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Abstract. We investigate the large-time behavior of solutions of the Cauchy problem for
Hamilton-Jacobi equations on the real line R. We establish a result on convergence of the solu-
tions to asymptotic solutions as time ¢ goes to infinity.
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1. Introduction and main results. We investigate the large-time behavior of
solutions of the Hamilton-Jacobi equation

ue(x,t) + H(z, Du(x,t)) =0 in R x (0,00), (1)

with initial condition
u|t=0 =up on R, (2)

where H € C(RxR) and ug € C(R) are given functions, u € C(R x [0, 00)) represents
the unknown function, and u; and Du denote the partial derivatives du /0t and du /0,
respectively.

In this note, as far as Hamilton-Jacobi equations are concerned, we mean by
solution (resp., subsolution or supersolution) viscosity solution (resp., viscosity subso-
lution or viscosity supersolution). We refer to [3, 1, 7] for general overviews of viscosity
solutions theory.

The large-time behavior of solutions of (1) or more generally

ug(x,t) + H(xz, Du(x,t)) =0 in Q x (0, 00), (3)

where ) is an n-dimensional manifold, has been studied by many authors since the
works by Kruzkov [18], Lions [19], and Barles [2]. In the last decade it has received
much attention under the influence of developments of weak KAM theory introduced
by Fathi [9, 11]. We refer for related developments to Namah-Roquejofire [23], Fathi
[10], Roquejofire [24], Barles-Souganidis [5], Davini-Siconolfi [8], Fujita-Ishii-Loreti
[14], Barles-Roquejoffre [4], Ishii [17], Ichihara-Ishii [15, 16], and Mitake [21, 22].

In [10, 23, 24, 5, 8] they studied the asymptotic problem for (3) in the case where
Q is a compact manifold or simply an n-dimensional flat torus. The results obtained
there are fairly general and one of them states that if H(x,p) is coercive and strictly
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convex in p, then the solution u of (3) behaves as an asymptotic solution for large ¢,
that is, there is a solution (c,v) € R x C(Q2) of the additive eigenvalue problem for H

H(xz,Dv(z)) =c¢ in Q, (4)

such that

tlg&(u(:z:, t) — (v(z) —ct)) =0 uniformly for x € Q. (5)
Here and henceforth, for a solution (c,v) of (4), we call the function v(z) — ¢t an
asymptotic solution of (3). The strict convexity requirement for H in the above result
can be replaced by a condition which is much weaker than the usual strict convexity,
for which we refer to [5] (see also [15]). Moreover, as Barles-Souganidis [5] pointed
out, the convexity of H(x,p) in p is not enough to guarantee the convergence (5).

If (¢,v) is a solution of (4), then we call ¢ and v an (additive) eigenvalue and
(additive) eigenfunction for H, respectively.

In the case where Q = R", there are a few results (e.g., [6, 14, 4, 17, 15, 16]) on
the large-time asymptotic behavior of solutions of (3), but the situation is not so clear
compared to the case where {2 is compact.

We use the notation: H[u] or Hlu](z) for H(z, Du(z)) in what follows. For
instance, “H[u] < 0 in ” means that u is a subsolution of H(z, Du(x)) = 0 in
Q. We denote by S5 (Q) (resp., Sj(Q) or Su(R)) the set of all subsolutions (resp.,
supersolutions and solutions) u of H[u] = 0 in Q. We write S;; (resp., Sj; or Sg) for
S5;(Q) (resp., S5 () or Sk () when there is no confusion.

In this note we restrict ourselves to the case where 2 = R and give an overview
on the large-time asymptotic behavior of solutions of (3).

We will always assume the following assumptions (A1)—(A6).

(A1) HeC(R2).

(A2) H islocally coercive in the sense that

lim inf{H(z,p) | (x,p) € [-R, R]| xR, |p| >r} =00 forall R>0.

T —00

(A3) H(x,-) is convex on R for every = € R.
(M) Sp(R)#0.

(A5) For any ¢ € Su(R) there exist a function ¢ € C(R) and a constant C' > 0
such that ¢ € S;;_~(R) and | llim (¢ —Y)(z) = 0.

(AG) up € C(R)

Our main theorem (Theorem 3 below) states that, under (A1)-(A6) together
with certain additional assumptions, the convergence (5) holds with ¢ = 0 on compact
sets. Note that if u is a solution of (1) and ¢ is a given constant, then the function
w(z,t) = u(z,t) + ct satisfies wy + H[w] — ¢ = 0 in R x (0,00). Thus, through this
simple change of unknown functions, our main theorem applies to the general situation
where ¢ in (5) may not be zero.

We denote by C9+1(X) the space of real-valued locally Lipschitz continuous func-
tions on metric space X. If a given function H € C(R?2) satisfies (A1)—-(A3) and
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furthermore the condition that there exist a function ¢g € C0+1(R) and three (real)
constants ¢ < B and p > 0 such that

H(xz,D¢o(x)) <c¢ ae. x€R,
H(z,p)<c = H(x,p+q) <B forallge [-p,pl,

then (A1)—(A5) are satisfied with H — ¢ in replace of H. Indeed, it is clear that (Al)-
(A3) hold with H — ¢ in place of H and that ¢o € S;_.(R) and hence (A4) holds
with H — ¢ in place of H. (Note here by the convexity of H(z,p) in p that the above
condition on ¢g is equivalent to saying that ¢9 € S;(R).) We define the function
g € C(R) by g(x) = p|z| and, for any ¢ € S;;_.(R), we set ¢ := ¢ — g. Then we have
Y € Sy _p(R) and lim,| o (¢ — ) () = oo. That is, (A5) holds with H — ¢ in place
of H.
Another remark here is that we have min,cr H(x,p) < 0 by (A4), which reads

L(z,0) >0 forallz € R,

where L denotes the Lagrangian of the Hamiltonian H, i.e., L is the function defined

by L(z,§) = sup,cr (&p — H(z, p)).
We define the function d : R x R — R by

d(z,y) =sup{w(z) —w(y) |w € Sz(R)} for (z,y) e R x R.

It is well-known (see, for instance, [12, 13, 17]) that d(z,z) = 0 for all z € R,
de C1(R2), d(-,y) € Sp(R)NSr(R\ {y}) for all y € R, and

d(z,y) = inf{/o L(v(s),4(s))ds | t >0, v € AC([0, 1]), y(t) = z, v(0) = y}.

We define the (projected) Aubry set Ay for H as the set of those points y € R
for which d(-,y) € Su(R). See [12, 13, 17] for some properties of Ag. The function
d(-,y) can be regarded, in terms of optimal control, as the value function of the optimal
hitting problem having y and L as its target point and running cost, respectively.

As a reflection of our one-dimensional domain R, we have:

PROPOSITION 1. (a) Ifx <y < z, then d(z,z) = d(x,y) +d(y,z). (b) Ifx >y >
z, then d(z,z) = d(z,y) + d(y, 2).

