = —2(FPX)*

for any vectors X, Y and Z tangent to M. From the third equation, we see that
if the second fundamental form a of N is parallel, then FP = 0 and M is a CR
submanifold of C P™ by Theorem 2.4.

We denote by u/ = (1/(n + 1))tra the mean curvature vector field of N, and by
1 = (1/n)trB the mean curvature vector field of M. Then we have
n * /0 *
| 1POxn)s Dep' = (fu)”,
where D’ is the normal connection of N. Thus the mean curvature vector field p'
of N is parallel if and only if the mean curvature vector field u of M is parallel and

fu=0.
Let K+ be the curvature tensor of the normal bundle of N. Then we have

G(KH(X*, Y*)V*,U*) = [g(R*(X,Y)V,U) - 29(X, PY)g(fV, U)I",
GEH (X, V", U*) = g(VxfIV,U)*

for any vectors X and Y tangent to M and any vectors V and U normal to M.
Therefore, the normal connection of N in S?™*! is flat if and only if the normal
connection of M is semi-flat and V f = 0 (see (8], [9], [13]).

We put

p*, Diy.u' =

po=

k k
N = 8™ (ry) x -+ x S™(ry), n+1=2mi, 1=er,
i=1

=1



where my, - - - , my are odd numbers. Then n+k is also odd. The second fundamental
form « of N is parallel in S?™*1. We can see that M = m(N) is a generic submanifold
in CP(™+%=1)/2 with flat normal connection. Especially, 7(S*(r1) x S™(r2)) is called
a geodesic hypersphere in CP™*t1/2 Moreover, M is a CR submanifold in CP™
(m > (n + k — 1)/2) with semi-flat normal connection and V f = 0.

If r; = (my/(n+1))Y2 (i = 1,--- ,k), then M is a generic minimal submanifold
in CP™*+%=1/2 Then we have |A]? = trA2=(n—1)q, ¢ =k — L.

If M is a complex submanifold in CP™, the normal connection of M is semi-flat
if and only if M is totally geodesic (see [5]).

3. Laplacian
In the following, we put V; = V., and D; = D,,, where {e;} being an orthonormal

basis of T,,(M). We use the following (see Simons [10])

Lemma 3.1. Let M be a submanifold of a locally symmetric Riemannian manifold
M. If the mean curvature vector field of M is parallel, then

9((V*B)(X,Y),V) = Z 9((ViV;B)(X,Y),V)

- Z(2g(R(ei, Y)B(X, e:), V) + 29(R(e;, X)B(Y, ), V)

— 9(AvX, R(e;, Y)e:) — g(AvY, R(es, X)es) + g(R(ei, B(X,Y))e:, V)
+ g(R(B(es, &), X)Y, V) — 29(Aves, R(es, X)Y))

+3 (trAag(AVAaX, Y) — trAuAvg(AaX,Y) + 29(A Ay A, X, Y)

~ g(AZAvX,Y) — g(AvA2X,Y)).

We notice that g((V2B)(X,Y), V) = g((V2A)y X,Y) for any vectors X,Y tangent
to M and any vector V normal to M. Since a complex space form M™(c) is locally



symmetric, using the expression of the curvature tensor R of M™(c), we obtain
9(V*A, A)
ne 3c c
= Z|A|2 - Zb:trAaAbg(tva, tw) — ;(trAa)z

3c 2 .2 , 3C 2, 3C
-5 ; trP“A; + 5 Xa:(trAaP) + T ;b:trAbg(Aatva, tup)

+c Z (g(Aat'ub, Aptv,) — g(Agtv,, Abtvb)) —2c Z trA,Asq P
ab a

+ (trAbtrAﬁAb — (trAaAp)? + 2tr(A,4;)? — 2trA§A§),
a,b :

where we put Ay, = Ay,,. Substituting equations:

D trAaAsg(tva, tos) = |A* = trAg Avg(fva, fus)

a,,b aab

= AP =) trds,
2 (trA2A7 — tr(A,Ap)%) = — ) tr[Aa, A7,
a,b a,b

2) (tr(A.P)? — trAZP?) = ) |[P, AJ]]?
into the equation above, we have the following theorems.

