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Abstract. We investigate the large-time behavior of solutions of the Cauchy problem for

Hamilton-Jacobi equations on the real line R. We establish a result on convergence of the solu-

tions to asymptotic solutions as time t goes to infinity.
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1. Introduction and main results. We investigate the large-time behavior of

solutions of the Hamilton-Jacobi equation

ut(x, t) +H(x,Du(x, t)) = 0 in R × (0,∞), (1)

with initial condition

u|t=0 = u0 on R, (2)

whereH ∈ C(R×R) and u0 ∈ C(R) are given functions, u ∈ C(R×[0,∞)) represents

the unknown function, and ut and Du denote the partial derivatives ∂u/∂t and ∂u/∂x,
respectively.

In this note, as far as Hamilton-Jacobi equations are concerned, we mean by

solution (resp., subsolution or supersolution) viscosity solution (resp., viscosity subso-

lution or viscosity supersolution). We refer to [3, 1, 7] for general overviews of viscosity

solutions theory.

The large-time behavior of solutions of (1) or more generally

ut(x, t) +H(x,Du(x, t)) = 0 in Ω × (0,∞), (3)

where Ω is an n-dimensional manifold, has been studied by many authors since the

works by Kruzkov [18], Lions [19], and Barles [2]. In the last decade it has received

much attention under the influence of developments of weak KAM theory introduced

by Fathi [9, 11]. We refer for related developments to Namah-Roquejoffre [23], Fathi

[10], Roquejoffre [24], Barles-Souganidis [5], Davini-Siconolfi [8], Fujita-Ishii-Loreti

[14], Barles-Roquejoffre [4], Ishii [17], Ichihara-Ishii [15, 16], and Mitake [21, 22].

In [10, 23, 24, 5, 8] they studied the asymptotic problem for (3) in the case where

Ω is a compact manifold or simply an n-dimensional flat torus. The results obtained

there are fairly general and one of them states that if H(x, p) is coercive and strictly
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convex in p, then the solution u of (3) behaves as an asymptotic solution for large t,
that is, there is a solution (c, v) ∈ R×C(Ω) of the additive eigenvalue problem for H

H(x,Dv(x)) = c in Ω, (4)

such that

lim
t→∞

(u(x, t) − (v(x) − ct)) = 0 uniformly for x ∈ Ω. (5)

Here and henceforth, for a solution (c, v) of (4), we call the function v(x) − ct an

asymptotic solution of (3). The strict convexity requirement for H in the above result

can be replaced by a condition which is much weaker than the usual strict convexity,

for which we refer to [5] (see also [15]). Moreover, as Barles-Souganidis [5] pointed

out, the convexity of H(x, p) in p is not enough to guarantee the convergence (5).

If (c, v) is a solution of (4), then we call c and v an (additive) eigenvalue and

(additive) eigenfunction for H , respectively.

In the case where Ω = Rn, there are a few results (e.g., [6, 14, 4, 17, 15, 16]) on

the large-time asymptotic behavior of solutions of (3), but the situation is not so clear

compared to the case where Ω is compact.

We use the notation: H [u] or H [u](x) for H(x,Du(x)) in what follows. For

instance, “H [u] ≤ 0 in Ω” means that u is a subsolution of H(x,Du(x)) = 0 in

Ω. We denote by S−
H(Ω) (resp., S+

H(Ω) or SH(Ω)) the set of all subsolutions (resp.,

supersolutions and solutions) u of H [u] = 0 in Ω. We write S−
H (resp., S+

H or SH) for

S−
H(Ω) (resp., S+

H(Ω) or SH(Ω)) when there is no confusion.

In this note we restrict ourselves to the case where Ω = R and give an overview

on the large-time asymptotic behavior of solutions of (3).

We will always assume the following assumptions (A1)–(A6).

(A1) H ∈ C(R2).

(A2) H is locally coercive in the sense that

lim
r→∞

inf{H(x, p) | (x, p) ∈ [−R, R] × R, |p| ≥ r} = ∞ for all R > 0.

(A3) H(x, ·) is convex on R for every x ∈ R.

(A4) S−
H(R) 6= ∅.

(A5) For any φ ∈ SH(R) there exist a function ψ ∈ C(R) and a constant C > 0

such that ψ ∈ S−
H−C(R) and lim

|x|→∞
(φ− ψ)(x) = ∞.

(A6) u0 ∈ C(R).

Our main theorem (Theorem 3 below) states that, under (A1)–(A6) together

with certain additional assumptions, the convergence (5) holds with c = 0 on compact

sets. Note that if u is a solution of (1) and c is a given constant, then the function

w(x, t) = u(x, t) + ct satisfies wt + H [w] − c = 0 in R × (0,∞). Thus, through this

simple change of unknown functions, our main theorem applies to the general situation

where c in (5) may not be zero.

We denote by C0+1(X) the space of real-valued locally Lipschitz continuous func-

tions on metric space X . If a given function H ∈ C(R2) satisfies (A1)–(A3) and
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furthermore the condition that there exist a function φ0 ∈ C0+1(R) and three (real)

constants c < B and ρ > 0 such that

{

H(x,Dφ0(x)) ≤ c a.e. x ∈ R,

H(x, p) ≤ c =⇒ H(x, p+ q) ≤ B for all q ∈ [−ρ, ρ],

then (A1)–(A5) are satisfied with H − c in replace of H . Indeed, it is clear that (A1)–

(A3) hold with H − c in place of H and that φ0 ∈ S−
H−c(R) and hence (A4) holds

with H − c in place of H . (Note here by the convexity of H(x, p) in p that the above

condition on φ0 is equivalent to saying that φ0 ∈ S−
H(R).) We define the function

g ∈ C(R) by g(x) = ρ|x| and, for any φ ∈ S−
H−c(R), we set ψ := φ− g. Then we have

ψ ∈ S−
H−B(R) and lim|x|→∞(φ−ψ)(x) = ∞. That is, (A5) holds with H − c in place

of H .

Another remark here is that we have minp∈RH(x, p) ≤ 0 by (A4), which reads

L(x, 0) ≥ 0 for all x ∈ R,

where L denotes the Lagrangian of the Hamiltonian H , i.e., L is the function defined

by L(x, ξ) = supp∈R
(ξp−H(x, p)).

We define the function d : R × R → R by

d(x, y) = sup{w(x) − w(y) | w ∈ S−
H(R)} for (x, y) ∈ R × R.

It is well-known (see, for instance, [12, 13, 17]) that d(x, x) = 0 for all x ∈ R,

d ∈ C0+1(R2), d(·, y) ∈ S−
H(R) ∩ SH(R \ {y}) for all y ∈ R, and

d(x, y) = inf
{

∫ t

0

L(γ(s), γ̇(s))ds
∣

∣ t > 0, γ ∈ AC([0, t]), γ(t) = x, γ(0) = y
}

.

We define the (projected) Aubry set AH for H as the set of those points y ∈ R

for which d(·, y) ∈ SH(R). See [12, 13, 17] for some properties of AH . The function

d(·, y) can be regarded, in terms of optimal control, as the value function of the optimal

hitting problem having y and L as its target point and running cost, respectively.

As a reflection of our one-dimensional domain R, we have:

Proposition 1. (a) If x ≤ y ≤ z, then d(x, z) = d(x, y)+d(y, z). (b) If x ≥ y ≥
z, then d(x, z) = d(x, y) + d(y, z).

We postpone the proof of the above proposition till the next section.

We observe that if x ≤ 0 < y, then d(x, y)− d(0, y) = d(x, 0) + d(0, y)− d(0, y) =

d(x, 0) and if 0 < x < y, then d(x, y)− d(0, y) = d(x, y)− d(0, x)− d(x, y) = −d(0, x),
and define d+ ∈ C0+1(R) by

d+(x) = lim
y→∞

(d(x, y) − d(0, y)) ≡

{

d(x, 0) for x ≤ 0,

−d(0, x) for x > 0.