We postpone the proof of the above proposition till the next section.

We observe that if x < 0 < y, then d(z,y) — d(0,y) = d(z,0) +d(0,y) — d(0,y) =
d(z,0) and if 0 < z < y, then d(z,y) — d(0,y) = d(x,y) — d(0,z) — d(z,y) = —d(0,x),
and define dy € Cot1(R) by

d+(£L‘) = lim (d(xvy) - d(O,y)) =

Y—00

d(z,0) for z <0,
—d(0,x) for z > 0.

(O ) ) (07 )_ -
—d(0,z) and if y < 0 < z, then d(x,y) — d(0,y) = d(z,0) + d(0,y) — d(0,y) = d(z, 0),
and define d— € Co+1(R) by

—d(0,x) for z <0,
~ | d(z,0) for « > 0.
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It is easily seen (see also Proposition 7 (a) below) that d4,d— € Sy (R).

We assume only (A6) on initial data up and do not know any existence and
uniqueness result concerning solutions u of (1)—(2) which applies in this generality.
Our choice of solution of (1)—(2) here is the function u given by

u(a,t) = int{ / L(v(s),3(s)) ds + uo(+(0)) | 7 € AC((0, &), 7(t) = }.  (6)

We understand that formula (6) for ¢ = 0 means that u(xz,0) = uo(z). Note that
L(z,¢) may take the value +o0o at some points (z,¢) and that L(x,&) > —H(z,0) >
—supy,<p H(z,0) > —oc for all R > 0 and (z,§) € [-R, R] x R. These observations

clearly give the meaning of the integral fot L(v,%) ds as a real number or +o0o. Note

that it may happen that u(z,t) = —oo for some points (z,t) € R x (0,00). Noting

that L(z,0) = — minyer H(z,p) < oo for all z € R, we see that u(z,t) < L(z,0)t +

uo(z) < oo for all (z,t) € R x [0,00). Hence we have —oco < wu(z,t) < oo for all

(xz,t) € R x [0,00). Also we remark (see, e.g., [17, Theorems A.1, A.2]) that if

u € C(U) for some open set U C R x (0, 00), then u is a viscosity solution of (1) in U.
We introduce functions v, uy on R as

ug (x) = sup{v(z) |v € Si, v <wuo in R},
Uoo(z) = inf{v(z) | v € Sg, v > ug in R}.
Note that the set {v € Sy | v < up in R} may be empty, in which case u; () = —oc.

Otherwise, u; € S;(R), and v, € CO+1(R) because of (A2). Similarly, it may
happen that uso(z) = +00. Otherwise, we have uos € Sg(R) and ue € CO+1(R).

PROPOSITION 2. Let u be the function given by (6). (a) If ug () = —oo, then
1itminfu(3:,t) =—o0 for all x € R. (b) If uy (z) > —o0 and us(x) = 400 for all

z € R, then tlim u(z,t) = +oo for all x € R.
— 00
We are now ready to state our main result of this note.

THEOREM 3. Assume that ug (z) > —00 and uee(x) < 00 for all z € R. Let u be
the solution of (1)—(2) given by (6). Then we have

u(z,t) = uco(x) wuniformly on bounded intervals of R ast — oo, (7)
except the following two cases (a) and (b).
sup Ay < oo,
(a) Uoo(z) = dy(z) + ¢4 forallz > R and somecy € R, R> 0,
1ixnigf(uo —ug )(xz) =0 < limsup(uo — ug ) ().
inf Agr > —o0,
(b) Uoso(x) =d—(z) +c— forallz < —R and somec— € R, R>0,

liminf(uo — ug )(z) = 0 < limsup(uo — uq )(x) > 0.

r——00

The rest of this note is organized as follows. In Section 2 we give some preliminary
observations which are needed in our proof of Theorem 3. Section 3 is devoted to the
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proof of Theorem 3. In Section 4 we discuss two examples and classical convergence
results as well as a new twist of “strict convexity” hypothesis on H in connection with
Proposition 2 and Theorem 3.

2. Preliminaries. In this section we give some observations on d+, Sz, Ag,
Ug , Uoo, and extremal curves as well as the proof of Propositions 1 and 2. We use the
notation: L[y] = L[y](t) for L(y(t),~(t)).

Proof of Proposition 1. We prove only assertion (a). Assertion (b) can be proved
in a similar way. Let 2 < y < z. We know that d(z, z) < d(z,y) + d(y,2). Fix an
e > 0 and choose a curve v € AC([0, t]), with ¢ > 0, so that v(¢) = z, v(0) = 2, and

d(z,z) +¢€ >/0 L[v](s) ds.

Choose a 7 € [0, ] so that v(7) =y, and observe that

t

d(x,z)+s>/

T

Ly]ds + /OT L[y]ds > d(z,y) + d(y, 2)-

Hence we get d(zx, z) > d(x,y) + d(y, z), which proves that d(z, z) = d(z,y) + d(y, 2).
a

We need the following lemmas for the proof of Proposition 2.

LEMMA 4. There exists a constant Cr > 0 for each R > 0 and a curve n €
AC([0, T) for each z,y € [-R, R] and T > Crlx — y| such that n(0) = z, n(T) =y,
and

T
/O L(n(t), () dt < CT.

Proof. Fix R > 0 and choose constants ¢ > 0 and M > 0 (see for instance [17,
Proposition 2.1]), depending on R, such that L(x,€) < M for all (z,£) € [-R, R] x
[-9, 0]. Fix any =,y € [-R, R] and T > 0. We define n € AC([0, T]) by setting
n(t) = z+ %(y—=x) for t € [0, T]. We observe that n(0) = z, n(T) =y, n(t) € [-R, R]
and n(t) = (y —x)/T for all t € [0, T]. Hence, if T > |y — x|/0, then we get |[§(¢)] < ¢
for all t € [0, T'] and therefore

/0 " Lo, a(0) dt = / ' L(n(t), ===) dt < MT.

Thus the curve 7 has the required properties with Cr = max{M, 1/6}. 0O

LEMMA 5. Let U C R be an open interval and v € USC(U x (0,00)) a subsolution
of (1) in U x (0,00). Assume that there exists a constant Co > 0 such that —Cp <
v(z,t) < Co(l +t) for all (x,t) € U x (0, ). Define w € USC(U) by w(x) =
infi~ov(x,t). Then w e S (U).

An observation similar to the above lemma can be found in [15, Lemma 4.1].

Proof. We may assume that v € USC(U x [0, 00)) by setting v(z,0) = lim,— o
sup{v(y,s) | (y,s) € U x (0,00), |y — x| +s < r}. Let ¢ > 0, and consider the
sup-convolution v¢ of v defined by

ve(z,1) = sup (v(x,s) i 5)2> .