Theorem 3.2. Let M be an n-dimensional submanifold of a complex space form
M™(c) with parallel mean curvature vector field. Then we have

g9(V?A, 4)

_(n=3)c, 2, 3¢ g C s  3c
=7 lAP+ Za:trA e =7 ;(trAa) +5 ;trAbg(Aatva, ts)

+c Z(g(Aatvb, Aptv,) — g(Agtva, Apty)) — 2¢ Z trA,Ase P

a,b

3
+5 Z I[P, AP + D trlAa, Al + D (trAptrAZ A, — (trAaAs)?).

a,b a,b

When M is minimal, trA, = 0 for all a. Thus Theorem 3.2 reduces to



Theorem 3.3. Let M be an n-dimensional minimal submanifold of a complex space
form M™(c). Then we have

9(V2A, A)
_ (n=3)c, 12, 3¢ 9
= 1 |A| + 'Z Ea:trA a

+ cZ(g(Aatvb, Aptv,) — g(Agtvg, Astup)) — QCZtrAaAfaP

a,b a
3
+ NP AR+ trl A, A = Y (trAads)”
a ab a,b

Next, we compute the Laplacian for the square of the length of F' of an n-
dimensional submanifold M immersed in M™(c).

Lemma 3.4. Let M be an n-dimensional submanifold of a complex space form
M™(c) with parallel mean curvature vector field. Then we have

A|F[? =3c|Pt|? + 4> trA}, —4> trA,As,P

-4 Z g(Agtvs, Agtuy) + 4 Z 9(Aqgtup, Aptv,).

a,b a,b

Proof. First we compute
1 s 1
—2-A|F| = §;Vjng(F€i,F€i)

= V;9((V;F)e;, Fe;)
0
= (V;9(Aae;, Ptva) + V;9(Asae;, tva))
7a
= Z(g((»vjA)aej’ Ptva) + g(ADj'Ua,ej7 Ptva) + g(Aaej’ (vjp)tva)
':(.;(Aaej’ P(Vjt)va) + g(Aaej’ PtDj'Ua) + g((VjA)faej’ t’Ua)
+ 9(AD, fua€5s tva) + g(Asaes, (Vit)va) + g(Asaesy tDjva)).

Since the mean curvature vector field of M is parallel, using the equation of Codazzi,
we have



Zg((vjA)aej’ X) = Zg((vjA)aXv ej)

3c
=Y 9((VxA)aes,€5) — 7 9(PX, tva)
i

- —%g(PX, t05).

Moreover, using formulas for VP and Vt, we obtain our equation.

4. Integral formulas

In this section we give integral formulas for a compact submanifold in a complex
space form M™(c), ¢ > 0, with respect to the square of the length of the second
fundamental form A.

We notice that second fundamental form Ay can be considered as a symmetric
- (n,n)-matrix for any vector V normal to M. For an orthonormal basis {e;} of the
tangent space T,(M) and an orthonormal basis {v,} of the normal space T,(M)*,
we put Aze; =), hdex. Let Hy,a=1,---,p, be a symmetric (n+ 1, n + 1)-matrix
defined as

54 o hin |

H, = A, ol : |
P nl h?m P
ps pal 0 pg .. pa |0

where puf = —(1/c/2)g(tva, €;). In the following, we put |H|? = 3 trH2.
The main purpose of this section is to prove the following

Theorem 4.1. Let M be an n-dimensional submanifold of a complex space form
M™(c), ¢ > 0 with parallel mean curvature vector field. Then

c2
— 9(V*A,4) - Z(|PPIt? +|FPP)

43 Z(trA2a + |[P, Aa]|? — 4trA,Aso P) + %WP]2

(n + 1)c

= Ztr[Ha, Hy? + Z(trHaHb)2 — Z|HP + = A|F|2

4+ = Z(trH )2 = trHytrH2H, + Ztertr((H H, — HyH,)H,E),
a,b ab



where

Remark. In Theorem 4.1, if the mean curvature vector field x of M satisfies fu = 0,
then >, trHyptr((HoHp — HyH,)H,E) = 0. For the condition fu = 0, see Example
in section 2.