Also, we observe that if y < x ≤ 0, then d(x, y)−d(0, y) = d(x, y)−d(0, x)−d(x, y) =

−d(0, x) and if y < 0 < x, then d(x, y) − d(0, y) = d(x, 0) + d(0, y)− d(0, y) = d(x, 0),

and define d− ∈ C0+1(R) by

d−(x) = lim
y→−∞

(d(x, y) − d(0, y)) ≡

{

−d(0, x) for x ≤ 0,

d(x, 0) for x > 0.
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It is easily seen (see also Proposition 7 (a) below) that d+, d− ∈ SH(R).

We assume only (A6) on initial data u0 and do not know any existence and

uniqueness result concerning solutions u of (1)–(2) which applies in this generality.

Our choice of solution of (1)–(2) here is the function u given by

u(x, t) = inf
{

∫ t

0

L(γ(s), γ̇(s)) ds+ u0(γ(0))

∣

∣ γ ∈ AC([0, t]), γ(t) = x
}

. (6)

We understand that formula (6) for t = 0 means that u(x, 0) = u0(x). Note that

L(x, ξ) may take the value +∞ at some points (x, ξ) and that L(x, ξ) ≥ −H(x, 0) ≥
− sup|z|≤RH(z, 0) > −∞ for all R > 0 and (x, ξ) ∈ [−R, R] × R. These observations

clearly give the meaning of the integral
∫ t

0
L(γ, γ̇) ds as a real number or +∞. Note

that it may happen that u(x, t) = −∞ for some points (x, t) ∈ R × (0,∞). Noting

that L(x, 0) = −minp∈RH(x, p) < ∞ for all x ∈ R, we see that u(x, t) ≤ L(x, 0)t +

u0(x) < ∞ for all (x, t) ∈ R × [0,∞). Hence we have −∞ ≤ u(x, t) < ∞ for all

(x, t) ∈ R × [0,∞). Also we remark (see, e.g., [17, Theorems A.1, A.2]) that if

u ∈ C(U) for some open set U ⊂ R× (0,∞), then u is a viscosity solution of (1) in U .

We introduce functions u∞, u−
0

on R as

u−
0
(x) = sup{v(x) | v ∈ S−

H , v ≤ u0 in R},

u∞(x) = inf{v(x) | v ∈ SH , v ≥ u−
0

in R}.

Note that the set {v ∈ S−
H | v ≤ u0 in R} may be empty, in which case u−

0
(x) ≡ −∞.

Otherwise, u−
0

∈ S−
H(R), and u−

0
∈ C0+1(R) because of (A2). Similarly, it may

happen that u∞(x) ≡ +∞. Otherwise, we have u∞ ∈ SH(R) and u∞ ∈ C0+1(R).

Proposition 2. Let u be the function given by (6). (a) If u−
0

(x) ≡ −∞, then
lim inf
t→∞

u(x, t) = −∞ for all x ∈ R. (b) If u−
0

(x) > −∞ and u∞(x) = +∞ for all

x ∈ R, then lim
t→∞

u(x, t) = +∞ for all x ∈ R.

We are now ready to state our main result of this note.

Theorem 3. Assume that u−
0
(x) > −∞ and u∞(x) <∞ for all x ∈ R. Let u be

the solution of (1)–(2) given by (6). Then we have

u(x, t) → u∞(x) uniformly on bounded intervals of R as t→ ∞, (7)

except the following two cases (a) and (b).



















supAH <∞,

u∞(x) = d+(x) + c+ for all x > R and some c+ ∈ R, R > 0,

lim inf
x→∞

(u0 − u−
0
)(x) = 0 < lim sup

x→∞
(u0 − u−

0
)(x).

(a)



















inf AH > −∞,

u∞(x) = d−(x) + c− for all x < −R and some c− ∈ R, R > 0,

lim inf
x→−∞

(u0 − u−
0
)(x) = 0 < lim sup

x→−∞
(u0 − u−

0
)(x) > 0.

(b)

The rest of this note is organized as follows. In Section 2 we give some preliminary

observations which are needed in our proof of Theorem 3. Section 3 is devoted to the
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proof of Theorem 3. In Section 4 we discuss two examples and classical convergence

results as well as a new twist of “strict convexity” hypothesis on H in connection with

Proposition 2 and Theorem 3.

2. Preliminaries. In this section we give some observations on d±, SH , AH ,

u−
0

, u∞, and extremal curves as well as the proof of Propositions 1 and 2. We use the

notation: L[γ] ≡ L[γ](t) for L(γ(t), γ̇(t)).

Proof of Proposition 1. We prove only assertion (a). Assertion (b) can be proved

in a similar way. Let x ≤ y ≤ z. We know that d(x, z) ≤ d(x, y) + d(y, z). Fix an

ε > 0 and choose a curve γ ∈ AC([0, t]), with t > 0, so that γ(t) = x, γ(0) = z, and

d(x, z) + ε >

∫ t

0

L[γ](s) ds.

Choose a τ ∈ [0, t] so that γ(τ) = y, and observe that

d(x, z) + ε >

∫ t

τ

L[γ] ds+

∫ τ

0

L[γ] ds ≥ d(x, y) + d(y, z).

Hence we get d(x, z) ≥ d(x, y) + d(y, z), which proves that d(x, z) = d(z, y) + d(y, z).

We need the following lemmas for the proof of Proposition 2.

Lemma 4. There exists a constant CR > 0 for each R > 0 and a curve η ∈
AC([0, T ]) for each x, y ∈ [−R, R] and T > CR|x − y| such that η(0) = x, η(T ) = y,
and

∫ T

0

L(η(t), η̇(t)) dt ≤ CRT.

Proof. Fix R > 0 and choose constants δ > 0 and M > 0 (see for instance [17,

Proposition 2.1]), depending on R, such that L(x, ξ) ≤ M for all (x, ξ) ∈ [−R, R] ×
[−δ, δ]. Fix any x, y ∈ [−R, R] and T > 0. We define η ∈ AC([0, T ]) by setting

η(t) = x+
t
T (y−x) for t ∈ [0, T ]. We observe that η(0) = x, η(T ) = y, η(t) ∈ [−R, R]

and η̇(t) = (y− x)/T for all t ∈ [0, T ]. Hence, if T > |y − x|/δ, then we get |γ̇(t)| < δ
for all t ∈ [0, T ] and therefore

∫ T

0

L(η(t), η̇(t)) dt =

∫ T

0

L
(

η(t),
y − x

T

)

dt ≤MT.

Thus the curve η has the required properties with CR = max{M, 1/δ}.

Lemma 5. Let U ⊂ R be an open interval and v ∈ USC(U×(0,∞)) a subsolution
of (1) in U × (0,∞). Assume that there exists a constant C0 > 0 such that −C0 ≤
v(x, t) ≤ C0(1 + t) for all (x, t) ∈ U × (0, ∞). Define w ∈ USC(U) by w(x) =

inft>0 v(x, t). Then w ∈ S−
H(U).

An observation similar to the above lemma can be found in [15, Lemma 4.1].

Proof. We may assume that v ∈ USC(U × [0,∞)) by setting v(x, 0) = limr→+0

sup{v(y, s) | (y, s) ∈ U × (0,∞), |y − x| + s < r}. Let ε > 0, and consider the

sup-convolution vε of v defined by

vε(x, t) = sup
s≥0

(

v(x, s) −
(t− s)2

2ε

)

.
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Observe that vε(x, t) ≥ v(x, t) ≥ −C0 for all (x, t) ∈ U × (0,∞).

Fix (x, t) ∈ U × (0,∞). It is clear that there exists an s ≥ 0 such that vε(x, t) =

v(x, s) − (t− s)2/(2ε). Fix such an s ≥ 0, and observe that

−C0 ≤ v(x, t) ≤ vε(x, t) = v(x, s) −
(t− s)2

2ε
≤ C0(1 + s) −

(t− s)2

2ε

≤C0(1 + t+ |t− s|) −
(t− s)2

2ε
≤ −

(t− s)2

4ε
+ C0(1 + t) + εC2

0
,

and hence

|s− t| ≤ 2{ε(2C0(1 + t) + εC2

0
)}1/2.