$>0 2e
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Observe that ve(x,t) > v(x,t) > —Cy for all (z,t) € U x (0, 00).
Fix (z,t) € U x (0,00). It is clear that there exists an s > 0 such that ve(z,t) =
v(z,s) — (t — s)2/(2¢). Fix such an s > 0, and observe that

(t = 5)? (t — )2
— < < ¢ = X <L B S
Co <wv(z,t) <ve(z,t) = v(x,s) 5~ < Co(1+s) 5
—5)2 _5)2
SCO(1+t+|t—s|)—(t *) <—(t ) +Co(1 +1) +eC3,

2¢ T 4e

and hence
|s —t] < 2{e(2Co(1 +t) +eC3)}/2.

From this last estimate, we see that for each 7 > 0 there exists a § > 0 such that if
t>7and 0 < e <, then s > 0. Fix any 7 > 0 and choose such a constant > 0.
It is now a standard observation that if e € (0, §), then v is a subsolution of (1)
in U x (r,00) and ve € COHL(U x (7, T)) for all T > 7. Fix any o > 0 and define
we:o € C(U x (0, 00)) by we:o (x,t) = infocs<o v (2, t + 8).

Let ¢ € (0,6), and observe that we.e € CO+1(U x (1, T)) for all T > 7 and
by the convexity of H(z,p) in p that ws is a subsolution of (1) in U x (7, c0).
Note that w7 (z,t) is non-increasing as a function of o and therefore that if we set
we(z,t) := infssove(x, t + s) for (z,t) € U x (0, 00), then for any (z,t) € U x (0, c0),

we (z,t) = 1ililosup{w57‘7(y,s) | (y,8) €U x (0,00), [y —x|+|s—t|<r oc>1/r}

We now see by the stability of the viscosity property under half relaxed limits that
we € USC(U x (0, o0)) is a subsolution of (1) in U X (7, c0). By the definition of we,
it is clear that for any « € U, the function we(z,t) is non-decreasing in ¢ € (0, c0),
from which we deduce that we(-,t) € S;;(U) for all ¢ > 7. In particular, we see that
the family {we(-,t) |t > 7} C CO+1(U) is locally equi-Lipschitz continuous on U.

Note that we (z, t) is non-decreasing as a function of e, that we (z,t) > infsso v(x, t
+s) for all (x,t) € U x (0, c0) and € > 0, and that infe~o we(z,t) = inf{ve(x,t +s) | s
>0, e >0} for all (x,t) € U x (0,00). It is now easy to see by using the convexity
of H that if we set z(z,t) := infosowe(x,t), then z(z,t) = infocccs we(z,t) for all
(x,t) € U x (0,00) and z(-,t) € S5 (U) for all t > 7. Since 7 > 0 is arbitrary, we see
that z(-,t) € Sy (U) for all t > 0. Setting w(x) := infi~¢ z(z,t) for € U, we see that
w(zx) = infi>ov(x,t) for all x € U and moreover that w € S (U). 0O

LEMMA 6. Let ¢ € Sy and v € AC([0, t]). Then

6(3(1)) — $(1(0)) < / Ly ds.

For a proof of the above lemma we refer, for instance, to [17, Proposition 2.5].

Proof of Proposition 2. We begin with (a). Assume that u, (z) = —co. We
suppose that there exists an 29 € R such that liminf;_,o u(xo,t) > —oo, and will get
a contradiction. By translation, we may assume that zo = 0.

We show first that for each R > 0 there exists a constant Mp > 0 such that
u(z,t) > —Mpg for all (z,t) € [-R, R] x [0,00). For this we fix R > 0 and choose
constants 7 > 0 and Cp > 0 so that u(0,t) > —Cp for all ¢ > 7. Let Cr > 0 be the
constant from Lemma 4 and fix any (z, t) € [-R, R] x [0, c0). By Lemma 4, we may
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choose a curve n € AC(|0, Tg|), with Tg := RCg + 7, so that n(0) = z, n(Tgr) = 0,
and

Tr
/ L[n] ds < CrTg.
0
Fix any v € AC([0, ¢]) so that vy(¢) = z, and define ¢ € AC([0, ¢ + Tr]) by

C()_{W(s) for 0 < s <t
5= n(s—1t) fort <s<t+Tkg.

We observe that
t tr
—Co Su(O,HtR)S/ L[W]d5+/ L[n] ds + uo(¢(0))
0 0
t
SCRTR+/ Llv]ds + uo(v(0)),
0

from which we deduce that u(x,t) > —Co — CrTr. Thus we conclude that u(x,t) >
—Mp, for all (z,t) € [-R, R] x [0, c0), where Mg := Cy + CrTr.

Next we observe from (6) that u(x,t) < L(z,0)t+uo(x) for all (z,t) € R x [0, 00).
Since L(z,0) = —minyer H(z,p) is a continuous function of = because of (Al) and
(A2), we see that u is locally bounded on R x [0, c0) and hence by [17, Theorem A.1] for
instance that u* is a viscosity subsolution of (1), where u* is the upper semicontinuous
envelope of u, i.e., u*(z,t) := lim, o sup{u(y, s) | (y,s) € Rx[0,0), |[y—z|+|s—t] <
r}. Set w(z) = inf;~o u*(x,t) for € R. According to Lemma 5, we have w € S (R).
Also, since u*(z,t) < L(x,0)t+wuo(z) for all (z,t) € R x (0, 00), we have w(z) < ug(x)
for all x € R. Now we see that ug () > w(z) > —oo for all x € R. This is a
contradiction, which proves (a).

We now turn to (b). Assume that u; (z) > —oo and ue(xz) = +oo for all
x € R. We suppose that lim inf;_ u(zo,t) < oo for some z¢ € R, and will obtain a
contradiction.

Define the function v~ on R x [0, 00) by

u(2,) = int{ / Lh](s)ds +ug (7(0)) | 7 € AC(0, ), A(H) =}, (8)

Since ug; < up in R, we have u=(z,t) < u(z,t) for all (z,¢) € R x [0,00). Note that
the function u— satisfies the dynamic programming principle

u=(z,t+s) = inf{/o L[y](r)dr + u=(y(0), s) ’ v € AC([0, t]), ~(t) = x}

The term inside the above infimum sign can be oo — 0o, which we agree to mean +oo.
Since u, € Sy, by Lemma 6, we have for all v € AC([0,1]),

ug (7(t)) — ug (7(0)) < /0 Liv](s)ds.
Consequently, we get

ug (z) <u(x,t) for all (z,t) € R x [0, 00).
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This together the dynamic programming principle yields

u(z,t +8) > inf{/o Liv](r) dr + ug (v(0)) | v € AC([0, t]), v(t) = :c} =u(z,t)

forallz € Randt,s € [0,00). Thus we see that the function v~ (x,t) is non-decreasing
in ¢t for any x € R.