Before we prove Theorem 4.1, by the consequence of this theorem, we state the
following theorems.

Theorem 4.2. Let M be an n-dimensional minimal submanifold of a complex space
form M™(c), ¢ > 0. Then

2
— g(V?A,A) — %(|P|2|t|2 + |FP|2)
3¢ 5 \ 32 .
+ Y (trA} + [P Al — 4trAuAsaP) + = |FP)

== tr[Ha, Hy)? + Y _(trHHy)* — (”—“—)fuﬂz A|F|2.
a,b a.b

If M is compact, then [, |[VA? = — fMg(VzA, A) (see [10]). Thus we have

Theorem 4.3. Let M be an n-dimensional compact submanifold of a complex space
form M™(c), ¢ > 0, with parallel mean curvature vector field. Then

2 o
/ (|v,4|2 — S (PRI + FPP)

+ = Z trA2, + |[P, Ag]|? — dtrA, A P) + ——lFPl )

_ /M(‘ S te[Ha, Hol? + Y (trHoHy)? — MIH 5

a,b aab

¢ 2 2
= E ) — E : H
+ d (trH,) 2 trHytr H, Hy

+ 3" trHytr((HoHy — HbHa)HaE)).
a,b



Theorem 4.4. Let M be an n-dimensional compact minimal submanifold of a com-
plex space form M™(c), ¢ > 0. Then

C2
[ (1v4r = S (PP + 1FPE)

+ %E Z(trAza + |[P, Ao)|? — 4trA, Af, P) + §4£|FP|2)
= / (— ZtT[Ha, Hy* + Z(trHaHb)2 - @Uﬂz)
M a,b ab

To prove Theorem 4.1, we prepare some lemmas.

Lemma 4.5. Let M be an n-dimensional submanifold of a complex space form
M™(c), c> 0. Then

— Z tI‘[Ha, Hb]2 = E (—tl‘[Aa, Ab]2
ab

a,b
+ C(g(Aat'Ub, Aat'Ub) - g(Aat'Ub, Abt'Ua))
+ c(g(Aat'Ua, Abtvb) - g(Aatvb, Abtva))

+ —Csi(g(t'va, tv,)g(tup, tvy) — g(tva,tvb)z)).

Proof. By the straightforward computation, we have

— ) tr[Ha, Hy)?
a,b

=2 trH2HZ -2 tr(H.Hp)?

a,b a,b
a ja b
=2 E ( Z hi kjh?'lh?i +2 Z hjlh?i/*"?u; + Z hik Zw?n?
a,b 1,5k, 2,5, 7,k
+ et + 2 Rkt + O () (O (uh)?)
4,3 Jrksl k l
= > AR RARG — S R utut — 7 ha R ulul
i’j’k’l i,j7l i’j,k
= > utubugut — 2 3 Wbkt — (37 uend)?).
i, gkl k



Since Aqe; = >, hier and pf = —(y/c/2)g(tv,, e;), we have

—Ztr[Aa,Ab P =23 (D hihighuhi — D hihishgh

ab ’L],kl 1.71kl
Zg(Aat’Ub, Agtup) = Zg (Aatvp, €:)g(Aatvs, €;)
a,b a,b
= - Zzh AT
ab ikl
> g(Adtuy, Astu,) = Zzhﬁchuuiui‘,
ab ab ikl
Zg (Agtva, Astuy) = Zzh zll"’i“?’
a,b i,k

Z(g(tva,tva)g(tvb,tvb) — g(tve, tvy)?)

a,b
= %?— (P = O man)?).
k l k

a,

From these equations we have our equation. O

We also have

Lemma 4.6. Let M be an n-dimensional submanifold of a complex space form
M™(c), ¢ > 0. Then

Z(trH Hy)? = (tr AsA)? + clA]” - thrA2a —|Ft|2
a,b

Lemma 4.7. Let M be an n-dimensional submanifold of a complex space form
M™(c), ¢ > 0. Then ’

C
(I = AP + JJtf.