From this last estimate, we see that for each τ > 0 there exists a δ > 0 such that if

t > τ and 0 < ε < δ, then s > 0. Fix any τ > 0 and choose such a constant δ > 0.

It is now a standard observation that if ε ∈ (0, δ), then vε is a subsolution of (1)

in U × (τ,∞) and vε ∈ C0+1(U × (τ, T )) for all T > τ . Fix any σ > 0 and define

wε,σ ∈ C(U × (0, ∞)) by wε,σ(x, t) = inf0<s<σ vε(x, t+ s).
Let ε ∈ (0, δ), and observe that wε,σ ∈ C0+1(U × (τ, T )) for all T > τ and

by the convexity of H(x, p) in p that wε,σ is a subsolution of (1) in U × (τ, ∞).

Note that wε,σ(x, t) is non-increasing as a function of σ and therefore that if we set

wε(x, t) := infs>0 vε(x, t+ s) for (x, t) ∈ U × (0, ∞), then for any (x, t) ∈ U × (0, ∞),

wε(x, t) = lim
r→+0

sup{wε,σ(y, s) | (y, s) ∈ U × (0, ∞), |y − x| + |s− t| < r, σ > 1/r}.

We now see by the stability of the viscosity property under half relaxed limits that

wε ∈ USC(U × (0, ∞)) is a subsolution of (1) in U × (τ, ∞). By the definition of wε,

it is clear that for any x ∈ U , the function wε(x, t) is non-decreasing in t ∈ (0,∞),

from which we deduce that wε(·, t) ∈ S−
H(U) for all t > τ . In particular, we see that

the family {wε(·, t) | t > τ} ⊂ C0+1(U) is locally equi-Lipschitz continuous on U .

Note that wε(x, t) is non-decreasing as a function of ε, that wε(x, t) ≥ infs>0 v(x, t
+s) for all (x, t) ∈ U× (0, ∞) and ε > 0, and that infε>0 wε(x, t) = inf{vε(x, t+ s) | s
> 0, ε > 0} for all (x, t) ∈ U × (0,∞). It is now easy to see by using the convexity

of H that if we set z(x, t) := infε>0 wε(x, t), then z(x, t) = inf0<ε<δ wε(x, t) for all

(x, t) ∈ U × (0,∞) and z(·, t) ∈ S−
H(U) for all t > τ . Since τ > 0 is arbitrary, we see

that z(·, t) ∈ S−
H(U) for all t > 0. Setting w(x) := inft>0 z(x, t) for x ∈ U , we see that

w(x) = inft>0 v(x, t) for all x ∈ U and moreover that w ∈ S−
H(U).

Lemma 6. Let φ ∈ S−
H and γ ∈ AC([0, t]). Then

φ(γ(t)) − φ(γ(0)) ≤

∫ t

0

L[γ] ds.

For a proof of the above lemma we refer, for instance, to [17, Proposition 2.5].

Proof of Proposition 2. We begin with (a). Assume that u−
0
(x) ≡ −∞. We

suppose that there exists an x0 ∈ R such that lim inft→∞ u(x0, t) > −∞, and will get

a contradiction. By translation, we may assume that x0 = 0.

We show first that for each R > 0 there exists a constant MR > 0 such that

u(x, t) ≥ −MR for all (x, t) ∈ [−R,R] × [0,∞). For this we fix R > 0 and choose

constants τ > 0 and C0 > 0 so that u(0, t) ≥ −C0 for all t ≥ τ . Let CR > 0 be the

constant from Lemma 4 and fix any (x, t) ∈ [−R, R]× [0, ∞). By Lemma 4, we may
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choose a curve η ∈ AC([0, TR]), with TR := RCR + τ , so that η(0) = x, η(TR) = 0,

and
∫ TR

0

L[η] ds ≤ CRTR.

Fix any γ ∈ AC([0, t]) so that γ(t) = x, and define ζ ∈ AC([0, t+ TR]) by

ζ(s) =

{

γ(s) for 0 ≤ s ≤ t,

η(s− t) for t ≤ s ≤ t+ TR.

We observe that

−C0 ≤ u(0, t+ tR) ≤

∫ t

0

L[γ] ds+

∫ tR

0

L[η] ds+ u0(ζ(0))

≤CRTR +

∫ t

0

L[γ] ds+ u0(γ(0)),

from which we deduce that u(x, t) ≥ −C0 − CRTR. Thus we conclude that u(x, t) ≥
−MR for all (x, t) ∈ [−R, R] × [0, ∞), where MR := C0 + CRTR.

Next we observe from (6) that u(x, t) ≤ L(x, 0)t+u0(x) for all (x, t) ∈ R× [0,∞).

Since L(x, 0) = −minp∈RH(x, p) is a continuous function of x because of (A1) and

(A2), we see that u is locally bounded on R×[0,∞) and hence by [17, Theorem A.1] for

instance that u∗ is a viscosity subsolution of (1), where u∗ is the upper semicontinuous

envelope of u, i.e., u∗(x, t) := limr→+0 sup{u(y, s) | (y, s) ∈ R×[0,∞), |y−x|+|s−t| <
r}. Set w(x) = inft>0 u∗(x, t) for x ∈ R. According to Lemma 5, we have w ∈ S−

H(R).

Also, since u∗(x, t) ≤ L(x, 0)t+u0(x) for all (x, t) ∈ R×(0, ∞), we have w(x) ≤ u0(x)
for all x ∈ R. Now we see that u−

0
(x) ≥ w(x) > −∞ for all x ∈ R. This is a

contradiction, which proves (a).

We now turn to (b). Assume that u−
0

(x) > −∞ and u∞(x) = +∞ for all

x ∈ R. We suppose that lim inft→∞ u(x0, t) < ∞ for some x0 ∈ R, and will obtain a

contradiction.

Define the function u− on R × [0,∞) by

u−(x, t) = inf
{

∫ t

0

L[γ](s) ds+ u−
0
(γ(0))

∣

∣ γ ∈ AC([0, t]), γ(t) = x
}

. (8)

Since u−
0
≤ u0 in R, we have u−(x, t) ≤ u(x, t) for all (x, t) ∈ R × [0,∞). Note that

the function u− satisfies the dynamic programming principle

u−(x, t+ s) = inf
{

∫ t

0

L[γ](r) dr + u−(γ(0), s)
∣

∣ γ ∈ AC([0, t]), γ(t) = x
}

.

The term inside the above infimum sign can be ∞−∞, which we agree to mean +∞.

Since u−
0
∈ S−

H , by Lemma 6, we have for all γ ∈ AC([0, t]),

u−
0

(γ(t)) − u−
0

(γ(0)) ≤

∫ t

0

L[γ](s) ds.

Consequently, we get

u−
0
(x) ≤ u−(x, t) for all (x, t) ∈ R × [0,∞).
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This together the dynamic programming principle yields

u−(x, t + s) ≥ inf
{

∫ t

0

L[γ](r) dr + u−
0
(γ(0))

∣

∣ γ ∈ AC([0, t]), γ(t) = x
}

= u−(x, t)

for all x ∈ R and t, s ∈ [0,∞). Thus we see that the function u−(x, t) is non-decreasing

in t for any x ∈ R.

We may assume without any loss of generality that x0 = 0. We choose a constant

C1 > 0 so that lim inft→∞ u(0, t) ≤ C1. By the monotonicity of u−(0, t), we have

u−(0, t) ≤ C1 for all t ≥ 0.

Fix any R > 0. By the dynamic programming principle and Lemma 4 with T =

CRR+ 1, we get for all (x, t) ∈ [−R, R] × [0, ∞),

u−(x, t+ T ) ≤ CRT + u−(0, t) ≤ CRT + C1,

where CR > 0 is the constant from Lemma 4. Hence we get

u−(x, t) ≤ KR for all (x, t) ∈ [−R, R] × [0,∞),

where KR := CRT + C1.