We may assume without any loss of generality that o = 0. We choose a constant
C1 > 0 so that liminf; o u(0,t) < C;. By the monotonicity of u—(0,t), we have

u=(0,t) < Cp forallt > 0.

Fix any R > 0. By the dynamic programming principle and Lemma 4 with T =
CrR + 1, we get for all (z,t) € [-R, R] x [0, c0),

u=(z,t+T) < CRT +u=(0,t) < CrT + C1,
where C'r > 0 is the constant from Lemma 4. Hence we get
u—(z,t) < Kr forall (z,t) € [-R, R] x [0, 00),

where Kg := CrT + C1.

Since u, € CO*1(R), we have u= € CO+1(R x [0, 00)). Indeed, we fix R > 0,
x,y € [-R, R] with 2 # y, and ¢t > 0, and observe by using the dynamic programming
principle and Lemma 4, with T' > Cg|z — y|, that for all ,y € [-R, R] and t > 0,

u=(y,t) Su(y,t+T) <u(x,t) + CrT. (9)
Thus we have
lu=(y,t) —u(x,t)| < C%|lx —y| forallz,y € [-R, R] and t > 0.

On the other hand, using the dynamic programming principle and Lemma 4, we have
for x € [-R, R] and ¢, s € [0, 00),

u=(z,t) <u(z,t+ ) <u(z,t) + Crs,

and hence |[u=(z,t) — u=(x,s)] < Cg|t — s| for all x € [-R, R] and t,s € [0, o0).
Thus we conclude that u= € CO+1(R X [0, 00)). It is now standard to see that if we
set w(z) = lims—oo u=(x,t), then w € COt1(R) and w € Sy(R). The monotonicity
of the function u—(z,t) in ¢ guarantees that u; < w in R. Therefore we see that
Uoo(x) < w(x) < oo for all z € R, which is a contradiction. 0O

PROPOSITION 7. (a) d+ € Sg(R). (b) If x < y, then d(z,y) = d+(z) — d+(y).
(¢) If x >y, then d(z,y) = d—(z)—d—(y). (d) The function d4 —d— is non-increasing
on R.

Proof. (a) Since d(-,y) € Su(R \ {y}) for any y € R, by the stability of the
viscosity property, we see that dr € Sg(R). (b) Let 2 < y < z, and observe that
d(z,z) —d(0,2) = d(z,y) + d(y, z) — d(0, z). Hence, sending z — oo, we get di(z) =
d(z,y)+d+(y), that is, if x < y, then d(x, y) = d+(z)—d+(y). (c) An argument parallel
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to (b) readily yields d(z,y) = d—(z) — d—(y) for x > y. (d) Let < y and observe
that d—(z) — d—(y) < d(z,y) = d+(z) — d4(y), from which we get (d+ — d—)(z) >
(dy —d-)(y). O

PROPOSITION 8. We have

ug () = inf{uo(y) +d(z,y) |y € R} for all x € R.

Proof. We denote by w the function defined by the right hand side of the above
equality. Let v € S5 (R) satisfy v < uo in R. Then we have v(z) < v(y) + d(z,y) <
uo(y)+d(z,y) for all z € R. Hence we get v(z) < w(z) and consequently u, (z) < w(x)
for all x € R. On the other hand, if w(zg) > —oo for some z¢ € R, then we see that
w € COH1(R) and w € S (R). It is clear that w(z) < ug(x) for all z € R. Therefore
we have w(z) < ug (z) for all z € R. Thus we have w(z) = u; (z) forallz €¢ R. 0O

Let I C R be an interval and ¢ € S;;. We call a function (curve) v € C(I) an
extremal curve on [ for ¢ if for any a,b € I, with a < b, we have

b

v EAC((a, b)) and $(v(b)) — d((a)) = / L{)(s) ds. (10)

a

We denote by (I, ¢) the set of all extremal curves on I for ¢. When 0 € I, for
y € R, we denote by (I, ¢,y) the set of those v € (I, ¢) which satisfy v(0) = y.

PROPOSITION 9. Let ¢ € Sy and y € R. Then E((—o0, 0], ¢,y) # 0.

We can adapt the proof of [17, Corollary 6.2] to the above lemma. We will not
give the details of the proof here, and instead give a key observation:

LEMMA 10. Let ¢ € Sy and t > 0. Then, for any x € R,
1nf{/ 2ds +6(1(0) | 7 € AC((0, 1)), A(t) = z}. (11)

Proof. Thanks to (A5), we may choose a function ¢ € C9t1(R) and a constant
C > 0 so that ¥ € Sy_ and limy—oo(t) — ¢)(x) = —oc. Then, we apply [17,
Theorem 1.1], with ¢ and ¢1 replaced by ¢ and v, respectively, to conclude that the
solution u(z,t) := ¢(z) of (1)—(2) can be represented as

(@, ) 1nf{/ M ds+6(1(0) | v AC(0, 1)), A1) =z},

which shows that (11) holds true. (In [17, Theorem 1.1], the Hamiltonian H(z,p) is
assumed to be strictly convex in p, but this assumption is actually superfluous and
can be replaced by our convexity assumption (A3). ) 0O

ProposITION 11. Ay = &gy, where Eg denotes the set of equilibria, that is,
Eu ={zx e R| L(z,0) =0}.

LEMMA 12. Lety € R and 6 > 0. Then we have y € Ay if and only if

mf{/ ds | t2 6,5 € AC(0, 1)), v(t) = 4(0) = y} =0.
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We refer to [17, Proposition A.3] (see also [12, 13]) for a proof of the above lemma.

Proof of Proposition 11. Let z € Ay, and we need to show that L(z,0) < 0.
Fix any € € (0,1). Let § > 0 be a constant to be fixed later on. According to
Lemma 12, for any n € N there exists a v, € AC([0,Ty)), with T,, > ¢, such that
Yn(0) = yn(Tn) = 2 and

T, 1
/ L(n;4m) ds < —.
0 n
We claim that we may assume by choosing § > 0 small enough that

—z| <e.
onax, |yn(s) —2l <e

To see this, we first consider the case where maxo<s<t, (Yn($) — z) > €. It is easily
seen that there are 0 < s, < t, < op < 7 < T, such that v,(sn) = (™) = 2z,
Yn(tn) = Tn(on) = z+¢, and n(s) € (2, z+¢) for all s € (sn, tn)U(on, 7). Observe
that

0=d(z, 2) < /Osn L{yy] ds.