Lemma 4.8. Let M be an n-dimensional submanifold of a complex space form
M™(c), ¢ > 0. Then

1 Z (trdg)? — = Z trApg(Agtv,, tup) — Z trAptrA2 A,

ab ab
- Z(trH )2 = trHytrHZH, + > trHytr((HoHy — HyHo) HoE).
a,b a,b



Proof. From the definition of H,, we have trH, = trA,. Next, by the straightforward
computation, we have the following equations

ZtrH2Hb > O hihs Z Sieud + 22’%’,#?#?

a 1.7:

Ztr( H,H, — HyH,)H,E) = Z(Z Sutns — Zh;zu;’u:

Thus we have

Z trHytr H2Hy +  _ teHytr((HoHy — HyH,)H,E)
ab

= Z(ter)(Z h + 3 Z Sills ,uJ

)J’
On the other hand, we have

% D> _(trAs)g(Aatva, tus) + Z trAytrA2 A,

= (trH,)(3>  h&utul + Z hghish
a,b 2,3

,.77

From these equations, we have our equation. O

From Theorem 3.2 and Lemmas 3.4, 4.5-4.8, we have Theorem 4.1.

5. Pinching theorems

We give some pinching theorems with respect to the square of the length of the
second fundamental form A and the square of the length of H. First, we prepare
some inequalities.

Lemma 5.1. Let M be an n-dimensional submanifold of a complex space form
M™(c¢). Then

VAR > S (PRI + |FPP).
Proof. We put
Ti(X,Y, Z) = (VxB)(Y, Z) + E(g(PX, Y)FZ + g(PX, Z)FY).
Then
|T2| =|VBJ? + Z 9(Pe;, Pe;)g(tvg, tv,) + — Z g(F Pe;, F Pe;)

1.0.

+¢Y_ g((ViB)(Pese;), Fe;).

1,j



From the equation of Codazzi, we obtain

> 9((ViB)(Pes,e;), Fej)

i3

= Z 9((V;B)(e;, Pe;), Fej) — 2 Z g(Pe;, Pe;)g(tvg, tv,)

%7 i,a

- _2 3" 9(FPe;, FPe;).

- Since B is symmetric and P is skew-symmetric, the first term in the right hand side
of the equation vanishes. So we have our assertion. O

Lemma 5.2. Let M be an n-dimensional submanifold of a complex space form
M™(c) with parallel mean curvature vector field. If the equality

2
VAP = Z (PPl +|FPP)
holds, then M is a CR submanifold or ¢ = 0.

Proof. By the proof of Lemma 5.1, the equation holds if and only if T} = 0. Suppose
that T; = 0. Then we have

Dx(trB) = 3 (VxB)(ei,e:) = —gFPX.

Since the mean curvature vector field of M is parallel, we see that Dx(trB) = 0.
When ¢ # 0, we have FP = 0. Then, from Theorem 2.4, M is a C R submanifold. [

Lemma 5.3. Let M be an n-dimensional submanifold of a complex space form
M™(c). Then

D Al + D [P AdP -4 trA. AP > 0.

Proof. We put
To(X,Y) = fB(X,Y) - B(X,PY) - B(PX,Y).
Then we have

ITo* =) " |fBles, ;) — B(ei, Pe;) — B(Pes, )|

%]
= trAl, + ) I[P AP — 4 trA.AsP.