Since u−
0

∈ C0+1(R), we have u− ∈ C0+1(R × [0, ∞)). Indeed, we fix R > 0,

x, y ∈ [−R, R] with x 6= y, and t ≥ 0, and observe by using the dynamic programming

principle and Lemma 4, with T > CR|x− y|, that for all x, y ∈ [−R, R] and t ≥ 0,

u−(y, t) ≤ u−(y, t+ T ) ≤ u−(x, t) + CRT. (9)

Thus we have

|u−(y, t) − u−(x, t)| ≤ C2

R|x− y| for all x, y ∈ [−R, R] and t ≥ 0.

On the other hand, using the dynamic programming principle and Lemma 4, we have

for x ∈ [−R, R] and t, s ∈ [0, ∞),

u−(x, t) ≤ u−(x, t+ s) ≤ u−(x, t) + CRs,

and hence |u−(x, t) − u−(x, s)| ≤ CR|t − s| for all x ∈ [−R, R] and t, s ∈ [0, ∞).

Thus we conclude that u− ∈ C0+1(R × [0, ∞)). It is now standard to see that if we

set w(x) = limt→∞ u−(x, t), then w ∈ C0+1(R) and w ∈ SH(R). The monotonicity

of the function u−(x, t) in t guarantees that u−
0

≤ w in R. Therefore we see that

u∞(x) ≤ w(x) <∞ for all x ∈ R, which is a contradiction.

Proposition 7. (a) d± ∈ SH(R). (b) If x ≤ y, then d(x, y) = d+(x) − d+(y).
(c) If x ≥ y, then d(x, y) = d−(x)−d−(y). (d) The function d+−d− is non-increasing
on R.

Proof. (a) Since d(·, y) ∈ SH(R \ {y}) for any y ∈ R, by the stability of the

viscosity property, we see that d± ∈ SH(R). (b) Let x ≤ y < z, and observe that

d(x, z) − d(0, z) = d(x, y) + d(y, z) − d(0, z). Hence, sending z → ∞, we get d+(x) =

d(x, y)+d+(y), that is, if x ≤ y, then d(x, y) = d+(x)−d+(y). (c) An argument parallel
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to (b) readily yields d(x, y) = d−(x) − d−(y) for x ≥ y. (d) Let x < y and observe

that d−(x) − d−(y) ≤ d(x, y) = d+(x) − d+(y), from which we get (d+ − d−)(x) ≥
(d+ − d−)(y).

Proposition 8. We have

u−
0
(x) = inf{u0(y) + d(x, y) | y ∈ R} for all x ∈ R.

Proof. We denote by w the function defined by the right hand side of the above

equality. Let v ∈ S−
H(R) satisfy v ≤ u0 in R. Then we have v(x) ≤ v(y) + d(x, y) ≤

u0(y)+d(x, y) for all x ∈ R. Hence we get v(x) ≤ w(x) and consequently u−
0

(x) ≤ w(x)
for all x ∈ R. On the other hand, if w(x0) > −∞ for some x0 ∈ R, then we see that

w ∈ C0+1(R) and w ∈ S−
H(R). It is clear that w(x) ≤ u0(x) for all x ∈ R. Therefore

we have w(x) ≤ u−
0

(x) for all x ∈ R. Thus we have w(x) = u−
0
(x) for all x ∈ R.

Let I ⊂ R be an interval and φ ∈ S−
H . We call a function (curve) γ ∈ C(I) an

extremal curve on I for φ if for any a, b ∈ I, with a < b, we have

γ ∈ AC([a, b]) and φ(γ(b)) − φ(γ(a)) =

∫ b

a

L[γ](s) ds. (10)

We denote by E(I, φ) the set of all extremal curves on I for φ. When 0 ∈ I, for

y ∈ R, we denote by E(I, φ, y) the set of those γ ∈ E(I, φ) which satisfy γ(0) = y.

Proposition 9. Let φ ∈ SH and y ∈ R. Then E((−∞, 0], φ, y) 6= ∅.

We can adapt the proof of [17, Corollary 6.2] to the above lemma. We will not

give the details of the proof here, and instead give a key observation:

Lemma 10. Let φ ∈ SH and t > 0. Then, for any x ∈ R,

φ(x) = inf
{

∫ t

0

L[γ] ds+ φ(γ(0))

∣

∣ γ ∈ AC([0, t]), γ(t) = x
}

. (11)

Proof. Thanks to (A5), we may choose a function ψ ∈ C0+1(R) and a constant

C > 0 so that ψ ∈ S−
H−C and lim|x|→∞(ψ − φ)(x) = −∞. Then, we apply [17,

Theorem 1.1], with φ0 and φ1 replaced by φ and ψ, respectively, to conclude that the

solution u(x, t) := φ(x) of (1)–(2) can be represented as

u(x, t) = inf
{

∫ t

0

L[γ] ds+ φ(γ(0))

∣

∣ γ ∈ AC([0, t]), γ(t) = x
}

,

which shows that (11) holds true. (In [17, Theorem 1.1], the Hamiltonian H(x, p) is

assumed to be strictly convex in p, but this assumption is actually superfluous and

can be replaced by our convexity assumption (A3). )

Proposition 11. AH = EH , where EH denotes the set of equilibria, that is,
EH = {x ∈ R | L(x, 0) = 0}.

Lemma 12. Let y ∈ R and δ > 0. Then we have y ∈ AH if and only if

inf
{

∫ t

0

L[γ] ds
∣

∣ t ≥ δ, γ ∈ AC([0, t]), γ(t) = γ(0) = y
}

= 0.
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We refer to [17, Proposition A.3] (see also [12, 13]) for a proof of the above lemma.

Proof of Proposition 11. Let z ∈ AH , and we need to show that L(z, 0) ≤ 0.

Fix any ε ∈ (0, 1). Let δ > 0 be a constant to be fixed later on. According to

Lemma 12, for any n ∈ N there exists a γn ∈ AC([0, Tn]), with Tn ≥ δ, such that

γn(0) = γn(Tn) = z and
∫ Tn

0

L(γn, γ̇n) ds <
1

n
.

We claim that we may assume by choosing δ > 0 small enough that

max
0≤s≤Tn

|γn(s) − z| ≤ ε.

To see this, we first consider the case where max0≤s≤Tn
(γn(s) − z) > ε. It is easily

seen that there are 0 ≤ sn < tn ≤ σn < τn ≤ Tn such that γn(sn) = γn(τn) = z,
γn(tn) = γn(σn) = z+ ε, and γn(s) ∈ (z, z+ ε) for all s ∈ (sn, tn)∪ (σn , τn). Observe

that

0 = d(z, z) ≤

∫ sn

0

L[γn] ds.

Similarly we have

∫ σn

tn

L[γn] ds ≥ 0 and

∫ Tn

τn

L[γn] ds ≥ 0.

Therefore we get

1

n
>

∫ Tn

0

L[γn] ds ≥

∫ tn

sn

L[γn] ds+

∫ τn

σn

L[γn] ds.

We define γ̃n ∈ AC([0, T̃n]), with ˜Tn := tn−sn +τn−σn, by setting γ̃n(s) = γn(s+sn)

for s ∈ [0, tn − sn] and γ̃n(s) = γn(s + σn − tn + sn) for s ∈ [tn − sn, ˜Tn], and note

that

max

0≤s≤˜Tn

|γ̃n(s) − z| = ε, γ̃n(tn − sn) = z + ε, and

∫

˜Tn

0

L[γ̃n] ds <
1

n
.