Similarly we have

On Tn
/ L[yn)ds >0 and / L{yn])ds > 0.
tn T,

n

Therefore we get

1 Ty [2% Tn
- >/ Llvn]ds 2/ L] ds+/ L{vn] ds.
0 s o

n n

We define ¥, € AC(]0, Tn]), with T}, := tn,— Sn+Tn —0p, by setting ¥, (s) = yn(s+sn)

for s € [0, tp, — sp] and Yn(s) = Yn(s + on — tn + ) for s € [t, — sp, Ty], and note
that

T,
n 1
max [yn(s) —z|=¢, An(tn —sn)=z+¢e, and / L[An]ds < —.
0<s<T), 0 n

By (Al), there exists a constant C: > 0 such that eL(z,§) > (]¢] — C:) for all
(,8) € [z —1, z+ 1] x R. We compute that

26 = Fn(tn — 5n) = Fn(0)] + [3n(Tn) — Fn(tn — sn)|
tn—58n ~ 'lA:n ~
S/ <mm>%+/ dyn(s)
0 th—Sn

S . ds
T, N
< [T et + 0 ds <o+ O
0

ds

Hence we have Tn > ¢/C:. We now fix § = ¢/C, and observe that 4,(0) = ﬁ(fn) = 2,

T
" 1
/ LAn)ds < —, and max_ |Yn(s) — z| <e.
0 n 0<s<Tp
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Similarly, if ming<s<7, (Yn(s) — z) < —&, then we can build a ,, € AC([0, Tn]),

with Ty, > 4, so that 7, (0) = 3,(T) = z,

T,
" 1
max [fu(s) =2/ <e,  and / LfFn]ds < *.
0<s<Ty 0 n

Thus we may assume by replacing v, if necessary that maxo<s<r, |Yn(s) — 2| < e.
Next, let R > 0 and set

LR(‘%&) = ‘Ig‘lg)é(gp - H(l’,p))

Observe that Lg is continuous on R x R, Lg(x,&) < L(z,€) for all (x,£), and
Lp(x,8) — L(z,€) as R — oo for all (z,£). Let wr be a modulus of the function
H on [z —1, z+ 1] x [-R, R] and observe that for all z,y € [z — 1, 2+ 1] and £ € R,

|Lr(z,§) — Lr(y,§)| < max |H(z,p) — H(y,p)| < wr(|z —y|).
IpI<R

We compute that

1 Ty 1 Ty
Le(0) =Le(e 7 [ 5u®at) < o [ Lateiao)ar
n Jo n Jo
1 Tn
< ; -
< | LR 0,506 dt + ol ma, it) = =)
I
< ; _
S AR CACRACIE P AR
1

<L b wnp( max [w(t) - 2]) < — +wn(e)
oz, Ter(max [ (t) = 2)) < o+ wn(e).

Sending n — oo and then ¢ — 40, we get Lr(z,0) < 0, from which we conclude by
sending R — oo that L(z,0) < 0. The proof is complete. O

3. Proof of Theorem 3. This section is devoted to the proof of Theorem 3.
We assume all the hypotheses of Theorem 3 in what follows. Let u be the function on

R x [0, c0) given by (6) and ut denote the function on R defined by

ut(x) = limsup u(z, t).

t—o0
LEMMA 13. For all z € R we have
ut(x) = lirilosup{u(y,s) | s>r-1 Jy—z| <r}, (12)
Uoo () < liriloinf{u(y,s) [s>r=1, Jy—a| <r}. (13)

Inequality (13) is a modification of (18) in [15, Lemma 4.1].

Proof. By Lemma 4 and the dynamic programming principle, we get

u(y,t+T) <u(x,t) + CrT forallz,y € [-R, R],t>0and T > Cgrl|z —y|,
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where Cr > 0 is a constant depending only on R, from which we easily obtain (12)
for all x € R.

Let u~ be the function on R x [0, 00) defined by (8). As in the proof of Propo-
sition 2, we have u= € COt1(R x [0,00)), v~ < w in R x [0, 00), and ueo(x) =
lims 00 u=(x, t). Therefore we have

Uoo(T) = Tl_i}rﬁl()inf{u*(y, s)|s>r 1 ly—z| <r}
< lim inf{u(y,s) | s >r-1, ly— x| <r},
r—+0

which completes the proof. 0O

In order to show that u(x,t) — teo(x) uniformly on bounded intervals of R, due
to the above lemma, we only need to prove that ut(z) < us(x) for all z € R. We
fix y € R and will prove that u; (y) < us(y). By Proposition 9, we may choose a
v € E((—00, 0], Uoo, y). We first divide our considerations into two cases.

Case 1: dist (y((—00,0]), Ag) = 0 and Case 2: dist (y(—0o0,0]), Am) > 0,
where we set dist (y((—o0,0]), Ag) = co when Agy = (). We first treat Case 1.

LEMMA 14. In Case 1, we have ut(y) < uso(y).

Proof. Since y((—o0, 0]) is an interval and Ag is a closed set (see. e.g., [12, 13,
17]), it is not hard to see that there exists a z € Ag such that dist (y((—o0, 0]),z) = 0.
Fixsuch a z € Ag and set R = |z|+1. Let Cr > 0 be the constant from Lemma 4. Fix
any € € (0, 1), and choose an r > 0 so that |[y(—r)—z| < € and uco(2) < Uso (Y(—7))+&.

By Lemma 4, we may choose a curve n € AC([0, 7]), with 7 = Cr|z — v(—7r)| + ¢, so
that n(0) = z, n(7) = y(-r), and

/OT Linldt < Crr = C3(lz — y(—r)| +¢) < 2C%e.
In view of Proposition 8 and the variational representation for d, we have
z) = inf{/ot L[¢]ds +uo(¢(0)) | t >0, ¢ € AC([0,1]), ¢(t) = z}.
Hence we may choose a curve ¢ € AC([0, o), with ¢ > 0, so that {(¢) = z and
ug (2) +€> /OU L[¢] ds + uo(¢(0)).

Let t > r+7+0 and define the curve u € AC([—t,0]) as follows: we set T' = t—(r+7+0)
and

~(s) for s € [-r,0],

(s) = n(s+r+7) for s € (—(r+71),—r],

" z forse (—(r+7+7T),—(r+71)],
C(s+1) forse[—t,—t+o|=[-t,—(r+7+T)].

We compute that

u(y,1) < / L{u] ds + uo(u(~1))

—t

0 T T o
g/ L[w]ds—i—/o L[n]ds—i-/o L(z,O)ds—i—/O L[¢]ds + uo(¢(0))

-r

<Uoo(Y) = Uso(Y(—T)) + 2C%e + ug (2) + € < uss(y) + 2(C% + 1)e,
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where we have used the fact that ug (2) < teo(2) < uso(7(—7)) +¢, and conclude that
ut(y) <u(y). O

Now, we turn to Case 2 and begin with a few lemmas.

LEMMA 15. Letc € R. Assume that dy+c > uy on R and infr (d4++c—ugy ) = 0.
Then lim (d4(x) +c—uy (z)) = 0.