Thus we have our inequality. a



Remark. From the consideration of Example in section 2 and Lemma 5.2, we see
that the conditions 73 = 0, 75 = 0 and FP = 0 for a submanifold M of CP™
correspond to the notion of the second fundamental form a of a submanifold of
S?m+1 is parallel. Moreover, if T, = 0, we see that fu = 0. When M is a generic
submanifold, the condition 7; = 0 was studied by Yano-Kon [12].

Lemma 5.4. Let M be an n-dimensional submanifold of a complex space form
M™(c) with parallel mean curvature vector field. If Ty = 0 and T, = 0, then |A|?
and |H|? are constant.

Proof. Since T; = 0, Lemma 5.1 implies
(VxB)(Y,Z) = —z (9(PX,Y)FZ + g(PX, Z)FY).

Moreover, by Lemma 5.2, M is a CR submanifold, and hence |t| is constant. We
notice that

|A =" g(Acei, Aaes) = Y _ g(Blei, €;), Blesse;)) = | BI.
a,i 6,

Then we have

VxI|AP =23 g((VxB)(ei,e;), Blei,e;)) = > _ g(AaPX, tv,).
iij a
Since T; = 0, we also have fB(X,Y) = B(PX,Y) + B(X, PY). Hence we obtain
e 9(AcX tfug) = 3, 9(AaP X, tv,) + 3, 9(AeX, Ptv,). From Lemmas 2.3 and
4.7, we see that |A|? and |H|? are constant. ‘ O

We need the following lemma (see Chern-do Carmo-Kobayashi [4]).
Lemma 5.5. Let A and B be symmetric (n,n)-matrices. Then
—tr(AB — BA)2 < 2trA%trB?,

and the equality holds for non-zero matrices A and B if and only if A and B can be
transformed simultaneously by an orthogonal matriz into scalar multiples of A and
B respectively, while

A=

Moreover, if Ay, As and Az are (n,n)-symmetric matrices and if

—tr(A;A; — A;A;)? = 2trAftr A3, 1<4,5<3

)

then at least one of the matrices A; must be zero.



Using these lemmas, we prove following

Theorem 5.6. Let M be an n-dimensional compact minimal submanifold of a com-
plex space form M™(c), ¢ > 0. If H satisfies

(n+1)c

8 — 4/ D

then M is a totally geodesic complex submanifold M™?(c) or a real hypersurface of
M™(c) with |A]? = (n — 1)c/4.

|H|* <

Proof. Using Lemma 5.5, for a suitable choice of an orthonormal basis {v, }, we have

Z(trH H,)? }: tr[Ha, Hy)?

< Z(trH2 +2 Z tr H>tr H?
a#b .

= z(z trH?)? — Z(ter)z
(2 — —)(Z trH?)? — EZ(trHa — trHY)

a>b

<(2--)|H*
( p)l |
From Theorem 4.4, Lemmas 5.1 and 5.3, we obtain
2
0< / (VAP - S(PPIe? + |FPP)

+5 Z(tuﬁa + [P, Ad]|? — 4trA, A;o P) + —|FPl )

< [ (- Diap - 200 e

Thus we see that if |H|?> < (n + 1)¢/(8 — 4/p), then FP = 0 and M is a CR
submanifold by Theorem 2.4. Moreover, we have |[VA? = (c?/8)(n — q)q, where
g = t|> =3, 9(tva, tv,). Then Lemmas 5.1 and 5.3 imply that 73 = 0 and T, = 0.
Therefore, by Lemma 5.4, |A|? and |H|? are constant. Consequently we see that
|H[? = (n+ 1)c/(8 — 4/p) or |H]? = 0.

Suppose that |H|? = 0. From Lemma 4.7, we have A, = 0 and tv, = 0 for all v,.
Thus M is a totally geodesic complex submanifold, that is, M is a complex space
form M™?2(c) of M™(c).