By (A1), there exists a constant Cε > 0 such that εL(x, ξ) ≥ (|ξ| − Cε) for all

(x, ξ) ∈ [z − 1, z + 1] × R. We compute that

2ε = |γ̃n(tn − sn) − γ̃n(0)| + |γ̃n(˜Tn) − γ̃n(tn − sn)|

≤

∫ tn−sn

0

∣

∣

∣

∣

dγ̃n(s)

ds

∣

∣

∣

∣

ds+

∫

˜Tn

tn−sn

∣

∣

∣

∣

dγ̃n(s)

ds

∣

∣

∣

∣

ds

≤

∫

˜Tn

0

(εL[γ̃n] + Cε) ds < ε+ Cε
˜Tn.

Hence we have ˜Tn ≥ ε/Cε. We now fix δ = ε/Cε and observe that γ̃n(0) = γ̃(˜Tn) = z,

∫

˜Tn

0

L[γ̃n] ds <
1

n
, and max

0≤s≤˜Tn

|γ̃n(s) − z| ≤ ε.
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Similarly, if min0≤s≤Tn
(γn(s) − z) < −ε, then we can build a γ̃n ∈ AC([0, ˜Tn]),

with ˜Tn ≥ δ, so that γ̃n(0) = γ̃n(˜Tn) = z,

max

0≤s≤˜Tn

|γ̃n(s) − z| ≤ ε, and

∫

˜Tn

0

L[γ̃n] ds <
1

n
.

Thus we may assume by replacing γn if necessary that max0≤s≤Tn
|γn(s) − z| ≤ ε.

Next, let R > 0 and set

LR(x, ξ) = max
|p|≤R

(ξp−H(x, p)).

Observe that LR is continuous on R × R, LR(x, ξ) ≤ L(x, ξ) for all (x, ξ), and

LR(x, ξ) → L(x, ξ) as R → ∞ for all (x, ξ). Let ωR be a modulus of the function

H on [z − 1, z + 1]× [−R, R] and observe that for all x, y ∈ [z − 1, z + 1] and ξ ∈ R,

|LR(x, ξ) − LR(y, ξ)| ≤ max
|p|≤R

|H(x, p) −H(y, p)| ≤ ωR(|x− y|).

We compute that

LR(z, 0) =LR

(

z,
1

Tn

∫ Tn

0

γ̇n(t) dt
)

≤
1

Tn

∫ Tn

0

LR(z, γ̇n(t)) dt

≤
1

Tn

∫ Tn

0

LR(γn(t), γ̇n(t)) dt+ ωR( max
0≤t≤Tn

|γn(t) − z|)

≤
1

Tn

∫ Tn

0

L(γn(t), γ̇n(t)) dt+ ωR( max
0≤t≤Tn

|γn(t) − z|)

<
1

nTn
+ ωR( max

0≤t≤Tn

|γn(t) − z|) ≤
1

nδ
+ ωR(ε).

Sending n → ∞ and then ε → +0, we get LR(z, 0) ≤ 0, from which we conclude by

sending R → ∞ that L(z, 0) ≤ 0. The proof is complete.

3. Proof of Theorem 3. This section is devoted to the proof of Theorem 3.

We assume all the hypotheses of Theorem 3 in what follows. Let u be the function on

R × [0, ∞) given by (6) and u+ denote the function on R defined by

u+(x) = lim sup
t→∞

u(x, t).

Lemma 13. For all x ∈ R we have

u+(x) = lim
r→+0

sup{u(y, s) | s > r−1, |y − x| < r}, (12)

u∞(x) ≤ lim
r→+0

inf{u(y, s) | s > r−1, |y − x| < r}. (13)

Inequality (13) is a modification of (18) in [15, Lemma 4.1].

Proof. By Lemma 4 and the dynamic programming principle, we get

u(y, t+ T ) ≤ u(x, t) + CRT for all x, y ∈ [−R, R], t ≥ 0 and T > CR|x− y|,
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where CR > 0 is a constant depending only on R, from which we easily obtain (12)

for all x ∈ R.

Let u− be the function on R × [0,∞) defined by (8). As in the proof of Propo-

sition 2, we have u− ∈ C0+1(R × [0,∞)), u− ≤ u in R × [0, ∞), and u∞(x) =

limt→∞ u−(x, t). Therefore we have

u∞(x) = lim
r→+0

inf{u−(y, s) | s > r−1, |y − x| < r}

≤ lim
r→+0

inf{u(y, s) | s > r−1, |y − x| < r},

which completes the proof.

In order to show that u(x, t) → u∞(x) uniformly on bounded intervals of R, due

to the above lemma, we only need to prove that u+(x) ≤ u∞(x) for all x ∈ R. We

fix y ∈ R and will prove that u−
0
(y) ≤ u∞(y). By Proposition 9, we may choose a

γ ∈ E((−∞, 0], u∞, y). We first divide our considerations into two cases.

Case 1: dist (γ((−∞, 0]), AH) = 0 and Case 2: dist (γ(−∞, 0]), AH) > 0,

where we set dist (γ((−∞, 0]), AH) = ∞ when AH = ∅. We first treat Case 1.

Lemma 14. In Case 1, we have u+(y) ≤ u∞(y).

Proof. Since γ((−∞, 0]) is an interval and AH is a closed set (see. e.g., [12, 13,

17]), it is not hard to see that there exists a z ∈ AH such that dist (γ((−∞, 0]), z) = 0.

Fix such a z ∈ AH and set R = |z|+1. Let CR > 0 be the constant from Lemma 4. Fix

any ε ∈ (0, 1), and choose an r > 0 so that |γ(−r)−z| < ε and u∞(z) ≤ u∞(γ(−r))+ε.
By Lemma 4, we may choose a curve η ∈ AC([0, τ ]), with τ = CR|z − γ(−r)| + ε, so

that η(0) = z, η(τ) = γ(−r), and

∫ τ

0

L[η] dt ≤ CR τ = C2

R(|z − γ(−r)| + ε) ≤ 2C2

R ε.

In view of Proposition 8 and the variational representation for d, we have

u−
0
(z) = inf

{

∫ t

0

L[ζ] ds+ u0(ζ(0))

∣

∣ t > 0, ζ ∈ AC([0, t]), ζ(t) = z
}

.

Hence we may choose a curve ζ ∈ AC([0, σ]), with σ > 0, so that ζ(σ) = z and

u−
0
(z) + ε >

∫ σ

0

L[ζ] ds+ u0(ζ(0)).

Let t > r+τ+σ and define the curve µ ∈ AC([−t, 0]) as follows: we set T = t−(r+τ+σ)

and

µ(s) =











γ(s) for s ∈ [−r, 0],
η(s+ r + τ) for s ∈ (−(r + τ),−r],
z for s ∈ (−(r + τ + T ),−(r + τ)],
ζ(s+ t) for s ∈ [−t,−t+ σ] ≡ [−t,−(r + τ + T )].

We compute that

u(y, t) ≤

∫

0

−t

L[µ] ds+ u0(µ(−t))

≤

∫

0

−r

L[γ] ds+

∫ τ

0

L[η] ds+

∫ T

0

L(z, 0) ds+

∫ σ

0

L[ζ] ds+ u0(ζ(0))

<u∞(y) − u∞(γ(−r)) + 2C2

Rε+ u−
0

(z) + ε ≤ u∞(y) + 2(C2

R + 1)ε,
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where we have used the fact that u−
0

(z) ≤ u∞(z) ≤ u∞(γ(−r))+ ε, and conclude that

u+(y) ≤ u∞(y).

Now, we turn to Case 2 and begin with a few lemmas.

Lemma 15. Let c ∈ R. Assume that d++c ≥ u−
0

on R and infR(d++c−u−
0
) = 0.

Then lim
x→∞

(d+(x) + c− u−
0

(x)) = 0.

Proof. Suppose on the contrary that lim supx→∞(d+(x) + c − u−
0
(x)) > 0 and

choose a δ > 0 and a sequence xn → ∞ such that d+(xn) + c − u−
0

(xn) ≥ δ for all

n ∈ N. We show that d+(x) + c − u−
0
(x) ≥ δ/2 for all x ∈ R, which is an obvious

contradiction to the assumption that infR(d+ + c− u−
0

) = 0.