Proof. Suppose on the contrary that limsup,_,. (d+(z) + ¢ — ug (z)) > 0 and
choose a 6 > 0 and a sequence x, — oo such that di(xn) + ¢ — uy (zn) > 0 for all
n € N. We show that dy(z) + ¢ — ug () > §/2 for all z € R, which is an obvious
contradiction to the assumption that infr(d+ +c¢—ug ) = 0.

Fix any x € R, and choose an n so that x < x, and then a y, € R in view
of Proposition 8 so that uy (zn) + /2 > uo(yn) + d(zn,yn). Noting that d(z,z,) =
d+(z) — dy(xy), we compute that

ug () <wuol(yn) + d(z,yn) < uo(yn) + d(x, zn) + d(Tn, Yn)

) §
<ug (zn) + 3 +d(z,zn) <dy(zn)+c— 3 +di(x) —dy(zp)

)
=dy(z)+c— =,
2
and conclude that dy (z) + ¢ —ug () >6/2. 0O
LEMMA 16. In Case 2, the set v((—o0,0]) is unbounded.
Proof. On the contrary we suppose that v((—oo, 0]) is bounded. We may choose a

sequence {tn} C (—00,0] so that tp4+1 < t,—1foralln € N and {7y(tn)} is convergent.
Set z := limy 00 Y(tn). Observe that as n — oo,

/ " L A) dE = o (7(tn)) — thoo (Y (Ent1)) — 0.

tnt1

Fix any n € N. By Lemma 4, there are curves 7, € AC([0, 7,]) and ¢, € AC([0, on]),
with 7, > 0 and o, > 0, such that 17,(0) = (u(on) = 2, M (T) = Y(tn+1), G (0) =
~(tn), and

Tn 1
| Emldt <Coby(tasn) =2l + 3,
0

On 1
/ LiCa)dt < Coly(ta) — 2| + 2,
0 n

where Cy > 0 is a constant independent of n. We set T}, = t,, — tn+1 + 7 + o and
define the curve v, € AC([0, T3]) by

1 (t) for ¢t € [0, 7],
Y (t) = Yt + tny1 — ™) for t € (1, T + tn — tnt1],
Cn(t — (T 4+ tn — tnt1)) for t € (7o + tn — tnt1, Tnl.

Observe that v,(0) = v (T) = z and

Tn
/0 Lyn] dt <too(Y(tn)) — oo (Y(tn+1))

2
+ Co(|v(tn) — 2| + |V (tny1) — 2|) + o 0 asn— oo,
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and conclude by Lemma 12 that z € Ag. This is a contradiction. 0O

In what follows we divide our considerations concerning Case 2 into two subcases:
Case 2a: supy((—00,0]) = oo and Case 2b: inf y((—o0,0]) = —occ.
We now deal with Case 2a.

LEMMA 17. In Case 2a, we have [y,00) N Ag = 0. Moreover, the function v is
decreasing on (—oo, 0] and there exists a constant ¢ € R such that uso(z) = d4(z) + ¢
forallxz > y.

Proof. Since sup y((—o0,0]) = oo and y is in the interval v((—o0, 0]), we see that
[y, 00) C v((—00,0]) and hence dist ([y, 00), Ar) > dist (y((—o0,0]), Ax) > 0. That
is, we have [y,00) N Ay = 0.

To see that v is decreasing, we suppose on the contrary that there exist a < b <0
such that vy(a) < (b). Since v([a, b]) is a compact interval and [y, co) C y((—o0, 0]),
we see that there exists an a’ € (—oo, a] such that y(a’) = vy(b). Then we have

b
/ L[] dt = toe (4(5)) — too(7(@)) = 0,

/

which implies that vy(a’) € Ag N[y, o0). This is a contradiction, which ensures that
~y is decreasing on (—oo, 0].

It is now clear that y((—o0, 0]) = [y, o). Fix z € [y, c0) and choose a (unique)
ty € (—o0, 0] so that v(tz) = x. We have

0
di(y) - dy (z) < / L] dt

x

=Uoo(y) — tuoo(®) < d(y, ) = dy(y) — dy (),
where the last equality is a consequence of Proposition 7 (b). Therefore we get
Uoo(x) = di(x) + ¢, with ¢ := uso(y) — d+(y)- O

LEMMA 18. In Case 2a, let 8, z € R be such that y < 8 < z. Then there ezists a
curven € E((—oo,7],d—, ), with T > 0, such that n(7) = z. Moreover, n is increasing
on [0, 7].

Proof. By Proposition 9, we may choose a ¢ € £((—o0, 0],d_, z). By continuity,
there is a T > 0 such that (—oo, 8) N ¢([-T, 0]) = 0. We fix such a T > 0, and will
show that that ¢ is increasing on [—7, 0]. Suppose on the contrary that ((a) > ((b)
for some a,b € [T, 0] satisfying a < b. By Proposition 7, we have d(¢(b), {(a)) =

4+ (b)) — d+((a) and d(C(a), C(5)) = d—((a)) — d—(C(b). Also, we have

b
44 (b)) — i (C(a)) = / L¢)ds = d_(C(8)) — d_(¢(a)) < d(C(b). C(a).

From these we conclude that
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which yields
0=d(¢(b), ¢(a)) + d(¢(a), C(b))

= d(¢(b)
= inf{/o Linlds | t=b—a,ne AC([0, t]), n(t) = n(0) = {(b)}.

This implies that {(b) € Ay C (—o0, y), which is a contradiction.

Next, we show that 8 € {((—o0, 0]). Suppose on the contrary that 5 & {((—o0, 0]).
Then, since (((—o0, 0]) is an interval and z € {((—o0, 0]), we infer that (—oo, 5] N
¢((—o0, 0]) = (. Therefore, ¢ is increasing on (—oo, 0] and inf ((—oo, 0]) > B. Set
a = limy—._ ((t) and note that o € [3, z). Now the proof of Lemma 16 guarantees
that o € Ag, which yields a contradiction, a € Ay C (—o0, y).

We choose a 7 > 0 so that ((—7) = 8 and (—o0, 8) N ¢([—7, 0]) = 0. We see
immediately that (([—7, 0]) = [8, 2] and  is increasing on [—7, 0]. We define the curve
n € E((—o0, 7],d-) by n(s) = ((s — 7). The curve i has all the required properties.
a

Since ug < up on R, we have liminf; oo (uo(z) — ug (x)) > 0. Because of one of
assumptions of Theorem 3, we have only two cases to consider.

Case (i): liminf, oo (uo(z) —ug (z)) > 0 and Case (ii): limgz— oo (uo(z) —uq (x)) =
0.

PROPOSITION 19. In Case (i), we have ut(y) < uoo(y).