‘Next we suppose that |H|? = (n+ 1)c/(8 — 4/p). Since Y ., (trHZ — trHZ)?> =0,
we have trH2 = trHZ for any a # b. Thus, from Lemma 5.5, we havep =1 or p = 2.



Suppose that p = 2. If dimD+ = 0, then M is a complex submanifold of M™(c).
Hence we have PA, + A,P =0 and Ay, = PA, (c.f. [12]). On the other hand, we
obtain trA% + |[P, A,]|? — 4trA, A P = 0. Thus we see that A, = 0 for all @ and
that M is a totally geodesic complex submanifold M™?(c) of M™(c).

If there exist vector fields X € D! and V € N, where N is the orthogonal
complementary of JDF in T,(M)*, then JX € JD! and JV € N. So we have
dim7,(M)* > 3. This is a contradiction. Thus we see that if dimD+ # 0, then
dimN = 0, that is, M is a generic submanifold of M™(c).

Suppose that dimD+ # 0. Since M is generic, we have fv = 0 for any v € T,,(M)*.
Then, we obtain

Z(tl‘A2a + |[P, Aa]lz - 4trAaAfaP) = Z I[P’ Aa]|2 = 0’

that is, A,P = PA, for all v,. Changing the order of the orthonormal basis {e;} of

T,(M), we suppose that e;,e; € DL, e3,--- ,e, € D, and v, = Je, (a = 1,2). Since
A,P = PA, for all a, we have

9(AqtV, PX) = —g(A.PtV, X) = 0

for any tangent vector field X and normal vector field V. So we have g(A,e;, e;) =
hi; = h5; =0fori=1,2 and j > 3. Since rankH, = 2 and tr4, = 0 for a = 1, 2,
the matrices H, (a = 1,2) are represented as

0 hi Ve/2
K, 0 0 0
. 0
S 0 s
0
\'Ve/2 0|0 ... 0] 0 )
and
( 0 A% 0 )
h2, 0 0 |+vc/2
o 0
1 o 0 :
0
\ 0 /2|0 ... 0] 0 )

By Lemma 5.5, there exist an orthogonal matrix T' = (¢;;) and scalars o and (3 such
that TH;T-! = oA and TH,T~! = 3B. By the straightforward computation, we
have ¢1; = 0,t12 = 0,t2; = 0 and t22 = 0. Hence we obtain 4, =0 (a =1, 2).



On the other hand, from Lemma 4.7 and }__ g(tva, tvs) = p = 2, we have
_(n=5)c
=

Consequently, we have n = 5 and hence 2m = 7. Thus is a contradiction. Hence
we see that if |[H|? = (n 4 1)c/(8 — 4/p), then M is a real hypersurface with |AJ* =
(n — 1)c/4. Thus we have our theorem. O

Al = |H[* —

From Theorem 5.6, we have

Theorem 5.7. Let M be an n-dimensional compact minimal submanifold of a com-
plex space form M™(c),c > 0. If the second fundamental form A satisfies

|A* < ( n_+1} —2p),

then M is a totally geodesic complex submanifold M™?(c) or a real hypersurface of
M™(c) with |A]2 = (n — 1)c/4.

Proof. Since p > |t|?, we have

2 6( T L 2(t|?
4" < 4(2—1/p 11).
From Lemma 4.7, we obtain |H|? < (n + 1)¢/(8 — 4/p). Thus, from Theorem 5.6,
we have our conclusion. a

Remark. If M is a real hypersurface of M™(c) with |A|? = (n — 1)c/4, we see that
PA, = A,P. Then M has at most three constant principal curvatures. When the
ambient manifold M™(c) is CP™+1/2 of constant holomorphic sectional curvature
4, if the second fundamental form A of a compact minimal real hypersurface M
of CP™M+D/2 gatisfies |A|2 = n — 1, then M is 7(S*+(((2p + 1)/(n + 1))/?) x
S2+(((2¢ +1)/(n+1))2)), 2(p + q) = n.