Fix any x ∈ R, and choose an n so that x ≤ xn and then a yn ∈ R in view

of Proposition 8 so that u−
0
(xn) + δ/2 > u0(yn) + d(xn, yn). Noting that d(x, xn) =

d+(x) − d+(xn), we compute that

u−
0

(x) ≤u0(yn) + d(x, yn) ≤ u0(yn) + d(x, xn) + d(xn, yn)

<u−
0

(xn) +
δ

2
+ d(x, xn) ≤ d+(xn) + c−

δ

2
+ d+(x) − d+(xn)

= d+(x) + c−
δ

2
,

and conclude that d+(x) + c− u−
0
(x) ≥ δ/2.

Lemma 16. In Case 2, the set γ((−∞, 0]) is unbounded.

Proof. On the contrary we suppose that γ((−∞, 0]) is bounded. We may choose a

sequence {tn} ⊂ (−∞, 0] so that tn+1 ≤ tn−1 for all n ∈ N and {γ(tn)} is convergent.

Set z := limn→∞ γ(tn). Observe that as n→ ∞,

∫ tn

tn+1

L(γ, γ̇) dt = u∞(γ(tn)) − u∞(γ(tn+1)) → 0.

Fix any n ∈ N. By Lemma 4, there are curves ηn ∈ AC([0, τn]) and ζn ∈ AC([0, σn]),

with τn > 0 and σn > 0, such that ηn(0) = ζn(σn) = z, ηn(τn) = γ(tn+1), ζn(0) =

γ(tn), and
∫ τn

0

L[ηn] dt ≤C0|γ(tn+1) − z|+
1

n
,

∫ σn

0

L[ζn] dt ≤C0|γ(tn) − z| +
1

n
,

where C0 > 0 is a constant independent of n. We set Tn = tn − tn+1 + τn + σn and

define the curve γn ∈ AC([0, Tn]) by

γn(t) =











ηn(t) for t ∈ [0, τn],

γ(t+ tn+1 − τn) for t ∈ (τn, τn + tn − tn+1],

ζn(t− (τn + tn − tn+1)) for t ∈ (τn + tn − tn+1, Tn].

Observe that γn(0) = γn(Tn) = z and

∫ Tn

0

L[γn] dt ≤ u∞(γ(tn)) − u∞(γ(tn+1))

+ C0(|γ(tn) − z| + |γ(tn+1) − z|) +
2

n
→ 0 as n→ ∞,
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and conclude by Lemma 12 that z ∈ AH . This is a contradiction.

In what follows we divide our considerations concerning Case 2 into two subcases:

Case 2a: sup γ((−∞, 0]) = ∞ and Case 2b: inf γ((−∞, 0]) = −∞.

We now deal with Case 2a.

Lemma 17. In Case 2a, we have [y,∞) ∩ AH = ∅. Moreover, the function γ is
decreasing on (−∞, 0] and there exists a constant c ∈ R such that u∞(x) = d+(x)+ c
for all x ≥ y.

Proof. Since sup γ((−∞, 0]) = ∞ and y is in the interval γ((−∞, 0]), we see that

[y,∞) ⊂ γ((−∞, 0]) and hence dist ([y,∞),AH) ≥ dist (γ((−∞, 0]),AH) > 0. That

is, we have [y,∞) ∩AH = ∅.
To see that γ is decreasing, we suppose on the contrary that there exist a < b ≤ 0

such that γ(a) ≤ γ(b). Since γ([a, b]) is a compact interval and [y, ∞) ⊂ γ((−∞, 0]),

we see that there exists an a′ ∈ (−∞, a] such that γ(a′) = γ(b). Then we have

∫ b

a′

L[γ] dt = u∞(γ(b)) − u∞(γ(a′)) = 0,

which implies that γ(a′) ∈ AH ∩ [y, ∞). This is a contradiction, which ensures that

γ is decreasing on (−∞, 0].

It is now clear that γ((−∞, 0]) = [y, ∞). Fix x ∈ [y, ∞) and choose a (unique)

tx ∈ (−∞, 0] so that γ(tx) = x. We have

d+(y) − d+(x) ≤

∫

0

tx

L[γ] dt

=u∞(y) − u∞(x) ≤ d(y, x) = d+(y) − d+(x),

where the last equality is a consequence of Proposition 7 (b). Therefore we get

u∞(x) = d+(x) + c, with c := u∞(y) − d+(y).

Lemma 18. In Case 2a, let β, z ∈ R be such that y ≤ β < z. Then there exists a
curve η ∈ E((−∞, τ ], d−, β), with τ > 0, such that η(τ) = z. Moreover, η is increasing
on [0, τ ].

Proof. By Proposition 9, we may choose a ζ ∈ E((−∞, 0], d−, z). By continuity,

there is a T > 0 such that (−∞, β) ∩ ζ([−T, 0]) = ∅. We fix such a T > 0, and will

show that that ζ is increasing on [−T, 0]. Suppose on the contrary that ζ(a) ≥ ζ(b)
for some a, b ∈ [−T, 0] satisfying a < b. By Proposition 7, we have d(ζ(b), ζ(a)) =

d+(ζ(b)) − d+(ζ(a)) and d(ζ(a), ζ(b)) = d−(ζ(a)) − d−(ζ(b)). Also, we have

d+(ζ(b)) − d+(ζ(a)) =

∫ b

a

L[ζ] ds = d−(ζ(b)) − d−(ζ(a)) ≤ d(ζ(b), ζ(a)).

From these we conclude that

∫ b

a

L[ζ] ds = d(ζ(b), ζ(a)) = −d(ζ(a), ζ(b)),
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which yields

0 = d(ζ(b), ζ(a)) + d(ζ(a), ζ(b))

= inf
{

∫ t

0

L[η] ds
∣

∣ t ≥ b− a, η ∈ AC([0, t]), η(t) = η(0) = ζ(b)
}

.

This implies that ζ(b) ∈ AH ⊂ (−∞, y), which is a contradiction.

Next, we show that β ∈ ζ((−∞, 0]). Suppose on the contrary that β 6∈ ζ((−∞, 0]).

Then, since ζ((−∞, 0]) is an interval and z ∈ ζ((−∞, 0]), we infer that (−∞, β] ∩
ζ((−∞, 0]) = ∅. Therefore, ζ is increasing on (−∞, 0] and inf ζ((−∞, 0]) ≥ β. Set

α := limt→−∞ ζ(t) and note that α ∈ [β, z). Now the proof of Lemma 16 guarantees

that α ∈ AH , which yields a contradiction, α ∈ AH ⊂ (−∞, y).
We choose a τ > 0 so that ζ(−τ) = β and (−∞, β) ∩ ζ([−τ, 0]) = ∅. We see

immediately that ζ([−τ, 0]) = [β, z] and ζ is increasing on [−τ, 0]. We define the curve

η ∈ E((−∞, τ ], d−) by η(s) = ζ(s − τ). The curve η has all the required properties.

Since u−
0
≤ u0 on R, we have lim infx→∞(u0(x) − u−

0
(x)) ≥ 0. Because of one of

assumptions of Theorem 3, we have only two cases to consider.

Case (i): lim infx→∞(u0(x)−u
−
0

(x)) > 0 and Case (ii): limx→∞(u0(x)−u
−
0

(x)) =

0.

Proposition 19. In Case (i), we have u+(y) ≤ u∞(y).

Proof. We choose a δ > 0 so that lim infx→∞(u0(x) − u−
0

(x)) > δ and then a

β > y so that u0(x) − u−
0

(x) > δ for all x ≥ β. We have

u−
0

(x) ≤ u−
0

(z) + d(x, z) < u0(z) + d(x, z) − δ for all x ∈ R and z ≥ β,

and therefore, by Proposition 8, we get

u−
0

(x) = inf
z≤β

(u0(z) + d(x, z)) for all x ∈ R.