Proof. We choose a § > 0 so that liminf, o (uo(z) — ug (z)) > 6 and then a
B >y so that ug(z) — ug (z) > 6 for all z > 3. We have

ug (z) <ug (2) +d(z,2) <uo(z)+d(z,z) =6 forallz € R and z > f3,
and therefore, by Proposition 8, we get

ug (z) = igg(uo(z) +d(z,z)) forallxz € R.

In particular, we have for all x > g,

g (2) = fnf (un(:) +d-(2) = d-(2) = d-(a) + .

where b := inf,<g(uo(z) — d—(z)). Since usc(x) > ug (z) for all z € R, we have
dy(z) —d_(x)+¢c—b>0 forallz > g,
where c is the constant from Lemma 17.
Fix any € > 0. By the definition of b, we may choose an o € (—o0, ] so that
b+e > ug(a) —d—(a). Since v(0) = y < § and lim;—,_ y(t) = 00, we may choose

a o > 0 so that v(—o) = f. Since d(8,a) = d—(8) — d—(a), we may choose a
¢ € AC([0, p]), with p > 0, so that ¢(0) = «, {(p) = 3, and

d_(B) —d_(a) +& > /OPL[C] ds.
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Fix any t > 0 and set z = v(—t — ¢). In view of Lemma 18, we may choose an
n € E((—o0, 7],d—, ), with 7 > 0, such that n(7) = z. Remark that 7 is increasing
on [0, 7]. Set T' = min{r, t}. We define the function f on [0, T] by f(s) = n(s) —
~v(s —t — o), and observe that f(0) = 8 —v(—t —0) < 8 —v(—0) = 0 and that
if T =7,then fT)=z2—~v(r—t—0) > 2—7y(-t—0) =0and if T = ¢, then
f(T) = n(t) —y(—o) > n(0) — 8 = 0. By the continuity of f, we may choose a
A€ (0, T) so that f(A) =0, that is, n(A) =v(A —t — o).
We define u € AC([—(t + o + p),0]) by

~(s) for s € [A— (t+ o), 0]

p(s) =4 n(s+t+o) for se[—(t+0), \— (t +0)],
((s+t+o+p) forse[—(t+o+p), —(t+0)

Observe that p(0) =y and u(—(t + o + p)) = ¢(0) = o, and compute that

0
/ L{u) ds +uo(pu(~(t + 0 + p)))
—(t+o+p)

_/OPL[g]dH/:L[n]dw/; L] ds + uo(a)

—(t+o)
<d—(B) —d—(a) + e+ d-(n(N) — d—(n(0))
(7(0)) = ds(v(A = (t + 0))) + uo(a)
+d-(n(\) — dy-(n(N)) + uo(e) —d—(a) +¢
+d_(n(A) —d+(n(N\)) + b+ 2e.

As noted above, we have

d+(n(A)) —d-(n(A)) +c¢—=b=0,
and therefore
u(y,t+0+p) <di(y) +c+ 2 = uso(y) + 2,
from which we conclude that ut(y) < uso(y). 0O
The switch-back construction of y in the proof above is adapted from [16].
PROPOSITION 20. In Case (ii), we have ut(y) < uoo(y).
Proof. Fix any € > 0. By assumption, there exists an R > y such that if x > R,

then uo(z) < ug (z) + . Since lim;—._o y(t) = o0, there exists a T > 0 such that if
t > T, then y(—t) > R. Fix any ¢t > T and compute that

0
U(yvt)é/ Llyds +uo(y(=1)) < ueo(y) — uoo(v(=t)) + ug (v(=1)) + €

—t
oo (Y) = oo (Y(1)) + too (V(—1)) + € = uoo(y) + €.
From this we conclude that use(y) < ug (y). 0O

We may treat Case 2b by an argument parallel to the above, to conclude that
ut(y) < uoo(y). The proof of Theorem 3 is now complete. 0O
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4. Concluding remarks. We first discuss two examples in connection with
Theorem 3 and Proposition 2. Barles-Souganidis [5] gave a simple example of Hamil-
tonian H and initial data wuo for which convergence (5) does not hold. In the ex-
ample H and wug are given, respectively, by H(p) = |p+ 1| — 1 and uo(z) = sinx
for p,x € R. The solution u of (1)—(2) is then given by u(z,t) := sin(x — t), for
which (5) does not hold with any asymptotic solution v(z) — ¢t, and all assumptions
(A1)—(A6) are satisfied. Noting that H(p) < 0 if and only if p € [—2, 0], we see that
dy(z) = =2z and d_(z) = 0 for all x € R and that Ay = 0. Also, it is easily
seen that ug (z) = infyer(uo(y) + d(z,y)) = —1 and us(z) = —1 for all z € R.
Hence we have uo(x) = d—(z) — 1 for all x € R, liminfs— oo (uo — ug )(z) = 0, and
limsup,_,_ . (uo—ug )(z) = 2. These explicitly violate one of assumptions of Theorem
3.

Lions-Souganidis [20] examined the following Hamilton-Jacobi equation §|Dv|2 —
f(z) = 0 in R, where f is given by f(z) = 2+ sinx + sin v/2z. Note that f(z) > 0
for all z € R and infg f = 0. The Lagrangian L of H(z,p) := 3|p|2 — f(z) is given
by L(z,€) = €| + f(z) and satisfies L(z,&) > 0 for all (z,£), which implies that
Ag = 0. The function d, d+, and d_ are given, respectively, by

dmw—wﬂﬁmms

, d+(ar)——/omx/2f(s)ds, and d_(z) = —d4(z).

Consider the evolution equation u¢+H (2, Du) = 0 together with initial data ug(z) = 0.
We write u for the solution of this problem as usual. It is easy to see that ug (z) =
infyerd(z,y) = 0 and us(x) = +o0 for all x € R. Proposition 2 ensures that
limy—,o0 u(z,t) = oo for all z € R and u does not “converge” to any asymptotic
solution in this case.

Next we discuss two existing convergence results in light of Theorem 3. In [17],
the Cauchy problem for (3), with Q = R", are treated and, in addition to (A1)—(A6),
it is there assumed that there exist functions ¢, o9 € C(R") such that H[¢o] < —o0
in R and lim||_, 00(2) = co. Most of results in [17] are concerned with solutions
u of (3) with © = R for which uso () > ¢o(x) — Co for all z and for some constant
Co € R.

We restrict ourselves to the case when n = 1, and assume that (A1)—(A6) hold,
that there exist functions ¢, oo € C(R) having the properties described above, and
that ueo(x) > ¢o(x) — Cp for all & and for some constant Cp € R. We show as
a consequence of Theorem 3 that convergence (7) holds. The first thing to note is
that if sup Ay < oo, then dy(x) — ¢o(x) — —o0 as z — oo. Indeed, assuming that
Ap C (—o0, B) for some 8 € R, for any v € E£((—00,0],d+, 3), we see, as in the proof
of Lemma 18, that v is decreasing on (—oo, 0] and y(s) — oo as s — —oco. Moreover,
for t > 0, we get

0 0

Lhlds 2 6a(2(0) — dalr(~1) + [ av(a(s)) ds.