Corollary 5.8. Let M be an n-dimensional compact minimal submanifold of M™(c).
If the scalar curvature v of M satisfies

n+1)
2—1/p/’

then M is a totally geodesic complex submanifold M™?(c).

r>- (n(n+ 2) —

Proof. Since the scalar curvature r of M is given by

_ 2((71 —1)n+3|P[?) - |4P,



Lemma 4.7 implies

= _ 2) 4 Sg2 — |HP?
r=%(n(n—1) +31PP) + 1t - |H]

=2 (n(n+2) - 14?) - |H"

Sn(n +2)c HJ2.

4
Hence we see that if r satisfies the inequality in the statement, then |H|? < (n +
1)c/(8 — 4/p). By the proof of Theorem 5.6, M is a totally geodesic complex sub-
manifold M™?2(c) or a real hypersurface with |H|?> = (n + 1)c/4 of M™(c). When
M is a real hypersurface with |H|? = (n+ 1)c/4, we have r = (n? 4+ n — 2)c/4. This
is a contradiction. Thus we have our conclusion. (]

6. Semi-flat normal connection

Let M be a n-dimensional submanifold of a complex space form M™(c). We consider
the condition that the normal connection of M is semi-flat, that is, the normal
curvature tensor Rt of M satisfies RY(X,Y)U = (¢/2)g(X, PY)fU for any vector
fields X and Y tangent to M and any vector field U normal to M. We put

S1(X,Y) =g([Av, Au)X,Y) ~ 3e(a(FY, U)g(FX, V)
=~ g(FX, U)g(FY, V)

By the equation of Ricci, we see that the normal connection of M is semi-flat if and
only if S; = 0. Thus we have the following two lemmas.

Lemma 6.1. Let M be an n-dimensional submanifold of a complex space form
M™(c). The normal connection of M is semi-flat if and only if the following equation
holds

= > tr{As, A — ¢ g([Aa, Abltva, tuy)
a,b a,b

1
+ _cz Z(g(tva’ tva)g(tvbv t'l)b) - g(t'va, tvb)z) = 0.
8 ab



Lemma 6.2. Let M be an n-dimensional submanifold of a compler space form
M™(c). If the normal connection of M is semi-flat, then

2
_ Ztr[Aa, Ay = %Z(g(tva, tv,)g(tve, tvp) — g(tva, tup)?),

a,b

Zg([Afaa a]e'npez = QZU‘A Afa, Zg(tfva,tfva)

Zg([Aa, Ap|tvg, tvb) = Z(g(Aatvb, Aptvg) — g(Agtvg, Aptuy))

aab a,b

C
=1 > " (9(tva, tva)g(tve, tvs) — g(tva, tvs)®).
ab

Proposition 6.3. Let M be an n-dimensional submanifold of a complex space form
M™(c). Then we have

C
S1? = = " tr[Ha, Hy]® — §|Vf|2.

a,b

Proof. From Lemmas 4.5 and 6.2, we have

1S12 = = " tr[Aa, A)* — ¢ _ g([Aa, AbJtva, top)

a,b a,b

2
+5 gb:(g(tva, t0a)g (tvp, tn) — (tva, tus)?)

== tr{Ho, Hy]* — ¢ > _(g(Aatvs, Aatv) — g(Aqatve, Aptva)).

a,b a,b

Since (Vxf)V = —FAyX — B(X,tV), we obtain

V£ =2 " (g(Aatvs, Aatv,) — g(Aatvs, Astva)).
a,b )

From these equations we have our result. O

Theorem 6.4. Let M be an n-dimensional compact minimal submanifold with semi-
flat normal connection of a complex space form M™(c), ¢ > 0. If |H|*> < (n—2)c/4,
then M is a totally geodesic complex submanifold M™?(c) of M™(c).