In particular, we have for all x ≥ β,

u−
0

(x) = inf
z≤β

(u0(z) + d−(x) − d−(z)) = d−(x) + b,

where b := infz≤β(u0(z) − d−(z)). Since u∞(x) ≥ u−
0

(x) for all x ∈ R, we have

d+(x) − d−(x) + c− b ≥ 0 for all x ≥ β,

where c is the constant from Lemma 17.

Fix any ε > 0. By the definition of b, we may choose an α ∈ (−∞, β] so that

b + ε > u0(α) − d−(α). Since γ(0) = y < β and limt→−∞ γ(t) = ∞, we may choose

a σ > 0 so that γ(−σ) = β. Since d(β, α) = d−(β) − d−(α), we may choose a

ζ ∈ AC([0, ρ]), with ρ > 0, so that ζ(0) = α, ζ(ρ) = β, and

d−(β) − d−(α) + ε >

∫ ρ

0

L[ζ] ds.
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Fix any t > 0 and set z = γ(−t − σ). In view of Lemma 18, we may choose an

η ∈ E((−∞, τ ], d−, β), with τ > 0, such that η(τ) = z. Remark that η is increasing

on [0, τ ]. Set T = min{τ, t}. We define the function f on [0, T ] by f(s) = η(s) −
γ(s − t − σ), and observe that f(0) = β − γ(−t − σ) < β − γ(−σ) = 0 and that

if T = τ , then f(T ) = z − γ(τ − t − σ) > z − γ(−t − σ) = 0 and if T = t, then

f(T ) = η(t) − γ(−σ) > η(0) − β = 0. By the continuity of f , we may choose a

λ ∈ (0, T ) so that f(λ) = 0, that is, η(λ) = γ(λ− t− σ).

We define µ ∈ AC([−(t+ σ + ρ), 0]) by

µ(s) =











γ(s) for s ∈ [λ− (t+ σ), 0],

η(s+ t+ σ) for s ∈ [−(t+ σ), λ− (t+ σ)],

ζ(s+ t+ σ + ρ) for s ∈ [−(t+ σ + ρ), −(t+ σ)].

Observe that µ(0) = y and µ(−(t+ σ + ρ)) = ζ(0) = α, and compute that

∫

0

−(t+σ+ρ)

L[µ] ds+ u0(µ(−(t+ σ + ρ)))

=

∫ ρ

0

L[ζ] ds+

∫ λ

0

L[η] ds+

∫

0

λ−(t+σ)

L[γ] ds+ u0(α)

< d−(β) − d−(α) + ε+ d−(η(λ)) − d−(η(0))

+ d+(γ(0)) − d+(γ(λ− (t+ σ))) + u0(α)

= d+(y) + d−(η(λ)) − d+(η(λ)) + u0(α) − d−(α) + ε

< d+(y) + d−(η(λ)) − d+(η(λ)) + b+ 2ε.

As noted above, we have

d+(η(λ)) − d−(η(λ)) + c− b ≥ 0,

and therefore

u(y, t+ σ + ρ) < d+(y) + c+ 2ε = u∞(y) + 2ε,

from which we conclude that u+(y) ≤ u∞(y).

The switch-back construction of µ in the proof above is adapted from [16].

Proposition 20. In Case (ii), we have u+(y) ≤ u∞(y).

Proof. Fix any ε > 0. By assumption, there exists an R > y such that if x ≥ R,

then u0(x) ≤ u−
0

(x) + ε. Since limt→−∞ γ(t) = ∞, there exists a T > 0 such that if

t ≥ T , then γ(−t) ≥ R. Fix any t ≥ T and compute that

u(y, t) ≤

∫

0

−t

L[γ] ds+ u0(γ(−t)) ≤ u∞(y) − u∞(γ(−t)) + u−
0

(γ(−t)) + ε

≤ u∞(y) − u∞(γ(−t)) + u∞(γ(−t)) + ε = u∞(y) + ε.

From this we conclude that u∞(y) ≤ u−
0

(y).

We may treat Case 2b by an argument parallel to the above, to conclude that

u+(y) ≤ u∞(y). The proof of Theorem 3 is now complete.
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4. Concluding remarks. We first discuss two examples in connection with

Theorem 3 and Proposition 2. Barles-Souganidis [5] gave a simple example of Hamil-

tonian H and initial data u0 for which convergence (5) does not hold. In the ex-

ample H and u0 are given, respectively, by H(p) = |p + 1| − 1 and u0(x) = sinx
for p, x ∈ R. The solution u of (1)–(2) is then given by u(x, t) := sin(x − t), for

which (5) does not hold with any asymptotic solution v(x) − ct, and all assumptions

(A1)–(A6) are satisfied. Noting that H(p) ≤ 0 if and only if p ∈ [−2, 0], we see that

d+(x) = −2x and d−(x) = 0 for all x ∈ R and that AH = ∅. Also, it is easily

seen that u−
0
(x) = infy∈R(u0(y) + d(x, y)) = −1 and u∞(x) = −1 for all x ∈ R.

Hence we have u∞(x) = d−(x) − 1 for all x ∈ R, lim infx→−∞(u0 − u−
0
)(x) = 0, and

lim supx→−∞(u0−u
−
0
)(x) = 2. These explicitly violate one of assumptions of Theorem

3.

Lions-Souganidis [20] examined the following Hamilton-Jacobi equation
1

2
|Dv|2−

f(x) = 0 in R, where f is given by f(x) = 2 + sinx + sin
√

2x. Note that f(x) > 0

for all x ∈ R and infR f = 0. The Lagrangian L of H(x, p) :=
1

2
|p|2 − f(x) is given

by L(x, ξ) =
1

2
|ξ|2 + f(x) and satisfies L(x, ξ) > 0 for all (x, ξ), which implies that

AH = ∅. The function d, d+, and d− are given, respectively, by

d(x, y) =

∣

∣

∣

∫ x

y

√

2f(s) ds
∣

∣

∣
, d+(x) = −

∫ x

0

√

2f(s) ds, and d−(x) = −d+(x).

Consider the evolution equation ut+H(x,Du) = 0 together with initial data u0(x) ≡ 0.

We write u for the solution of this problem as usual. It is easy to see that u−
0
(x) =

infy∈R d(x, y) = 0 and u∞(x) = +∞ for all x ∈ R. Proposition 2 ensures that

limt→∞ u(x, t) = ∞ for all x ∈ R and u does not “converge” to any asymptotic

solution in this case.

Next we discuss two existing convergence results in light of Theorem 3. In [17],

the Cauchy problem for (3), with Ω = Rn, are treated and, in addition to (A1)–(A6),

it is there assumed that there exist functions φ0, σ0 ∈ C(Rn) such that H [φ0] ≤ −σ0

in Rn and lim|x|→∞ σ0(x) = ∞. Most of results in [17] are concerned with solutions

u of (3) with Ω = Rn for which u∞(x) ≥ φ0(x) − C0 for all x and for some constant

C0 ∈ R.

We restrict ourselves to the case when n = 1, and assume that (A1)–(A6) hold,

that there exist functions φ0, σ0 ∈ C(R) having the properties described above, and

that u∞(x) ≥ φ0(x) − C0 for all x and for some constant C0 ∈ R. We show as

a consequence of Theorem 3 that convergence (7) holds. The first thing to note is

that if supAH < ∞, then d+(x) − φ0(x) → −∞ as x → ∞. Indeed, assuming that

AH ⊂ (−∞, β) for some β ∈ R, for any γ ∈ E((−∞, 0], d+, β), we see, as in the proof

of Lemma 18, that γ is decreasing on (−∞, 0] and γ(s) → ∞ as s→ −∞. Moreover,

for t > 0, we get

d+(γ(0)) − d+(γ(−t)) =

∫

0

−t

L[γ] ds ≥ φ0(γ(0)) − φ0(γ(−t)) +

∫

0

−t

σ0(γ(s)) ds.