—t

4:0(0) — s (r(-0) = |

—t

Since fftao ds — oo as t — oo, we conclude that (¢o — dy)(xz) — 00 as z — oo.
Similarly, if inf Ay > —oo, then we have (d— — ¢o)(z) — 0o as © — —oo. These
observations guarantee that, under our current hypotheses, there is no possibility that
either uoo(x) = dy(x) + ¢y for all z > r and for some constants cy and r € R, or
Uoo(x) = d—(z) + c— for all z < r and for some constants c— and r € R. Now,
Theorem 3 ensures that convergence (7) holds.



240 N. ICHIHARA AND H. ISHII

Let us consider the Cauchy problem (1)-(2) in the case where the functions
H(z,p) in x and ug are periodic with period 1. In addition to (A1)-(A6), we assume
as in [15] (see also [5]) that there exists a function wy € C(]0, 00)) satisfying wo(0) = 0
and wo(r) > 0 for all » > 0 such that for all (z,p) € R? satisfying H(x,p) = 0 and for
all £ € Dy H(z,p) and ¢ € R, if £g > 0, then

H(z,p+q) > &g +wo(£q). (14)

Note that if v € Sj; (resp., v € Sg), then v(- +1) € S (resp., v(- + 1) € Su).
Hence, by the definition of uy and ue, we infer that u, and ue are periodic with
period 1. Note also by the periodicity of H(z,p) in « that d(z + 1,y + 1) = d(z,y)
for all z, y € R. In order to apply Theorem 3, we assume that sup Ay < oo and
Uoo(z) = d4(x) + ¢4 for all x > R and for some constants ¢, R € R. By the above
periodicity of d, we deduce that Ay = 0 and use(z) = d4(x) + ¢4 for all z € R.

Fix any y € R and choose a v € £((—o0, 0],d4,y). As in the proof of Lemma 18,
we see that v is decreasing on (—oo, 0] and supy((—oo, 0]) = co. We may choose a
7 > 0 so that v(—7) = y 4+ 1. We extend 7|(_., ¢ to R by periodicity and integrating
the resulting periodic function, we may assume that y(t — 7) = y(¢) + 1 for all ¢ € R.

We assume that

0= lizniiorgf(uo —ug )(x) < limsup(uo — ugy ) ().
(Otherwise, by Theorem 3, we know that ut(y) < wec(y).) By the periodicity of
ug and oo, we have minp, ,y1y(uo —uy) = 0 for all z € R. Moreover we have
mingep, +47) (o — Uy )(y(—s)) =0 for all t € R.
It has been proved in [15] that there exist a constant 6 > 0 and a non-decreasing
function w € C([0, 00)) satisfying w(0) = 0 such that for any 0 < e < §, we have

0
/ L[ve] ds < oo (7e(0)) — ue(ve(—t/(1 + €)) + tew(e), (15)
—t/(1+¢)

where v-(s) := v((1 +¢)s) for all s € R.

We fix any t > 7/§. Choose a o € [t, t + 7) so that (uo — ugy )(y(—0)) = 0 and
then an € > 0 so that ﬁ =t. Note that e = § —1 = UT_t <3< 0. Therefore, by
(15), we get

0
/ Le] ds < tioe (12(0)) — tion(e(~1)) + oew(e)

—t

oo (y) — oo (Y(=0)) + Zow(T)
Sutno(y) — oo (r(-0)) + "D (T

Suse(y) = ug (v(=0)) + (1 + 8)w(),

and furthermore

0
uly, ) < / Ll ds + uo(3e(1)
S usely) — g (1(~0) + uo(r(~0)) + (1 + 6l )

T

=Uoo(y) + 7(1 4 0)w( ; ).
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Thus we obtain ut(y) < usc(y). Similarly, if we assume that inf Ay > —oo and
Uoo(x) = d—(z) + c— for all x > R for some constant c—, R € R and also that 0 =
liminf, oo (uo — ug )(z) < limsup,_, . (uo — ug )(z), then we get ut(y) < uoo(y).
These observations and Theorem 3 guarantee that convergence (7) holds.

We continue to consider the Cauchy problem (1)—(2), where the functions H(-,p)
and wug are periodic with period 1. Now we assume in addition to (A1)—(A6) that
there exists a function wo € C([0, 00)) satisfying wo(0) = 0 and wo(r) > 0 for all > 0
such that for all (x,p) € R? satisfying H(x,p) = 0 and for all £ € D5 H(z,p) and
q € R, if £ < 0, then

H(z,p+q) = &g+ wo(|€q]). (16)

We will show that convergence (7) holds under these hypotheses, which seems to be a
new observation.

We argue as in the previous result and thus assume that sup Ay < oo and
Uoo(z) = d4(z) +c4 for all z > R and for some constants ¢4, R € R. We then observe
that Ag = 0 and uee(z) = d4 (x)+cy for all z € R and that lim inf, o (uo—uy )(z) <
limsup, . (uo — ug )(z). Fix any y € R and choose a v € £(R,d4+,y) so that
vt —71) =)+ 1 for all t € R and for some constant 7 > 0. A careful review of
[15, Lemmas 3.1, 3.2, Proposition 3.4] reveals that there exist a constant § € (0, 1)
and a non-decreasing function w € C([0, o)) satisfying w(0) = 0 such that for any
0<e<{§andt >0, we have

0
/t/(l ) Ln:]ds < oo (ne(0)) — oo (ne(—t/(1 — €)) + tew(e), (17)

where 7:(s) := v((1 — ¢)s) for all s € R.

As before we fix any t > 7/6 and choose a o € (t—7, t] so that (uo—ug )(y(—0)) =
0 and then an € > 0 so that ﬁzt. Notethatazl—%: t_T" < % < 6. Hence by
(17) we get

0
[ L] ds < e (1:0)) = e (1) + 7o)

<ttoe(y) = uso(Y(=0)) + ()
< uso(y) — g (1(=0)) + (),

and consequently

0
u(y,t) < / Line] ds + uo(ne (1))

< uso(y) — g (1(=0)) + w0 (y(=0)) + 7(3)

= uso(y) + 7w (3).

from which we get ut(y) < uoo(y). Similarly, if we assume that inf Ag > —oo and
Uoo(x) = d—(x) + c— for all z > R for some constants c_, R € R and also that 0 =
liminf, oo (uo — ug )(z) < limsup,_, . (uo — ug )(x), then we get ut(y) < uso(y).
Theorem 3 now guarantees that convergence (7) holds.

For possible relaxations of the periodicity of H(-,p) and o in the above conver-
gence results, we refer to [15] as well as [6, Théoreme 1].
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