Proof. From Lemmas 3.4 and 6.2, we have

A|F|? = 2c|Pt]* + 4 ) "trA}, — 2|V fI*.



Hence, from Theorem 4.2 and Lemma 6.2, we have

Sy - E= 2 g

a,b

c 3c
= —9(V?A, 4) = S (PP + |FPP) + - (HI® - 3 _trAf,)

C C 2 9
+ 711P, Adl* + Q(zajtm .t Z P, Ad)|? - 4;trAaAfaP).

Thus we have, by Lemmas 5.1 and 5.3,

[ (Stnmy - E2 2 mp)> 0
a,b

We now choose an orthonormal basis {v,} such that trH,Hy = 0 for a # b. Then
Sep(trH Hy)2 =3 (trH2)? < (3, trH?2)?. Hence we have

[ (e =22 a0 2 0

From Lemma 5.2, M is a CR submanifold of M™(c). By a similar method of the
proof in Theorem 5.6, we see that if |H|*> < (n — 2)c/4, then |H|? = (n — 2)c/4 or
|H|> = 0. When |H|? = 0, M is a totally geodesic complex space form M™/?(c) of
M™(c). We suppose that |H|?> = (n — 2)c/4. Then, we have

Z I[P, Ad]|* = 0, [H|* = |A]* + Itl2 = trAj,.

Since |A|* = 3", trAZ > 3" _trA%,, we have t = 0. Thus M is a complex submanifold
of M™(c). Then we generally see that PA, + A,P = 0 for all a. Combining this to
PA, = A,P, we have PA, = 0, and hence A, = 0, n = 2. Consequently, M is a
totally geodesic complex space form M™2(c) of M™(c). a

From Theorem 6.4, we have the following results.

Theorem 6.5. Let M be an n-dimensional compact minimal submanifold with semi-
flat normal connection of M™(c) . If |A]? < (n — 2p — 2)c/4, then M is a totally
geodesic complex submanifold M™?(c) of M™(c).

Corollary 6.6. Let M be an n-dimensional compact minimal submanifold with
semi-flat normal connection of M™(c). If the scalar curvature r of M satisfies
r > (n? + n + 2)c/4, then M is a complex space form M™?(c) of M™(c).

We next prove a reduction theorem of the codimension of a submanifold of a
complex space form.



Theorem 6.7. Let M be an n-dimensional submanifold with semi-flat normal con-
nection of a complezx space form M™(c),c > 0. If Vf = 0, then M 1is a totally
geodesic complex submanifold of M™(c) or a generic submanifold of some M™9(c)
in M™(c).

Proof. From the assumptions, Lemma 3.4 implies

A|F|? =2c|Pt]? + 4 trA%,.

Moreover, we see that |f|? is constant by Vf = 0. Then [t|> and |F|? are also
constant. Hence we have Ay, = 0 and Pt = 0. This means that M is a CR
submanifold. If t = 0, M is a totally geodesic complex submanifold, that is, complex
space form M™?2(c). If t # 0, then we have g(DxV, fU) = —g(V,(Vx f)U) = 0 for
any vector field V in FT(M). Thus DxV is in FT(M). Therefore, FT(M) is the
parallel subbundle in the normal bundle T(M)+. From this and As, = 0, we have
our assertion (see [2, Lemma 5.9]). O

Remark. In [13, Theorem 3.14, p.236], it was proved that if an n-dimensional
compact minimal C R submanifold M of CP™ with semi-flat normal connection and
Vf = 0 satisfies |A|2 < (n — 1)g, then M is CP™?, or M is a generic minimal
submanifold of some CP("+9/2 in CP™ and is m(S™ (r1) X - - - x 8™ (ry)), n+1l=
Ele m;, 1= Zf=1 r?, q = k — 1, where my,--- ,my are odd numbers. Then
n + k is also odd.

From Proposition 6.3, we see that H,H, = HyH, for all a and b if and only if the

normal connection of M is semi-flat and V f = 0.
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