Since
∫

0

−t
σ0 ds → ∞ as t → ∞, we conclude that (φ0 − d+)(x) → ∞ as x → ∞.

Similarly, if inf AH > −∞, then we have (d− − φ0)(x) → ∞ as x → −∞. These

observations guarantee that, under our current hypotheses, there is no possibility that

either u∞(x) = d+(x) + c+ for all x > r and for some constants c+ and r ∈ R, or

u∞(x) = d−(x) + c− for all x < r and for some constants c− and r ∈ R. Now,

Theorem 3 ensures that convergence (7) holds.
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Let us consider the Cauchy problem (1)–(2) in the case where the functions

H(x, p) in x and u0 are periodic with period 1. In addition to (A1)–(A6), we assume

as in [15] (see also [5]) that there exists a function ω0 ∈ C([0, ∞)) satisfying ω0(0) = 0

and ω0(r) > 0 for all r > 0 such that for all (x, p) ∈ R2 satisfying H(x, p) = 0 and for

all ξ ∈ D−
2
H(x, p) and q ∈ R, if ξq > 0, then

H(x, p+ q) ≥ ξq + ω0(ξq). (14)

Note that if v ∈ S−
H (resp., v ∈ SH), then v(· + 1) ∈ S−

H (resp., v(· + 1) ∈ SH).

Hence, by the definition of u−
0

and u∞, we infer that u−
0

and u∞ are periodic with

period 1. Note also by the periodicity of H(x, p) in x that d(x + 1, y + 1) = d(x, y)
for all x, y ∈ R. In order to apply Theorem 3, we assume that supAH < ∞ and

u∞(x) = d+(x) + c+ for all x ≥ R and for some constants c+, R ∈ R. By the above

periodicity of d, we deduce that AH = ∅ and u∞(x) = d+(x) + c+ for all x ∈ R.

Fix any y ∈ R and choose a γ ∈ E((−∞, 0], d+, y). As in the proof of Lemma 18,

we see that γ is decreasing on (−∞, 0] and sup γ((−∞, 0]) = ∞. We may choose a

τ > 0 so that γ(−τ) = y + 1. We extend γ̇|
(−τ, 0] to R by periodicity and integrating

the resulting periodic function, we may assume that γ(t− τ) = γ(t) + 1 for all t ∈ R.

We assume that

0 = lim inf
x→∞

(u0 − u−
0
)(x) < lim sup

x→∞
(u0 − u−

0
)(x).

(Otherwise, by Theorem 3, we know that u+(y) ≤ u∞(y).) By the periodicity of

u−
0

and u∞, we have min
[x, x+1)

(u0 − u−
0
) = 0 for all x ∈ R. Moreover we have

mins∈[t, t+τ)
(u0 − u−

0
)(γ(−s)) = 0 for all t ∈ R.

It has been proved in [15] that there exist a constant δ > 0 and a non-decreasing

function ω ∈ C([0, ∞)) satisfying ω(0) = 0 such that for any 0 ≤ ε ≤ δ, we have

∫

0

−t/(1+ε)

L[γε] ds ≤ u∞(γε(0)) − uε(γε(−t/(1 + ε)) + tεω(ε), (15)

where γε(s) := γ((1 + ε)s) for all s ∈ R.

We fix any t ≥ τ/δ. Choose a σ ∈ [t, t + τ) so that (u0 − u−
0

)(γ(−σ)) = 0 and

then an ε ≥ 0 so that
σ

1+ε = t. Note that ε =
σ
t − 1 =

σ−t
t ≤ τ

t ≤ δ. Therefore, by

(15), we get
∫

0

−t

L[γε] ds ≤u∞(γε(0)) − u∞(γε(−t)) + σεω(ε)

≤u∞(y) − u∞(γ(−σ)) +
στ

t
ω(
τ

t
)

≤u∞(y) − u∞(γ(−σ)) +
τ(t+ τ)

t
ω(
τ

t
)

≤u∞(y) − u−
0
(γ(−σ)) + τ(1 + δ)ω(

τ

t
),

and furthermore

u(y, t) ≤

∫

0

−t

L[γε] ds+ u0(γε(−t))

≤u∞(y) − u−
0
(γ(−σ)) + u0(γ(−σ)) + τ(1 + δ)ω(

τ

t
)

=u∞(y) + τ(1 + δ)ω(
τ

t
).
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Thus we obtain u+(y) ≤ u∞(y). Similarly, if we assume that inf AH > −∞ and

u∞(x) = d−(x) + c− for all x ≥ R for some constant c−, R ∈ R and also that 0 =

lim infx→−∞(u0 − u−
0

)(x) < lim supx→−∞(u0 − u−
0
)(x), then we get u+(y) ≤ u∞(y).

These observations and Theorem 3 guarantee that convergence (7) holds.

We continue to consider the Cauchy problem (1)–(2), where the functions H(·, p)
and u0 are periodic with period 1. Now we assume in addition to (A1)–(A6) that

there exists a function ω0 ∈ C([0, ∞)) satisfying ω0(0) = 0 and ω0(r) > 0 for all r > 0

such that for all (x, p) ∈ R2 satisfying H(x, p) = 0 and for all ξ ∈ D−
2
H(x, p) and

q ∈ R, if ξq < 0, then

H(x, p+ q) ≥ ξq + ω0(|ξq|). (16)

We will show that convergence (7) holds under these hypotheses, which seems to be a

new observation.

We argue as in the previous result and thus assume that supAH < ∞ and

u∞(x) = d+(x)+c+ for all x > R and for some constants c+, R ∈ R. We then observe

that AH = ∅ and u∞(x) = d+(x)+c+ for all x ∈ R and that lim infx→∞(u0−u
−
0
)(x) <

lim supx→∞(u0 − u−
0
)(x). Fix any y ∈ R and choose a γ ∈ E(R, d+, y) so that

γ(t − τ) = γ(t) + 1 for all t ∈ R and for some constant τ > 0. A careful review of

[15, Lemmas 3.1, 3.2, Proposition 3.4] reveals that there exist a constant δ ∈ (0, 1)

and a non-decreasing function ω ∈ C([0, ∞)) satisfying ω(0) = 0 such that for any

0 ≤ ε ≤ δ and t > 0, we have

∫

0

−t/(1−ε)

L[ηε] ds ≤ u∞(ηε(0)) − u∞(ηε(−t/(1 − ε)) + tεω(ε), (17)

where ηε(s) := γ((1 − ε)s) for all s ∈ R.

As before we fix any t ≥ τ/δ and choose a σ ∈ (t−τ, t] so that (u0−u
−
0

)(γ(−σ)) =

0 and then an ε ≥ 0 so that
σ

1−ε = t. Note that ε = 1 − σ
t =

t−σ
t ≤ τ

t ≤ δ. Hence by

(17) we get
∫

0

−t

L[ηε] ds ≤ u∞(ηε(0)) − u∞(ηε(−t)) + σεω(ε)

≤ u∞(y) − u∞(γ(−σ)) +
στ

t
ω(
τ

t
)

≤ u∞(y) − u−
0

(γ(−σ)) + τω(
τ

t
),

and consequently

u(y, t) ≤

∫

0

−t

L[ηε] ds+ u0(ηε(−t))

≤ u∞(y) − u−
0

(γ(−σ)) + u0(γ(−σ)) + τω(
τ

t
)

= u∞(y) + τω(
τ

t
),

from which we get u+(y) ≤ u∞(y). Similarly, if we assume that inf AH > −∞ and

u∞(x) = d−(x) + c− for all x ≥ R for some constants c−, R ∈ R and also that 0 =

lim infx→−∞(u0 − u−
0

)(x) < lim supx→−∞(u0 − u−
0
)(x), then we get u+(y) ≤ u∞(y).

Theorem 3 now guarantees that convergence (7) holds.

For possible relaxations of the periodicity of H(·, p) and u0 in the above conver-

gence results, we refer to [15] as well as [6, Théorème 1].
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